Anti-Adhesion Superhydrophobic High-Frequency Electrotome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of Anti-Adhesion SH-HFEs
2.3. Characterization
2.4. Blood Adhesion Experiment
2.5. Tissue Adhesion Experiment
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Messenger, D.; Carter, F.; Noble, E.; Francis, N. Electrosurgery and energized dissection. Surgery 2020, 38, 133–138. [Google Scholar]
- Malis, L.I. Electrosurgery—Technical note. J. Neurosurg. 1996, 85, 970–975. [Google Scholar] [CrossRef]
- Taheri, A.; Mansoori, P.; Sandoval, L.F.; Feldman, S.R.; Pearce, D.; Williford, P.M. Electrosurgery: Part I. Basics and principles. J. Am. Acad. Dermatol. 2014, 70, 591. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Wan, J.; Long, Y.; Fu, H.; Zheng, J.; Zhou, Z. Effect of high-frequency electric field on the tissue sticking of minimally invasive electrosurgical devices. R. Soc. Open Sci. 2018, 5, 180125. [Google Scholar] [CrossRef] [PubMed]
- Sutton, P.A.; Awad, S.; Perkins, A.C.; Lobo, D.N. Comparison of lateral thermal spread using monopolar and bipolar diathermy, the Harmonic Scalpel™ and the Ligasure™. Br. J. Surg. 2010, 97, 428–433. [Google Scholar] [CrossRef] [PubMed]
- Park, J.Y.; Tenjimbayashi, M.; Muto, J.; Shiratori, S. Antiadhesion Function between a Biological Surface and a Metallic Device Interface at High Temperature by Wettability Control. ACS Biomater. Sci. Eng. 2018, 4, 1891–1899. [Google Scholar] [CrossRef]
- Li, K.; Xie, Y.; Tang, B.; Yu, M.; Ding, H.; Li, C.; Lu, L. Evolution of electro-induced blood plasma droplets on a superhydrophobic microstructured surface. Appl. Phys. Lett. 2022, 121, 113701. [Google Scholar] [CrossRef]
- Yao, G.; Zhang, D.; Geng, D.; Jiang, X. Improving anti-adhesion performance of electrosurgical electrode assisted with ultrasonic vibration. Ultrasonics 2018, 84, 126–133. [Google Scholar] [CrossRef]
- Alzadjali, S.; Matouk, Z.; Alshehhi, A.; Rajput, N.; Mohammedture, M.; Guttierrez, M. Simple, Scalable Route to Produce Transparent Superhydrophobic/Hydrophilic Film Surfaces. Appl. Sci. 2023, 13, 1707. [Google Scholar] [CrossRef]
- Piscitelli, F. Superhydrophobic and Icephobic Coatings as Passive Ice Protection Systems for Aeronautical Applications. Appl. Sci. 2024, 14, 1288. [Google Scholar] [CrossRef]
- Chen, G.; Yan, D.; Liu, J.; Xu, Y.; Zhou, Y.; Wu, B.; Song, J. Self-cleaning coating for exterior walls of concrete buildings. Surf. Innov. 2022, 11, 453–463. [Google Scholar] [CrossRef]
- Yan, D.; Lin, J.; Zhang, B.; Zhang, S.; Ling, S.; Song, J. Drag reduction and antifouling of a spontaneous fast moving air film. J. Mater. Chem. A 2024, 12, 19268–19276. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, Y.; Xue, Y.; Sui, X.; Yuan, B.; Wang, Y.; Liang, W. Functional surfaces with reversibly switchable wettability: Fundamentals, progresses, applications and challenges. Prog. Org. Coat. 2024, 188, 108167. [Google Scholar] [CrossRef]
- Yan, D.; Lu, Y.; Lin, J.; Li, W.; Song, J. Enhancing water transportation capacity by asymmetrical patterned surface with super-wettability. Appl. Phys. Lett. 2024, 125, 71601. [Google Scholar] [CrossRef]
- Dodde, R.E.; Gee, J.S.; Geiger, J.D.; Shih, A.J. Monopolar electrosurgical thermal management for minimizing tissue damage. IEEE. Trans. Biomed. Eng. 2012, 59, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Morales, J.P.; Sabharwal, T.; Georganas, M.; Dourado, R.; Cahill, D.; Adam, A. Cold saline irrigation of the renal pelvis during Radiofrequency Ablation of a central renal neoplasm: A case report. J. Med. Case Rep. 2008, 2, 40. [Google Scholar] [CrossRef] [PubMed]
- Yao, G.; Zhang, D.; Geng, D.; Wang, L. Novel ultrasonic vibration-assisted electrosurgical cutting system for minimizing tissue adhesion and thermal injury. Road Mater. Pavement Des. 2021, 201, 109528. [Google Scholar] [CrossRef]
- Ceviker, N.; Keskil, S.; Baykaner, K. A new coated bipolar coagulator: Technical note. Acta Neurochir. 1998, 140, 619–620. [Google Scholar] [CrossRef]
- Waritz, R.S. An industrial approach to evaluation of pyrolysis and combustion hazards. Environ. Health Perspect. 1975, 11, 197–202. [Google Scholar] [CrossRef]
- Ou, K.L.; Chu, J.S.; Hosseinkhani, H.; Chiou, J.F.; Yu, C.H. Biomedical nanostructured coating for minimally invasive surgery devices applications: Characterization, cell cytotoxicity evaluation and an animal study in rat. Surg. Endosc. 2014, 28, 2174–2188. [Google Scholar] [CrossRef]
- Kang, S.K.; Kim, P.Y.; Koo, I.G.; Kim, H.Y.; Jung, J.C.; Choi, M.Y.; Lee, J.K.; Collins, G.J. Non-stick polymer coatings for energy-based surgical devices employed in vessel sealing. Plasma Process. Polym. 2012, 9, 446–452. [Google Scholar] [CrossRef]
- Zhou, C.; Lu, J.; Wang, X. Adhesion behavior of textured electrosurgical electrode in an electric cutting process. Coatings 2020, 10, 596. [Google Scholar] [CrossRef]
- Liu, Z.; Wu, F.; Gu, H.; Feng, J.; Huang, D.; Zheng, L.; Yao, G.; Chen, Z.; Wang, C. Adhesion failure and anti-adhesion bionic structure optimization of surgical electrodes in soft tissue cutting. J. Manuf. Process. 2023, 89, 444–457. [Google Scholar] [CrossRef]
- Lin, C.C.; Lin, H.J.; Lin, Y.H.; Sugiatno, E.; Ruslin, M.; Su, C.Y.; Ou, K.L.; Cheng, H.Y. Micro/nanostructured surface modification using femtosecond laser pulses on minimally invasive electrosurgical devices. J. Biomed. Mater. Res. Part B 2017, 105, 865–873. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Yang, Y.; Yang, L.; Shi, Z. Biomimetic anti-adhesive surface microstructures on electrosurgical blade fabricated by long-pulse laser inspired by pangolin scales. Micromachines 2019, 10, 816. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Fu, J.; Feng, X.; Niu, S.; Zhang, J.; Ren, L. Bionic anti-adhesive electrode coupled with maize leaf microstructures and TiO2 coating. RSC Adv. 2017, 7, 45287–45293. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, G.; Zhang, D.; Chen, H. Liquid-Infused Surfaces on Electrosurgical Instruments with Exceptional Antiadhesion and Low-Damage Performances. ACS Appl. Mater. Interfaces 2018, 10, 33713–33720. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Song, J. Multifunctional slippery photothermal coating. J. Colloid Interf. Sci. 2024, 653, 1548–1556. [Google Scholar] [CrossRef]
- Ma, J.; Zhang, C.; Wong, W.; Song, J. Facile, scalable and Substrate-Independent omniphobic surface. Appl. Surf. Sci. 2025, 682, 161726. [Google Scholar] [CrossRef]
- Chen, K.; Xiao, X.; Hao, C.; Sun, F.; Zhang, H.; Tan, Y.; Zhu, J.; Peng, H.; Zhan, T.; Lyu, J.; et al. Innovative Janus wood membranes: Harnessing wood anisotropy for superior liquid separation and transport. Chem. Eng. J. 2025, 506, 160185. [Google Scholar] [CrossRef]
- Li, K.; Lu, L.; Chen, H.; Jiang, G.; Ding, H.; Yu, M.; Xie, Y. Cutting performance of surgical electrodes by constructing bionic microstriped structures. Front. Mech. Eng. 2023, 18, 12. [Google Scholar] [CrossRef]
- Li, K.; Lu, L.; Xie, Y.; Yu, M.; Jiang, G.; Kou, J.; Gao, J. Enhanced cutting performance of electrosurgical units by oil-infused laser-textured surfaces. Int. J. Mech. Sci. 2023, 254, 108422. [Google Scholar] [CrossRef]
- Yan, D.; Lin, J.; Yang, X.; Lu, Y.; Song, J. High-efficiency water collection of superhydrophobic condensation absorber. Adv. Sci. 2025, 2417024. [Google Scholar] [CrossRef]
- Wang, L.; Jiang, G.; Zhu, D.; Tian, Z.; Chen, C.; Hu, X.; Peng, R.; Li, D.; Zhang, H.; Zhao, H.; et al. Self-Driven Droplet Motions Below their Icing Points. Small 2023, 19, 2302339. [Google Scholar] [CrossRef]
- Chen, K.; Zhu, J.; Tan, Y.; Sun, F.; Gan, J.; Peng, H.; Zhan, T.; Lyu, J. Development of gradient-wetting Janus wood membrane with high-efficiency fog collection and oil-water separation. Chem. Eng. J. 2023, 470, 144356. [Google Scholar] [CrossRef]
- Wu, B.; Yan, D.; Lin, J.; Song, J. Wire Electrochemical Etching of Superhydrophobic Nickel Surfaces with Enhanced Corrosion Protection. Materials 2023, 16, 7472. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, W.; Zhong, L.; Wang, J.; Jiang, Q.; Guo, X. Super-hydrophobic surface on pure magnesium substrate by wet chemical method. Appl. Surf. Sci. 2010, 256, 3837–3840. [Google Scholar] [CrossRef]
- Boisier, G.; Lamure, A.; Pébère, N.; Portail, N.; Villatte, M. Corrosion protection of AA2024 sealed anodic layers using the hydrophobic properties of carboxylic acids. Surf. Coat. Technol. 2009, 203, 3420–3426. [Google Scholar] [CrossRef]
- Salman, S.A.; Okido, M. Self-assembled monolayers formed on AZ31 Mg alloy. J. Phys. Chem. Solids 2012, 73, 863–866. [Google Scholar] [CrossRef]
- Yao, C.; Ding, Y.; Li, W.; Wang, M.; Lu, L.; Wang, X. Effect of Organic Modification Temperature on the Microstructure of Nanoscale Titania. J. Inorg. Mater. 2009, 24, 438–442. [Google Scholar] [CrossRef]
Elements | Ordinary HFE | SH-HFE |
---|---|---|
C | 42.2% | 86.6% |
O | 42.1% | 11.3% |
Fe | 13.3% | 1.1% |
Si | 3.3% | 1.0% |
Functional Groups | Ordinary HFE | SH-HFE |
---|---|---|
C–C/C–H/C–Si | 80.0% | 91.0% |
C–O C=O | 13.2% 6.8% | 4.9% 4.1% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, H.; Li, Y.; Liu, J.; Liu, H.; Li, Y.; Zhao, Y.; Yan, D.; Liu, X. Anti-Adhesion Superhydrophobic High-Frequency Electrotome. Appl. Sci. 2025, 15, 2363. https://doi.org/10.3390/app15052363
Fu H, Li Y, Liu J, Liu H, Li Y, Zhao Y, Yan D, Liu X. Anti-Adhesion Superhydrophobic High-Frequency Electrotome. Applied Sciences. 2025; 15(5):2363. https://doi.org/10.3390/app15052363
Chicago/Turabian StyleFu, Haodong, Yuheng Li, Jiyu Liu, Hao Liu, Yun Li, Yue Zhao, Defeng Yan, and Xin Liu. 2025. "Anti-Adhesion Superhydrophobic High-Frequency Electrotome" Applied Sciences 15, no. 5: 2363. https://doi.org/10.3390/app15052363
APA StyleFu, H., Li, Y., Liu, J., Liu, H., Li, Y., Zhao, Y., Yan, D., & Liu, X. (2025). Anti-Adhesion Superhydrophobic High-Frequency Electrotome. Applied Sciences, 15(5), 2363. https://doi.org/10.3390/app15052363