Automatic Extraction of Water Body from SAR Images Considering Enhanced Feature Fusion and Noise Suppression
Abstract
:1. Introduction
- GCAFF-Net is proposed, which integrates global and local information, and can accurately refine the edge contour of water bodies, extract significant multi-scale features and suppress noise interference. It demonstrates outstanding performance in feature extraction and segmentation, significantly enhancing the ability to identify various types of water bodies from SAR imagery.
- The Attention Feature Fusion Module (AFFM) is constructed. It integrates high-level semantic features and low-level detail features, enriches image detail information, enhances the model’s learning ability for water body details, and ensures the network’s extraction ability under different water body features.
- A feature extraction module, namely Global Context Atrous Spatial Pyramid Pooling (GCASPP), is proposed to effectively capture contextual information from images across different receptive fields, ensuring the network’s ability to recognize both large and small water bodies. It simultaneously achieves the fine recognition of water body edges and a suppression effect on complex background noise.
2. Materials and Methods
2.1. Datasets
2.2. The Architecture of GCAFF-Net
2.3. The Encoder
2.4. The Decoder
2.5. Evaluation Metrics
3. Results
3.1. Training Parameter Configurations
3.2. Comparison Experiments
3.2.1. Scene I
3.2.2. Scene II
3.2.3. Scene III
3.3. Analysis of Experimental Results
3.4. Ablation Experiment
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, F.K.; Goldstein, R.M. Studies of multibaseline spaceborne interferometric synthetic aperture radars. IEEE Trans. Geosci. Remote Sens. 1990, 28, 88–97. [Google Scholar] [CrossRef]
- Chen, L.; Cai, X.; Li, Z.; Xing, J.; Ai, J. Where is my attention? An explainable AI exploration in water detection from SAR imagery. Int. J. Appl. Earth Obs. Geoinf. 2024, 130, 103878. [Google Scholar] [CrossRef]
- Zhang, P.; Chen, L.; Li, Z.; Xing, J.; Xing, X.; Yuan, Z. Automatic Extraction of Water and Shadow from SAR Images Based on a Multi-Resolution Dense Encoder and Decoder Network. Sensors 2019, 19, 3576. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Sun, D.; Li, S.; Kalluri, S.; Zhou, L.; Helfrich, S.; Yuan, M.; Zhang, Q.; Straka, W.; Maggioni, V.; et al. Extracting Wetlands in Coastal Louisiana from the Operational VIIRS and GOES-R Flood Products. Remote Sens. 2024, 16, 3769. [Google Scholar] [CrossRef]
- Wang, X.; Xie, S.; Du, J. Water index formulation and its effectiveness research on the complicated surface water surroundings. J. Remote Sens. 2018, 22, 360–372. [Google Scholar] [CrossRef]
- Hajeb, M.; Karimzadeh, S.; Matsuoka, M. SAR and LIDAR Datasets for Building Damage Evaluation Based on Support Vector Machine and Random Forest Algorithms—A Case Study of Kumamoto Earthquake, Japan. Appl. Sci. 2020, 10, 8932. [Google Scholar] [CrossRef]
- Tang, J.; Hu, D.; Gong, Z. Study of Classification by Support Vector Machine on Synthetic Aperture Radar Image. Remote Sens. Technol. Appl. 2008, 23, 341–345. [Google Scholar]
- Bernard, T.G.; Davy, P.; Lague, D. Hydro-Geomorphic Metrics for High Resolution Fluvial Landscape Analysis. J. Geophys. Res. Earth Surf. 2022, 127, e2021JF006535. [Google Scholar] [CrossRef]
- Costabile, P.; Costanzo, C.; Lombardo, M.; Shavers, E.; Stanislawski, L.V. Unravelling spatial heterogeneity of inundation pattern domains for 2D analysis of fluvial landscapes and drainage networks. J. Hydrol. 2024, 632, 130728. [Google Scholar] [CrossRef]
- Tang, L.; Liu, W.; Yang, D.; Chen, L.; Su, Y.; Xu, X. Flooding Monitoring Application Based on the Object-oriented Method and Sentinel-1A SAR Data. J. Geo-Inf. Sci. 2018, 20, 377–384. [Google Scholar]
- Hinton, G.; LeCun, Y.; Bengio, Y. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Evan, S.; Jonathan, L.; Trevor, D. Fully Convolutional Networks for Semantic Segmentation. IEEE Tran. Pattern Anal. Mach. Int. 2017, 39, 640–651. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; Springer International Publishing: Berlin/Heidelberg, Germany, 2015. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Identity Mappings in Deep Residual Networks. ECCV 2016. In Proceedings of the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Cham, Switzerland, 2016; Volume 9908. [Google Scholar] [CrossRef]
- Chen, L.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation. In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018. [Google Scholar] [CrossRef]
- Luo, Y.; Feng, A.; Li, H.; Li, D.; Wu, X.; Liao, J.; Zhang, C.; Zheng, X.; Pu, H. New deep learning method for efficient extraction of small water from remote sensing images. PLoS ONE. 2022, 17, e0272317. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, S.; Lin, Y.; Wang, M. Lightweight Deep Neural Network Method for Water Body Extraction from High-Resolution Remote Sensing Images with Multisensors. Sensors 2021, 21, 7397. [Google Scholar] [CrossRef]
- Cui, B.; Jing, W.; Huang, L.; Li, Z.; Lu, Y. SANet: A Sea–Land Segmentation Network Via Adaptive Multiscale Feature Learning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 116–126. [Google Scholar] [CrossRef]
- Tang, Y.; Zhang, J.; Jiang, Z.; Lin, Y.; Hou, P. RAU-Net++: River Channel Extraction Methods for Remote Sensing Images of Cold and Arid Regions. Appl. Sci. 2024, 14, 251. [Google Scholar] [CrossRef]
- Wang, H.; Shen, Y.; Liang, L.; Yuan, Y.; Yan, Y.; Liu, G. River Extraction from Remote Sensing Images in Cold and Arid Regions Based on Attention Mechanism. Wirel. Commun. Mob. Comput. 2022, 2022, 9410381. [Google Scholar] [CrossRef]
- Weng, L.; Xu, Y.; Xia, M.; Zhang, Y.; Liu, J.; Xu, Y. Water Areas Segmentation from Remote Sensing Images Using a Separable Residual SegNet Network. ISPRS Int. J. Geo-Inf. 2020, 9, 256. [Google Scholar] [CrossRef]
- Qin, M.; Hu, L.; Du, Z.; Gao, Y.; Qin, L.; Zhang, F.; Liu, R. Achieving Higher Resolution Lake Area from Remote Sensing Images Through an Unsupervised Deep Learning Super-Resolution Method. Remote Sens. 2020, 12, 1937. [Google Scholar] [CrossRef]
- Xie, W.; Ding, Y.; Rui, X.; Zou, Y.; Zhan, Y. Automatic Extraction Method of Aquaculture Sea Based on Improved SegNet Model. Water 2023, 15, 3610. [Google Scholar] [CrossRef]
- Wang, J.; Jia, D.; Xue, J.; Wu, Z.; Song, W. Automatic Water Body Extraction from SAR Images Based on MADF-Net. Remote Sens. 2024, 16, 3419. [Google Scholar] [CrossRef]
- Zhao, T.; Du, X.; Xu, C.; Jian, H.; Pei, Z.; Zhu, J.; Yan, Z.; Fan, X. SPT-UNet: A Superpixel-Level Feature Fusion Network for Water Extraction from SAR Imagery. Remote Sens. 2024, 16, 2636. [Google Scholar] [CrossRef]
- Yuan, D.; Wang, C.; Wu, L.; Yang, X.; Guo, Z.; Dang, X.; Zhao, J.; Li, N. Water Stream Extraction via Feature-Fused Encoder-Decoder Network Based on SAR Images. Remote Sens. 2023, 15, 1559. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, K.; Ma, F.; Hu, W.; Zhang, F. Water–Land Segmentation via Structure-Aware CNN–Transformer Network on Large-Scale SAR Data. IEEE Sens. J. 2023, 23, 1408–1422. [Google Scholar] [CrossRef]
- Cai, X.; Chen, L.; Xing, J. Automatic and fast extraction of layover from InSAR imagery based on multi-layer feature fusion attention mechanism. IEEE Geosci. Remote Sens. Lett. 2022, 19, 4017705. [Google Scholar] [CrossRef]
- Chen, L.; Weng, T.; Xing, J. Employing deep learning for automatic river bridge detection from SAR images based on adaptively effective feature fusion. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102425. [Google Scholar] [CrossRef]
- Chen, L.; Weng, T.; Xing, J.; Li, Z.; Yuan, Z. A New Deep Learning Network for Automatic Bridge Detection from SAR Images Based on Balanced and Attention Mechanism. Remote Sens. 2020, 12, 441. [Google Scholar] [CrossRef]
- Tan, S.; Chen, L.; Pan, Z.; Xing, J.; Li, Z.; Yuan, Z. Geospatial Contextual Attention Mechanism for Automatic and Fast Airport Detection in SAR Imagery. IEEE Access 2020, 8, 173627–173640. [Google Scholar] [CrossRef]
- Wang, X.; Girshick, R.; Gupta, A.; He, K. Non-local Neural Networks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7794–7803. [Google Scholar] [CrossRef]
- Qin, J.; Wu, J.; Xiao, X.; Li, L.; Wang, X. Activation modulation and recalibration scheme for weakly supervised semantic segmentation. Proc. AAAI 2022, 36, 2117–2125. [Google Scholar] [CrossRef]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4510–4520. [Google Scholar] [CrossRef]
Networks | Water | Background | ||||||
---|---|---|---|---|---|---|---|---|
PA (%) | IoU (%) | Recall (%) | F1-Score (%) | PA (%) | IoU (%) | Recall (%) | F1-Score (%) | |
U-Net | 67.25 | 65.46 | 96.10 | 79.13 | 99.29 | 91.53 | 92.13 | 95.58 |
MF2AM | 91.34 | 87.23 | 91.12 | 93.18 | 97.59 | 96.43 | 98.78 | 98.18 |
Deeplabv3+ | 83.14 | 81.73 | 97.96 | 89.94 | 99.55 | 95.39 | 95.80 | 97.64 |
Ours | 95.24 | 91.63 | 96.03 | 95.63 | 98.98 | 97.77 | 98.77 | 98.87 |
Networks | Water | Background | ||||||
---|---|---|---|---|---|---|---|---|
PA (%) | IoU (%) | Recall (%) | F1-Score (%) | PA (%) | IoU (%) | Recall (%) | F1-Score (%) | |
U-Net | 84.60 | 81.43 | 95.61 | 89.77 | 97.21 | 87.54 | 89.79 | 93.36 |
MF2AM | 97.41 | 88.68 | 90.82 | 94.00 | 92.94 | 91.24 | 98.04 | 95.42 |
Deeplabv3+ | 91.94 | 89.48 | 97.10 | 94.45 | 98.03 | 92.67 | 94.43 | 96.20 |
Ours | 96.49 | 92.25 | 95.46 | 95.97 | 96.70 | 94.33 | 97.46 | 97.08 |
Networks | Water | Background | ||||||
---|---|---|---|---|---|---|---|---|
PA (%) | IoU (%) | Recall (%) | F1-Score (%) | PA (%) | IoU (%) | Recall (%) | F1-Score (%) | |
U-Net | 92.65 | 80.72 | 83.12 | 89.34 | 94.89 | 94.05 | 99.06 | 96.93 |
MF2AM | 89.23 | 85.27 | 95.06 | 92.05 | 98.79 | 96.10 | 97.24 | 98.01 |
Deeplabv3+ | 88.28 | 81.12 | 90.91 | 89.58 | 97.70 | 94.81 | 96.97 | 97.33 |
Ours | 91.53 | 87.16 | 95.37 | 93.14 | 98.85 | 96.59 | 97.69 | 98.27 |
Networks | Water | Background | ||||||
---|---|---|---|---|---|---|---|---|
PA (%) | IoU (%) | Recall (%) | F1-Score (%) | PA (%) | IoU (%) | Recall (%) | F1-Score (%) | |
U-Net | 87.56 | 76.68 | 84.24 | 86.80 | 95.96 | 93.60 | 97.24 | 96.70 |
MF2AM | 82.83 | 73.16 | 86.25 | 84.50 | 96.82 | 92.97 | 95.90 | 96.36 |
Deeplabv3+ | 82.59 | 76.57 | 91.31 | 86.73 | 98.11 | 94.16 | 95.90 | 96.99 |
Ours | 89.59 | 82.10 | 92.93 | 90.17 | 98.40 | 95.53 | 97.34 | 97.72 |
Scene | Method | PA (%) | IoU (%) | Recall (%) | F1-Score (%) |
---|---|---|---|---|---|
Scene I | GCAFF- ResNet | 95.24 | 91.63 | 96.03 | 95.63 |
GCAFF- MobileNetV2 | 94.01 | 87.16 | 92.29 | 93.14 | |
Scene II | GCAFF- ResNet | 91.53 | 87.16 | 95.37 | 93.14 |
GCAFF- MobileNetV2 | 91.40 | 85.97 | 93.22 | 92.45 | |
Scene III | GCAFF- ResNet | 89.59 | 82.10 | 92.93 | 90.17 |
GCAFF- MobileNetV2 | 85.54 | 79.47 | 91.81 | 88.56 |
Network Algorithm | ResNet | GCASPP | AFFM | AMM | PA (%) | IoU (%) |
---|---|---|---|---|---|---|
Deeplabv3+ | √ | × | × | × | 84.67 | 79.81 |
√ | √ | × | × | 87.69 | 84.43 | |
√ | × | √ | × | 88.15 | 85.57 | |
√ | × | × | √ | 87.46 | 85.73 | |
√ | √ | √ | √ | 92.12 | 86.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, M.; Dong, W.; Chen, L.; Wu, Z. Automatic Extraction of Water Body from SAR Images Considering Enhanced Feature Fusion and Noise Suppression. Appl. Sci. 2025, 15, 2366. https://doi.org/10.3390/app15052366
Gao M, Dong W, Chen L, Wu Z. Automatic Extraction of Water Body from SAR Images Considering Enhanced Feature Fusion and Noise Suppression. Applied Sciences. 2025; 15(5):2366. https://doi.org/10.3390/app15052366
Chicago/Turabian StyleGao, Meijun, Wenjie Dong, Lifu Chen, and Zhongwu Wu. 2025. "Automatic Extraction of Water Body from SAR Images Considering Enhanced Feature Fusion and Noise Suppression" Applied Sciences 15, no. 5: 2366. https://doi.org/10.3390/app15052366
APA StyleGao, M., Dong, W., Chen, L., & Wu, Z. (2025). Automatic Extraction of Water Body from SAR Images Considering Enhanced Feature Fusion and Noise Suppression. Applied Sciences, 15(5), 2366. https://doi.org/10.3390/app15052366