From Nearly Zero Water Buildings to Urban Water Communities: The Need to Define Parameters to Support the New Paradigms
Abstract
:1. Introduction
2. Integrated and Decentralised Urban Water Management: A Resilient Approach
2.1. Water Balance of Buildings
2.2. Greywater
YG | is the yield/supply of greywater in litres per day (L/d); |
n | is the number of persons (p); |
QS | is the volume flow of the shower in litres per minute (L/min); |
tS | is the duration per usage of the shower in minutes (min); |
uS | is the shower usage rate per person per day (1/(p⋅d)); |
VBT | is the volume of water per usage of the bathtub in litres (L)—not maximum filling volume; |
uBT | is the usage rate of the bathtub per person per day (1/(p⋅d)); |
QHWB | is the volume flow of wash basin in litres per minute (L/min); |
tHWB | is the duration per usage of wash basin in minutes (min); |
uHWB | is the handwash usage rate per person per day (1/(p⋅d)); |
VWM | is the volume of water for clothes washer per operation cycle in litres (L); |
uWM | is the number of operation cycles of clothes washer per person per day (1/(p⋅d)); |
QKS | is the volume flow of taps (warm and cold water) at the kitchen sink in litres per minute (L/min); |
tKS | is the duration per usage of kitchen sink in minutes (min); |
uKS | is the usage rate of tap at the kitchen sink per person per day (1/(p⋅d)); |
VDW | is the volume of water for dishwater per operation cycle in litres (L); |
uDW | is the operation cycles of dishwasher per person per day (1/(p⋅d)). |
DG | is the demand of greywater in litres per day (L/d); |
n | is the number of persons (p); |
VT | is the volume of water for WC flushing per flush in litres (L); |
uT | is the usage rate of WC per person and day (1/(p⋅d)); |
VU | is the volume of water for urinal flushing per flush in litres (L); |
uU | is the usage rate of urinal per person and day (1/(p⋅d)); |
VWM | is the volume of water for clothes washer per operation cycle in litres (L); |
uWM | is the operation cycles of clothes washer per person and day (1/(p⋅d)); |
Vmisc | is the volume of water for other purposes (e.g., garden watering, cleaning) in litres per day (L/d). |
2.3. Rainwater
YR | is the rainwater yield/supply per time interval, expressed in litres (L); |
A | is the horizontal projection of the collection area/surface, expressed in square metres (m2); do not consider surfaces that are in contact with polluting sources; |
P | is the total rainfall height for a given time interval, expressed in millimetres (mm); consider rainfall studies with historical rainfall series corresponding to periods of no less than 10 years; |
C | is the surface runoff coefficient (ratio between the volume collected and the total volume of precipitation); |
η | is the hydraulic efficiency coefficient of the filtration. |
2.4. Quality and Treatment of Water for Non-Potable Reuse
3. Resource Potential—Wastewater
4. A Case Study
5. Discussion
- Lack of integrated regulations for the community scale: Most regulations focus exclusively on the building scale or centralised urban systems, without clear guidelines for integrating decentralised solutions at the community level. In Portugal, for example, there is a distinction between DL 119/2019, which regulates the reuse of regenerated water for outdoor uses, and ETA 0905, which applies exclusively to buildings. This regulatory fragmentation makes it difficult to implement integrated approaches that consider both buildings and the urban environment in which they are located.
- Divergence between non-potable water quality criteria: National and international regulations have different requirements for treated wastewater and rainwater, reflecting specific regulatory priorities and local conditions. Countries such as the United Kingdom, Portugal, and Singapore have more restrictive standards for different uses, while Brazil, despite establishing quality requirements, does not differentiate specific applications, resulting in greater flexibility. However, this may require more robust treatments and additional costs, depending on the end use.
- Lack of financial and regulatory incentives: Financing and regulation still prioritise conventional infrastructures, hindering the adoption of hybrid models that combine centralised and decentralised systems. Although environmental certifications play an essential role in the transition to sustainable water management, the weighting given to water efficiency in these systems is low, suggesting an underutilised potential to drive more comprehensive change.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MDPI | Multidisciplinary Digital Publishing Institute |
DOAJ | Directory of open access journals |
TLA | Three-letter acronym |
LD | Linear dichroism |
SDGs | Sustainable Development Goals |
NbSs | Nature-based solutions |
UWCs | Urban Water Communities |
NZWBs | Nearly Zero Water Buildings |
BREEAM | Building Research Establishment Environmental Assessment Method |
DGNB | German Sustainable Building Council |
LiderA | Liderar pelo Ambiente para a Construção Sustentável/Lead for the Environment in Search of Sustainable Construction |
WHO | World Health Organisation |
MAV | Maximum Acceptable Value |
MRV | Maximum Recommended Value |
DL | Decree-Law |
PUB | Public Utilities Board |
ANQIP | Associação Nacional para a Qualidade nas Instalações Prediais/National Association for Quality in Buildings Services |
ETA | Especificação Técnica/Technical Specification: |
BS | British Standards |
ABNT | Associação Brasileira de Norma Técnicas/Brazilian National Standards Organization |
FCT | Foundation for Science and Technology |
References
- APA. Guia para a Reutilização de Água—Usos Não Potáveis: Água para Reutilização (ApR)/Guide for Water Reuse for Non-Potable Uses; Agência Portuguesa do Ambiente/Portuguese Environment Agency: Amadora, Portugal, 2019. [Google Scholar]
- Silva-Afonso, A.; Pimentel-Rodrigues, C. Manual de Eficiência Hídrica em Edifícios/Manual of Water Efficiency in Buildings; ANQIP: Associação Nacional para a Qualidade nas Instalações Prediais/National Association for Quality in Buildings Services: Aveiro, Portugal, 2017. [Google Scholar]
- Sousa, V.; Silva, C.M.; Meireles, I. Performance of water efficiency measures in commercial buildings. Resour. Conserv. Recycl. 2019, 143, 251–259. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency (EPA) WaterSense. Putting WaterSense to Work: University Makes the Most of Onsite Alternative Water Sources. Available online: https://www.epa.gov/sites/default/files/2017-01/documents/ws-commercial-casestudy-ut-austin.pdf (accessed on 14 February 2025).
- Bona, S.; Gomes, R. Potential for the Use of Rainwater in Higher Education Institutions: A Case Study of Building D of Campus 2 of the Polytechnic of Leiria. In Proceedings of the 1st International Conference on Water Energy Food and Sustainability (ICoWEFS 2021); Springer: Cham, Switzerland, 2021; pp. 744–753. [Google Scholar] [CrossRef]
- García-Montoya, M.; Ponce-Ortega, J.M.; Nápoles-Rivera, F.; Serna-González, M.; El-Halwagi, M.M. Optimal design of reusing water systems in a housing complex. Clean Technol. Environ. Policy 2015, 17, 343–357. [Google Scholar] [CrossRef]
- Marinoski, A.K.; Rupp, R.F.; Ghisi, E. Environmental benefit analysis of strategies for potable water savings in residential buildings. J. Environ. Manag. 2018, 206, 28–39. [Google Scholar] [CrossRef] [PubMed]
- Oviedo-Ocaña, E.R.; Dominguez, I.; Ward, S.; Rivera-Sanchez, M.L.; Zaraza-Peña, J.M. Financial feasibility of end-user designed rainwater harvesting and greywater reuse systems for high water use households. Environ. Sci. Pollut. Res. 2018, 25, 19200–19216. [Google Scholar] [CrossRef]
- Gómez-Monsalve, M.; Domínguez, I.C.; Yan, X.; Ward, S.; Oviedo-Ocaña, E.R. Environmental performance of a hybrid rainwater harvesting and greywater reuse system: A case study on a high water consumption household in Colombia. J. Clean. Prod. 2022, 345, 131125. [Google Scholar] [CrossRef]
- Zhang, L.; Njepu, A.; Xia, X. Minimum cost solution to residential energy-water nexus through rainwater harvesting and greywater recycling. J. Clean. Prod. 2021, 298, 126742. [Google Scholar] [CrossRef]
- Rodrigues, A.M.; Formiga, K.T.M.; Milograna, J. Integrated systems for rainwater harvesting and greywater reuse: A systematic review of urban water management strategies. Water Supply 2023, 23, 4112–4125. [Google Scholar] [CrossRef]
- Bona, S.; Silva-Afonso, A.; Rodrigues, F.; Gomes, R. Strategic Plan for Water Losses Management in Water Supply Systems. In Proceedings of the 3rd International Conference on Water Energy Food and Sustainability (ICoWEFS 2023); Springer: Cham, Switzerland, 2024; pp. 755–767. [Google Scholar] [CrossRef]
- CML. Câmara Municipal de Lisboa, Qualidade Ambiental, Reutilização da Água—Plano Estratégico de Reutilização de Água de Lisboa. Available online: https://www.lisboa.pt/temas/ambiente/qualidade-ambiental/agua (accessed on 14 February 2025).
- Martins, J.P.; Godinho, F.; Vieira, S. Achieving SDG 6 (Water Goals): Contribution from Engineering; World Federation of Engineering Organizations Working Group on Water: Paris, France, 2022. [Google Scholar]
- Águas do Tejo Atlântico. Fábrica de Água: Uma nova geração de recursos/Water Factory: A New Generation of Resources; Grupo Águas de Portugal: Lisboa, Portugal; Available online: https://www.aguasdotejoatlantico.adp.pt/content/fabrica-de-agua (accessed on 7 June 2023).
- Carvalho, P.N.; Finger, D.C.; Masi, F.; Cipolletta, G.; Oral, H.V.; Tóth, A.; Regelsberger, M.; Exposito, A. Nature-based solutions addressing the water-energy-food nexus: Review of theoretical concepts and urban case studies. J. Clean. Prod. 2022, 338, 130652. [Google Scholar] [CrossRef]
- Council of the European Union. Water in the EU’s External Action—Council Conclusions. 14108/21; General Secretariat of the Council: Brussels, Belgium, 2021. [Google Scholar]
- Bona, S.; Rodrigues, F.; Gomes, R.; Silva-Afonso, A. Nature-based solutions for water resilience in thriving European urban areas. Urban Water J. 2024, 21, 813–826. [Google Scholar] [CrossRef]
- Bona, S.; Silva-Afonso, A.; Gomes, R.; Matos, R.; Rodrigues, F. Nature-Based Solutions in Urban Areas: A European Analysis. Appl. Sci. 2023, 13, 168. [Google Scholar] [CrossRef]
- U.S. Department of Energy. Net Zero Water Building Strategies. Available online: https://www.energy.gov/femp/net-zero-water-building-strategies (accessed on 17 November 2023).
- BREEAM Communities. Technical Manual—V1.2—SD202; BRE Global: Watford, UK, 2017; Volume 2. [Google Scholar]
- DGNB GmbH. DGNB System—Districts. Criteria Set; DGNB Global Benchmark for Sustainability: Stuttgart, Germany, 2020. [Google Scholar]
- Pinheiro, M.D. LiderA: Sistema voluntário para a sustentabilidade dos ambientes construídos; Instituto Superior Técnico, Universidade Técnica de Lisboa: Lisbon, Portugal, 2019; Available online: https://www.lidera4all.com/_files/ugd/a7dea0_b2ecadc55ed344efa8157b180bdacb31.pdf (accessed on 14 February 2025).
- Stec, A. Sustainable Water Management in Buildings; Springer: Cham, Switzerland, 2020; Volume 90. [Google Scholar] [CrossRef]
- Thebuwena, A.C.H.J.; Samarakoon, S.M.S.M.K.; Ratnayake, R.M.C. On the Necessity for Improving Water Efficiency in Commercial Buildings: A Green Design Approach in Hot Humid Climates. Water 2024, 16, 2396. [Google Scholar] [CrossRef]
- Antão-Geraldes, A.M.; Pinto, M.; Afonso, M.J.; Albuquerque, A.; Calheiros, C.S.C.; Silva, F. Promoting Water Efficiency in a Municipal Market Building: A Case Study. Hydrology 2023, 10, 69. [Google Scholar] [CrossRef]
- LEED. Leadership in Energy and Environmental Design—LEED Zero Program Guide; U.S. Green Building Council, Inc.: Washington, DC, USA, 2020; Available online: https://www.usgbc.org/resources/leed-zero-program-guide (accessed on 2 October 2023).
- Esmail, B.A.; Suleiman, L. Analyzing Evidence of Sustainable Urban Water Management Systems: A Review through the Lenses of Sociotechnical Transitions. Sustainability 2020, 12, 4481. [Google Scholar] [CrossRef]
- Jalilov, S.M.; Kefi, M.; Kumar, P.; Masago, Y.; Mishra, B.K. Sustainable Urban Water Management: Application for Integrated Assessment in Southeast Asia. Sustainability 2018, 10, 122. [Google Scholar] [CrossRef]
- Nwokediegwu, Z.Q.S.; Ugwuanyi, E.D.; Dada, M.A.; Majemite, M.T.; Obaigbena, A. Urban Water Management: A Review of Sustainable Practices in the USA. Eng. Sci. Technol. J. 2024, 5, 517–530. [Google Scholar] [CrossRef]
- Timm, S.N.; Deal, B.M. Understanding the behavioral influences behind Singapore’s water management strategies. J. Environ. Plan. Manag. 2018, 61, 1654–1673. [Google Scholar] [CrossRef]
- Voulvoulis, N. The potential of water reuse as a management option for water security under the ecosystem services approach. Desalination Water Treat. 2015, 53, 3263–3271. [Google Scholar] [CrossRef]
- Ozano, K.; Roby, A.; Tompkins, J. Learning Journey on Water Security: UK Water Offer; Institute of Development Studies: Brighton, UK, 2022. [Google Scholar] [CrossRef]
- Rodrigues, A.D. Introduction: Scope, Goals and Outcomes of AQUA’s Project. Gard. Landsc. Port. 2021, 7, 1–4. [Google Scholar] [CrossRef]
- ADENE. Eficiência hídrica nos Edifícios: Oportunidades para os Municípios; Agência para a Energia: Lisbon, Portugal, 2024. [Google Scholar]
- Amaral, R.; Alegre, H.; Matos, J.S. Highlights of key international water infrastructure asset management initiatives, and trends, challenges and developments in Portugal. Water Policy 2017, 19, 128–146. [Google Scholar] [CrossRef]
- World Bank. Water in Circular Economy and Resilience: The Case of Aguas de Portugal; World Bank: Washington, DC, USA, 2021; Available online: http://hdl.handle.net/10986/36244 (accessed on 7 June 2023).
- Araújo, R.S.; da G. Alves, M.; Condesso de Melo, M.T.; Chrispim, Z.M.P.; Mendes, M.P.; Silva Júnior, G.C. Water resource management: A comparative evaluation of Brazil, Rio de Janeiro, the European Union, and Portugal. Sci. Total Environ. 2015, 511, 815–828. [Google Scholar] [CrossRef]
- Santos, A.S.P.; Vieira, J.M.P. Water Reuse for Sustainable Development: Regulatory Aspects in Brazil and Portugal. Rev. Eletrônica Gestão Tecnol. Ambient. (GESTA) 2020, 8, 50–68. [Google Scholar] [CrossRef]
- Bardin, L. Análise de Conteúdo; Edições 70: Lisbon, Portugal, 2009. [Google Scholar]
- Presidência do Conselho de Ministros/Presidency of the Council of Ministers. Decree-Law No.119, Decreto-Lei n.o 119/2019, de 21 de agosto: Estabelece o regime jurídico de produção de água para reutilização, obtida a partir do tratamento de águas residuais, bem como da sua utilização/Establishes the Legal Scheme of the Production of Water for Its Reuse (ApR), Obtained from the Treatment of Wastewater, as Well as Its Correct Use. Diário da República, 21 August 2019. [Google Scholar]
- ERSAR. ERSAR: Entidade Reguladora dos Serviços de Águas e Resíduos—Factos e Números/The Water and Waste Services Regulation Authority—Facts and Figures. Volume 1—Relatório Anual dos Serviços de Águas e Resíduos em Portugal (RASARP 2022). Available online: https://www.ersar.pt/pt/site-setor/site-factos-e-numeros (accessed on 24 April 2024).
- WHO. Technical Notes on Drinking-Water, Sanitation and Hygiene in Emergencies—How Much Water Is Needed in Emergencies; Water, Engineering and Development Centre—World Health Organization: Leicestershire, UK, 2013. [Google Scholar]
- WWAP. The United Nations World Water Development Report 2017. Wastewater: The Untapped Resource; United Nations World Water Assessment Programme, UNESCO: Paris, France, 2017. [Google Scholar]
- ABNT NBR 16783; Uso de Fontes Alternativas de Água Não Potável em Edificações/Use of Alternative Sources of Non-Potable Water in Buildings. Associação Brasileira de Norma Técnicas/Brazilian National Standards Organization: Rio de Janeiro, Brazil, 2019.
- BS 8595; Code of Practice for the Selection of Water Reuse Systems. British Standards Institution Standards Publication: London, UK, 2013.
- HM Government. The Building Regulations 2010 (2015 Edition with 2016 Amendments)—Part G: Sanitation, Hot Water Safety and Water Efficiency; NBS, Part of RIBA Enterprises Ltd.: Newcastle Upon Tyne, UK, 2016.
- ANQIP ETA 0905; Especificação Técnica: Sistemas Prediais de Aproveitamento de Águas Cinzentas (SPRAC)/Technical Specification: Reuse and Recycling of Grey Water. Associação Nacional para a Qualidade nas Instalações Prediais/National Association for Quality in Buildings Services: Aveiro, Portugal, 2023.
- BS EN 16941-2; On-Site Non-Potable Water Systems—Part 2: Systems for the Use of Treated Greywater. British Standards Institution Standards Publication: London, UK, 2021.
- PUB. Technical Guide for Greywater Recycling System; PUB: Singapore, 2014. [Google Scholar]
- BS EN 16941-1; On-Site Non-Potable Water Systems—Part 1: Systems for the Use of Rainwater. British Standards Institution Standards Publication: London, UK, 2018.
- ANQIP ETA 0701; Especificação Técnica: Sistemas de Aproveitamento de Águas Pluviais em Edifícios (SAAP)/Technical Specification: Systems for Rainwater Harvesting in Buildings. Associação Nacional para a Qualidade nas Instalações Prediais/National Association for Quality in Buildings Services: Aveiro, Portugal, 2022.
- ABNT NBR 15527; Aproveitamento de Água de Chuva de Coberturas para Fins Não Potáveis—Requisitos. Brazilian National Standards Organization: Rio de Janeiro, Brazil, 2019.
- Liu, Y.; He, L.F.; Deng, Y.Y.; Zhang, Q.; Jiang, G.M.; Liu, H. Recent progress on the recovery of valuable resources from source-separated urine on-site using electrochemical technologies: A review. Chem. Eng. J. 2022, 442, 136200. [Google Scholar] [CrossRef]
- Randall, D.G.; Naidoo, V. Urine: The liquid gold of wastewater. J. Environ. Chem. Eng. 2018, 6, 2627–2635. [Google Scholar] [CrossRef]
- Raposo, C. Água Residual como Recurso no Novo Ciclo Urbano da Água (TPF)/Wastewater as a Resource in the New Urban Water Cycle. In Academia da Água (APRH)—Cidades Conscientes na Gestão da Água/Water Academy (APRH)—Conscious Cities in Water Management; The Portuguese Water Resources Association: Lisbon, Portugal, 2024. [Google Scholar]
- Mihelcic, J.R.; Fry, L.M.; Shaw, R. Global potential of phosphorus recovery from human urine and feces. Chemosphere 2011, 84, 832–839. [Google Scholar] [CrossRef] [PubMed]
- EcoSalix. Plano Estratégico de Reabilitação de Linhas de Água (PERLA)—Leiria. TOMO I: Enquadramento—Município de Leiria; Ref. Projeto | 20.06_CMLei_PERLA; EcoSalix: Ourém, Portugal, 2023. [Google Scholar]
- EcoSalix. Plano Estratégico de Reabilitação de Linhas de Água (PERLA)—Leiria. TOMO II: Plano de Ação—Município de Leiria; Ref. Projeto | 20.06_CMLei_PERLA; EcoSalix: Ourém, Portugal, 2023. [Google Scholar]
- Câmara Municipal de Leiria. Plano Municipal de Adaptação às Alterações Climáticas de Leiria (PMAAC-L)—Relatório Final. 2018. Available online: https://www.cm-leiria.pt/cmleiria/uploads/writer_file/document/3490/PMAAC-LEIRIA.pdf (accessed on 24 May 2023).
- Censos 2021. Available online: https://censos.ine.pt/xportal/xmain?xpgid=censos21_main&xpid=CENSOS21&xlang=pt (accessed on 24 May 2023).
- Ministério do Ambiente e Ordenamento do Território; Câmara Municipal de Leiria. Programa POLIS: Programa de Requalificação Urbana e Valorização Ambiental de Cidades—Plano Estratégico de LEIRIA; Ministério do Ambiente e do Ordenamento do Território: Lisbon, Portugal; Câmara Municipal de Leiria: Leiria, Portugal, 2000. [Google Scholar]
- Diário da República, 2.a série — N.o 142 — 24 de julho de 2012. MUNICÍPIO DE LEIRIA — Aviso n.o 9986/2012. pp. 182–187. Available online: https://files.diariodarepublica.pt/gratuitos/2s/2012/07/2S142A0000S00S00.pdf (accessed on 14 February 2025).
- Marques, J.A.S.; de O. Sousa, J.J. Hidráulica Urbana: Sistemas de Abastecimento de Água Drenagem de Águas Residuais; Imprensa da Universidade: Coimbra, Portugal, 2018. [Google Scholar]
- Silva-Afonso, A.; Pimentel-Rodrigues, C. Manual de Redes Prediais—Ersara: Entidade Reguladora dos Serviços de Águas e Resíduos dos Açores; ANQIP—Associação Nacional para a Qualidade nas Instalações Prediais: Aveiro, Portugal, 2023. [Google Scholar]
- LANDLAB. Soluções Técnicas: Soluções Baseadas na Natureza. 2024. Available online: https://www.landlab.pt/pt/manual-de-solucoes (accessed on 14 February 2025).
- Greater Western Water; Melbourne Water; South East Water; Yarra Valley Water (Eds.) Greater Melbourne Urban Water & System Strategy: Water for Life. 2022. Available online: https://www.melbournewater.com.au/about/what-we-do/publications/greater-melbourne-urban-water-and-system-strategy-water-life (accessed on 14 February 2025).
- Integrated Water Management Forums (IWM). Greater Metropolitan Melbourne Catchment Scale Integrated Water Management Plan—Assessing and Driving Progress Towards Strategic Outcomes; Department of Environment, Land, Water and Planning (DELWP): Melbourne, Australia, 2022. [Google Scholar]
- DANVA. Water in Figures—Denmark. Statistics & Benchmarking; Dansk Vand- og Spildevandsforening (the Danish Water and Wastewater Association): Skanderborg, Denmark, 2022. [Google Scholar]
- Ministerie van Infrastructuur en Waterstaat. Nationaal Plan van Aanpak Drinkwaterbesparing; Ministerie van Infrastructuur en Waterstaat: The Hague, The Netherlands, 2024; Available online: https://open.overheid.nl/documenten/dpc-0654c0aee2fc2ada28a98f250b992ea7060863f8/pdf (accessed on 14 February 2025).
Substances | Blackwater: Urine | Blackwater: Faeces | Greywater | Rainwater |
---|---|---|---|---|
Treatment | Hygienisation by storage or drying | Anaerobic digestion, drying, composting | Constructed wetlands, gardening, wastewater ponds, biological treatment, membrane technology | Filtration, biological treatment |
Utilisation | Liquid or dry fertiliser | Biogas, soil improvement | Irrigation, groundwater recharge or direct reuse | Water supply, groundwater recharge |
Occupancy | Supply (1) | Demand | ||
---|---|---|---|---|
Toilet (WC) | Laundry (2) | Other Non-Potable Uses (3) | ||
1 person | 60 | 35 | 15 | 10 |
Source of Water Used | Water Uses | Wastewater Produced | Water Destination |
---|---|---|---|
52 L of drinking quality water | 40 L for showers, bathtubs, and wash basins | 70 L of greywater | 40 (to 58) L of regenerated greywater |
12 L for the kitchen | |||
12 (to 22) L of greywater discharged | |||
40 (to 58) L of regenerated water | 5 L for cleaning | ||
13 L for clothes washer | |||
35 L for flushing toilets | 35 L of blackwater | 35 L of blackwater discharged | |
5 L for watering | - | Soil infiltration |
Device or Use | Unit Consumption | Estimated Monthly or Annual Consumption | ||
---|---|---|---|---|
Flushing toilets (category “A”) (1) in residences | 24 L/(person.day) | 720 L/(person.month) 8800 L/(person.year) | ||
Flushing toilets (category “A”) (1) in-service buildings (offices and others) | 12 L/(person.day) | 360 L/(person.month) 4400 L/(person.year) | ||
Laundry (category “A” machine) (2) | 10 L/(person.day) | 300 L/(person.month) 3600 L/(person.year) | ||
General Cleaning (3) | Floor washing | 5 L/m2 | 100 L/(person.month) 1000 L/(person.year) | |
Car washing (self-service) | 50 L/car | |||
Watering green areas (figures for average years) (4) | Total values: April to September | Lawns (5) | - | 450 to 800 L/m2 |
Gardens (6) | - | 60 to 400 L/m2 | ||
Maximum values (per day): Summer | Lawns (5) | 5 to 7 L/m2 | - | |
Gardens (6) | 1.5 to 5 L/m2 | - |
Use/Application Parameters | Firefighting | Cooling | Flushing Toilets | Landscaping/Watering Gardens | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Regulations/Standards | DL 119/19 (1) | DL 119/19 | PUB (2) | DL 119/19 (1) | ETA 0905 | BS 16941-2 | DL 119/19 | ETA 0905 (3) | BS 16941-2 (4) | |
General and Quality | pH | 6.0–9.0 | 6.5–8.5 (5) | 6.0–9.0 | 6.0–9.0 | 6.0–9.0 (MAV) | 5.0–9.5 | 6.0–9.0 | 6.0–9.0 (MRV) | 5.0–9.5 |
Turbidity (NTU) | ≤5 | <2 | ≤5 | ≤5 (MAV) ≤2 (MRV) | <10 | ≤5 | ≤5 (MAV) ≤2 (MRV) | |||
Colour (Hazen Units) | <15 | (6) | (6) | |||||||
BOD5: Biochemical Oxygen Demand (mg/L O2) | ≤25 | ≤25 | <5 | ≤25 | ≤25 (MRV) | ≤25 | ≤10 (MRV) | |||
Standard Plate Count/Heterotrophic Plate Count (CFU/mL) | <500 | |||||||||
Organics and Nutrients | Ammoniacal Nitrogen (mg NH4+/L) | ≤5 ≤1 (7) | ≤10 | ≤10 (MRV) | ≤5 | ≤10 (MRV) | ||||
Total Nitrogen (mg N/L) | ≤15 (MRV) | |||||||||
Ptotal: Total Phosphorus (mg/L) | ≤2 (8) | ≤5 (MRV) | ||||||||
Total Suspended Solids (mg/L) | ≤10 (MAV) | |||||||||
Microbiological | Escherichia coli (CFU/100 mL) | ≤10 | ≤200 | ≤10 | ≤250 (MAV) ≤10 (MRV) | ≤250 | ≤10 | ≤200 (MAV) ≤10 (MRV) | ≤250 | |
Total Coliforms (CFU/100 mL) | <10 | ≤103 (MRV) | ≤103 | ≤104 (MRV) | ≤103 | |||||
Enterococc (CFU/100 mL) | ≤100 (MAV) | ≤100 | ≤100 (MAV) | ≤100 | ||||||
Enteric Parasites (ova/10 L) | ≤1 (MRV) | |||||||||
Disinfection | Residual Chlorine (mg/L) | 0.5–2.0 | ≤2 (MAV;9) | <2 | ≤0.5 (MAV;9) | <0.5 | ||||
Residual Bromine (mg/L) | <5 | 0 | ||||||||
Biological Risk | Legionella spp. (CFU/100 mL) | ≤103 | ≤103 (MAV;10) |
Use/Application Parameters | General Washing | Non-Potable | ||||||
---|---|---|---|---|---|---|---|---|
Regulations/Standards | DL119/19 (street washing; 1) | DL119/19 (car washing; 1; 2) | ETA 0905 (3) | BS 16941-2 (laundry; 4) | BS16941-2 (pressure washing; 5) | PUB (6) | ABNT 16783 (7) | |
General and Quality | pH | 6.0–9.0 | 6.0–9.0 | 6.0–9.0 (MAV) | 5.0–9.5 | 5.0–9.5 | 6.0–9.0 | 6.0–9.0 |
Turbidity (NTU) | ≤5 | ≤5 (MAV) ≤2 (MRV) | <10 | <10 | <2 | ≤5 | ||
Colour (Hazen Units) | (8) | (8) | <15 | |||||
BOD5: Biochemical Oxygen Demand (mg/L O2) | ≤25 | <5 | ≤20 | |||||
Organics and Nutrients | Total Organic Carbon (mg/L) | <4 (9) | ||||||
Total Suspended Solids (mg/L) | ≤10 (MRV) | ≤2000 | ||||||
Microbiological | Escherichia coli (CFU/100 mL) | ≤10 | Not detected (MAV) | Not detected | Not detected | ≤200 | ||
Total Coliforms (CFU/100 mL) | ≤10 (MRV) | ≤10 | ≤10 | <10 | ||||
Enterococc (CFU/100 mL) | Not detected (MAV) | Not detected | Not detected | |||||
Pseudomonas aeruginosa (CFU/100 mL) | ≤1 (MRV) | |||||||
Enteric Parasites (ova/10 L) | ≤1 (MRV) | |||||||
Disinfection | Residual Chlorine (mg/L) | ≤2 (MAV; 10) | <2 | <2 | 0.5–2.0 | 0.5–5.0 (MAV) 0.5–2.0 (MRV) | ||
Residual Bromine (mg/L) | <5 | 0 | ||||||
Biological Risk | Legionella spp. (CFU/100 mL) | ≤103 (MAV; 11) | ≤10 |
Uses Applications | Ecosystem Support | Firefighting | Cooling | Flushing Toilets | Recreation and Landscaping | Irrigation | Washing (Streets and Cars) |
---|---|---|---|---|---|---|---|
Treatment Level | Secondary or more advanced than secondary (1) | More advanced than secondary | More advanced than secondary | More advanced than secondary | More advanced than secondary | More advanced than secondary (disinfection) | More advanced than secondary |
Type of Treatment | Secondary treatment (2) and possible disinfection (3) and/or removal of N and P | Secondary treatment (2), filtration (4) (e.g., membrane filtration) and disinfection (3) (advanced treatment systems) | Secondary treatment (2), filtration (4) (e.g., membrane filtration) and disinfection (3) (advanced treatment systems) | Secondary treatment (2), filtration (4) (e.g., membrane filtration) and disinfection (3) (advanced treatment systems) | Secondary treatment (2), filtration (4) (e.g., membrane filtration) and disinfection (3) (advanced treatment systems) |
Description | Value |
---|---|
Intervention area | 41.40 ha |
Total construction area for housing, commerce, and services | 46,828 m2 |
Proposed construction area for car parking | 11,421 m2 |
Proposed construction area for equipment and support buildings | 6475 m2 |
Number of dwellings (total) | 242 |
Total area of public green areas and green spaces for collective use | 86,409 m2 |
Source of Water | Yield [m3/day] | Demand [m3/day] |
---|---|---|
Greywater | 77.1 (A) | 63 (B) |
Rainwater | ||
Months with the highest rainfall (C) | 75.8 (D) | |
Months with less rainfall (C) | 9.7 (D) | |
Without irrigation (applicable to green areas) | 23.3 (E) | |
With irrigation (applicable to green areas) | 455.3 (E) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bona, S.; Silva-Afonso, A.; Gomes, R.; Pimentel-Rodrigues, C.; Rodrigues, F. From Nearly Zero Water Buildings to Urban Water Communities: The Need to Define Parameters to Support the New Paradigms. Appl. Sci. 2025, 15, 2566. https://doi.org/10.3390/app15052566
Bona S, Silva-Afonso A, Gomes R, Pimentel-Rodrigues C, Rodrigues F. From Nearly Zero Water Buildings to Urban Water Communities: The Need to Define Parameters to Support the New Paradigms. Applied Sciences. 2025; 15(5):2566. https://doi.org/10.3390/app15052566
Chicago/Turabian StyleBona, Sara, Armando Silva-Afonso, Ricardo Gomes, Carla Pimentel-Rodrigues, and Fernanda Rodrigues. 2025. "From Nearly Zero Water Buildings to Urban Water Communities: The Need to Define Parameters to Support the New Paradigms" Applied Sciences 15, no. 5: 2566. https://doi.org/10.3390/app15052566
APA StyleBona, S., Silva-Afonso, A., Gomes, R., Pimentel-Rodrigues, C., & Rodrigues, F. (2025). From Nearly Zero Water Buildings to Urban Water Communities: The Need to Define Parameters to Support the New Paradigms. Applied Sciences, 15(5), 2566. https://doi.org/10.3390/app15052566