Improved Efficiency of Lutein Extraction from Hens’ Feed Mixture and Food Samples Using Less Toxic Solvent Mixture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Instrumentation
2.3. Chromatographic Procedure
2.4. Ultrasound-Assisted Procedure
2.5. Real Samples
2.6. Standard Solutions
2.7. Sample Preparation
2.7.1. Influence of Sample Particle Size
2.7.2. Lutein Extraction Method
2.7.3. Suitability of MSM Extraction Procedure
2.8. Statistical Analysis
3. Results and Discussion
3.1. Calibration Curve
3.2. Comparison of Unground and Ground Samples
3.3. Selection of the Solvent
3.4. Comparison of SM and MSM
3.5. Suitability of MSM Extraction Procedure
3.6. Influence of Ultrasound on Extraction
3.7. HPLC Analysis of Real Samples
3.7.1. Analysis of Hens’ Feed Mixtures
3.7.2. Analysis of Food Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Demirci-Çekiç, S.; Özkan, G.; Avan, A.N.; Uzunboy, S.; Çapanoğlu, E.; Apak, R. Biomarkers of Oxidative Stress and Antioxidant Defense. J. Pharm. Biomed. Anal. 2022, 209, 114477. [Google Scholar] [CrossRef] [PubMed]
- Mirończuk-Chodakowska, I.; Witkowska, A.M.; Zujko, M.E. Endogenous Non-Enzymatic Antioxidants in the Human Body. Adv. Med. Sci. 2018, 63, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Rahal, A.; Kumar, A.; Singh, V.; Yadav, B.; Tiwari, R.; Chakraborty, S.; Dhama, K. Oxidative Stress, Prooxidants, and Antioxidants: The Interplay. Biomed. Res. Int. 2014, 2014, 761264. [Google Scholar] [CrossRef]
- Martini, D.; Negrini, L.; Marino, M.; Riso, P.; Del Bo, C.; Porrini, M. What Is the Current Direction of the Research on Carotenoids and Human Health? An Overview of Registered Clinical Trials. Nutrients 2022, 14, 1191. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Rao, S.; Zhou, X.; Li, L. Plant Carotenoids: Recent Advances and Future Perspectives. Mol. Hortic. 2022, 2, 3. [Google Scholar] [CrossRef] [PubMed]
- Van Chuyen, H.; Eun, J.B. Marine Carotenoids: Bioactivities and Potential Benefits to Human Health. Crit. Rev. Food Sci. Nutr. 2017, 57, 2600–2610. [Google Scholar] [CrossRef] [PubMed]
- Perry, A.; Rasmussen, H.; Johnson, E.J. Xanthophyll (Lutein, Zeaxanthin) Content in Fruits, Vegetables and Corn and Egg Products. J. Food Compos. Anal. 2009, 22, 9–15. [Google Scholar] [CrossRef]
- Sommerburg, O.; E Keunen, J.E.; Bird, A.C.; G M van Kuijk, F.J. Fruits and Vegetables That Are Sources for Lutein and Zeaxanthin: The Macular Pigment in Human Eyes. Br. J. Ophthalmol. 1998, 82, 907–910. [Google Scholar] [CrossRef]
- Fuad, N.I.N.; Sekar, M.; Gan, S.H.; Lum, P.T.; Vaijanathappa, J.; Ravi, S. Lutein: A Comprehensive Review on Its Chemical, Biological Activities and Therapeutic Potentials. Pharmacogn. J. 2020, 12, 1769–1778. [Google Scholar] [CrossRef]
- Stringham, J.M.; Johnson, E.J.; Hammond, B.R. Lutein across the Lifespan: From Childhood Cognitive Performance to the Aging Eye and Brain. Curr. Dev. Nutr. 2019, 3, nzz066. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Aal, E.S.M.; Akhtar, H.; Zaheer, K.; Ali, R. Dietary Sources of Lutein and Zeaxanthin Carotenoids and Their Role in Eye Health. Nutrients 2013, 5, 1169–1185. [Google Scholar] [CrossRef]
- Maiani, G.; Castón, M.J.P.; Catasta, G.; Toti, E.; Cambrodón, I.G.; Bysted, A.; Granado-Lorencio, F.; Olmedilla-Alonso, B.; Knuthsen, P.; Valoti, M.; et al. Carotenoids: Actual Knowledge on Food Sources, Intakes, Stability and Bioavailability and Their Protective Role in Humans. Mol. Nutr. Food Res. 2009, 53, 194–218. [Google Scholar] [CrossRef] [PubMed]
- Leth, T.; Jakobsen, J.; Andersen, N.L. The intake of carotenoids in Denmark. Eur. J. Lipid Sci. Technol. 2000, 102, 128–132. [Google Scholar] [CrossRef]
- Hulshof, P.J.M.; van Roekel-Jansen, T.; van de Bovenkamp, P.; West, C.E. Variation in Retinol and Carotenoid Content of Milk and Milk Products in The Netherlands. J. Food Compos. Anal. 2006, 19, 67–75. [Google Scholar] [CrossRef]
- Pitargue, F.M.; Kang, H.K.; Kil, D.Y. Lutein-Enriched Egg Production for Laying Hens. Worlds Poult. Sci. J. 2019, 75, 633–645. [Google Scholar] [CrossRef]
- Roodenburg, A.J.C.; Leenen, R.; van het Hof, K.H.; Weststrate, J.A.; BM Tijburg, B.M.L. Amount of fat in the diet affects bioavailability of lutein esters but not of α-carotene, β-carotene, and vitamin E in humans. Am. J. Clin. Nutr. 2000, 71, 1187–1193. [Google Scholar] [CrossRef]
- Bédécarrats, G.Y.; Leeson, S. Dietary Lutein Influences Immune Response in Laying Hens. J. Appl. Poult. Res. 2006, 15, 183–189. [Google Scholar] [CrossRef]
- European Commission, Directorate-General for Health and Food Safety. European Union Register of Feed Additives Pursuant to Regulation (EC) No 1831/2003. Annex I, List of Additives (Released Date 21.09.2021); Publications Office of the European Union: Luxembourg, Luxembourg, 2021; Available online: https://Data.Europa.Eu/Doi/10.2875/434313 (accessed on 10 November 2024).
- Grčević, M.; Kralik, Z.; Kralik, G.; Galović, O. Effects of Dietary Marigold Extract on Lutein Content, Yolk Color and Fatty Acid Profile of Omega-3 Eggs. J. Sci. Food Agric. 2019, 99, 2292–2299. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Lu, W.; Li, J.; Hu, J.; Ding, R.; Lv, M.; Wang, Q. Optimization of Ultrasonic-Assisted Extraction and Purification of Zeaxanthin and Lutein in Corn Gluten Meal. Molecules 2019, 24, 2994. [Google Scholar] [CrossRef] [PubMed]
- Yeop, A.; Sandanasamy, J.; Pang, S.F.; Abdullah, S.; Yusoff, M.M.; Gimbun, J. The Effect of Particle Size and Solvent Type on the Gallic Acid Yield Obtained from Labisia Pumila by Ultrasonic Extraction. MATEC Web Conf. 2017, 111, 02008. [Google Scholar] [CrossRef]
- Hojnik, M.; Škerget, M.; Knez, Ž. Extraction of Lutein from Marigold Flower Petals-Experimental Kinetics and Modelling. LWT 2008, 41, 2008–2016. [Google Scholar] [CrossRef]
- Fonseca, J.M.; Rushing, J.W.; Thomas, R.L.; Riley, M.B.; Rajapakse, N.C. Influence of Particle Size on Extraction Yield and Quantification of Parthenolide in Feverfew (Tanacetum Parthenium). Acta Hort. 2006, 720, 189–197. [Google Scholar] [CrossRef]
- Yeop, A.; Pang, S.F.; Law, W.P.; Yusoff, M.M.; Gimbun, J. Assessment of Size Reduction and Extraction Methods on the Yield of Gallic Acid from Labisia Pumila Leaf via Microstructures Analysis. Mater. Today Proc. 2019, 19, 1280–1286. [Google Scholar] [CrossRef]
- Poojary, M.M.; Barba, F.J.; Aliakbarian, B.; Donsì, F.; Pataro, G.; Dias, D.A.; Juliano, P. Innovative Alternative Technologies to Extract Carotenoids from Microalgae and Seaweeds. Mar. Drugs 2016, 14, 214. [Google Scholar] [CrossRef] [PubMed]
- Leeson, S.; Caston, L.; Namkung, H. Effect of Dietary Lutein and Flax on Performance, Egg Composition and Liver Status of Laying Hens. Can. J. Anim. Sci. 2007, 87, 365–372. [Google Scholar] [CrossRef]
- Alfonsi, K.; Colberg, J.; Dunn, P.J.; Fevig, T.; Jennings, S.; Johnson, T.A.; Kleine, H.P.; Knight, C.; Nagy, M.A.; Perry, D.A.; et al. Green Chemistry Tools to Influence a Medicinal Chemistry and Research Chemistry Based Organisation. Green Chem. 2008, 10, 31–36. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 14th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1984; pp. 739–740. [Google Scholar]
- Chen, B.H.; Yang, S.H. An Improved Analytical Method for the Determination of Carotenes and Xanthophylls in Dried Plant Materials and Mixed Feeds. Food Chem. 1992, 44, 61–66. [Google Scholar] [CrossRef]
- Craft, N.E.; Soares, J.H. Relative Solubility, Stability, and Absorptivity of Lutein and β-Carotene in Organic Solvents. J. Agric. Food Chem. 1992, 40, 431–434. [Google Scholar] [CrossRef]
- TIBCO Statistica® Document Management System 13.5.0. Available online: https://docs.tibco.com/products/tibco-statistica-document-management-system-13-5-0 (accessed on 11 February 2025).
- Šivel, M.; Kráčmar, S.; Fišera, M.; Klejdus, B.; Kubáň, V. Lutein Content in Marigold Flower (Tagetes Erecta L.) Concentrates Used for Production of Food Supplements. Czech J. Food Sci. 2014, 32, 521–525. [Google Scholar] [CrossRef]
- Patel, A.K.; Vadrale, A.P.; Tseng, Y.S.; Chen, C.W.; Di Dong, C.; Singhania, R.R. Bioprospecting of Marine Microalgae from Kaohsiung Seacoast for Lutein and Lipid Production. Bioresour. Technol. 2022, 351, 126928. [Google Scholar] [CrossRef] [PubMed]
- Chandra-Hioe, M.V.; Elvira, J.; Arcot, J. Ascorbic Acid Effectively Improved Lutein Extraction Yield from Australian Sweet Lupin Flour. Plant Foods Hum. Nutr. 2019, 74, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhang, Y.; Li, Q.; Zou, Y.; Shao, J.; Lan, S. Quantification of Lutein and Zeaxanthin in Marigold (Tagetes Erecta L.) and Poultry Feed by Ultra-Performance Liquid Chromatography and High Performance Liquid Chromatography. J. Liq. Chromatogr. Relat. Technol. 2011, 34, 2653–2663. [Google Scholar] [CrossRef]
- Islam, K.M.S.; Khalil, M.; Männer, K.; Raila, J.; Rawel, H.; Zentek, J.; Schweigert, F.J. Effect of Dietary α-Tocopherol on the Bioavailability of Lutein in Laying Hen. J. Anim. Physiol. Anim. Nutr. 2016, 100, 868–875. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Vendrell, A.M.; Hernández, J.M.; Llauradó, L.; Schierle, J.; Brufau, J. Influence of Source and Ratio of Xanthophyll Pigments on Broiler Chicken Pigmentation and Performance. Poult. Sci. 2001, 80, 320–326. [Google Scholar] [CrossRef] [PubMed]
- Koutsos, E.A.; Clifford, A.J.; Calvert, C.C.; Klasing, K.C. Maternal Carotenoid Status Modifies the Incorporation of Dietary Carotenoids into Immune Tissues of Growing Chickens (Gallus Gallus Domesticus). J. Nutr. 2003, 133, 1132–1138. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, G.P.R.; Rodriguez-Amaya, D.B. Processed and Prepared Corn Products as Sources of Lutein and Zeaxanthin: Compositional Variation in the Food Chain. J. Food Sci. 2007, 72, S079–S085. [Google Scholar] [CrossRef] [PubMed]
- Breithaupt, D.E.; Weller, P.; Grashorn, M.A. Quantification of Carotenoids in Chicken Plasma After Feeding Free or Esterified Lutein and Capsanthin Using High-Performance Liquid Chromatography and Liquid Chromatography-Mass Spectrometry Analysis. Poult. Sci. 2003, 82, 395–401. [Google Scholar] [CrossRef] [PubMed]
- Dansou, D.M.; Chen, H.; Yu, Y.; Yang, Y.; Tchana, I.N.; Zhao, L.; Tang, C.; Zhao, Q.; Qin, Y.; Zhang, J. Enrichment Efficiency of Lutein in Eggs and Its Function in Improving Fatty Liver Hemorrhagic Syndrome in Aged Laying Hens. Poult. Sci. 2024, 103, 103286. [Google Scholar] [CrossRef]
- Xiao, Y.; He, X.; Ma, Q.; Lu, Y.; Bai, F.; Dai, J.; Wu, Q. Photosynthetic Accumulation of Lutein in Auxenochlorella Protothecoides after Heterotrophic Growth. Mar. Drugs 2018, 16, 283. [Google Scholar] [CrossRef] [PubMed]
- Casella, P.; Marino, T.; Iovine, A.; Larocca, V.; Balducchi, R.; Musmarra, D.; Molino, A. Optimization of Lutein Extraction from Scenedesmus Almeriensis Using Pressurized Liquid Extraction. Chem. Eng. Trans. 2021, 87, 475–480. [Google Scholar] [CrossRef]
- Saini, A.; Panesar, P.S.; Bera, M.B. Valuation of Citrus Reticulata (Kinnow) Peel for the Extraction of Lutein Using Ultrasonication Technique. Biomass Convers. Biorefin 2021, 11, 2157–2165. [Google Scholar] [CrossRef]
- Ye, J.; Feng, L.; Xiong, J.; Xiong, Y. Ultrasound-Assisted Extraction of Corn Carotenoids in Ethanol. Int. J. Food Sci. Technol. 2011, 46, 2131–2136. [Google Scholar] [CrossRef]
- Ahmadi, R.; Honarvar, M.; Ghavami, M.; Daali, Y. Optimization of Lutein Extraction from Pistachio Waste Using Experimental Design and Ultrasonic Method. Waste Biomass Valorization 2024, 15, 3077–3091. [Google Scholar] [CrossRef]
- Maheshwari, N.; Khanpit, V.V.; Kannan, A. Green Ultrasound-Assisted Extraction and Life Cycle Assessment of Lutein from Marigold Flowers Using Biocompatible Surfactants. Int. J. Chem. React. Eng. 2023, 22, 19–29. [Google Scholar] [CrossRef]
- Kerep, G.; Škrtić, Z.; Kralik, G.; Kralik, Z.; Križek, I.; Grčević, M. Lutein u hranidbi kokoši. Krmiva 2012, 54, 195–203. [Google Scholar]
- Selvaraj, R.K.; Koutsos, E.A.; Calvert, C.C.; Klasing, K.C. Dietary Lutein and Fat Interact to Modify Macrophage Properties in Chicks Hatched from Carotenoid Deplete or Replete Eggs. J. Anim. Physiol. Anim. Nutr. 2006, 90, 70–80. [Google Scholar] [CrossRef]
- Yang, X.; Gil, M.I.; Yang, Q.; Tomás-Barberán, F.A. Bioactive Compounds in Lettuce: Highlighting the Benefits to Human Health and Impacts of Preharvest and Postharvest Practices. Compr. Rev. Food Sci. Food Saf. 2022, 21, 4–45. [Google Scholar] [CrossRef]
- Kim, D.E.; Shang, X.; Assefa, A.D.; Keum, Y.S.; Saini, R.K. Metabolite Profiling of Green, Green/Red, and Red Lettuce Cultivars: Variation in Health Beneficial Compounds and Antioxidant Potential. Food Res. Int. 2018, 105, 361–370. [Google Scholar] [CrossRef] [PubMed]
- El-Nakhel, C.; Pannico, A.; Graziani, G.; Kyriacou, M.C.; Giordano, M.; Ritieni, A.; De Pascale, S.; Rouphael, Y. Variation in Macronutrient Content, Phytochemical Constitution and in Vitro Antioxidant Capacity of Green and Red Butterhead Lettuce Dictated by Different Developmental Stages of Harvest Maturity. Antioxidants 2020, 9, 300. [Google Scholar] [CrossRef]
- Rouphael, Y.; Petropoulos, S.A.; El-Nakhel, C.; Pannico, A.; Kyriacou, M.C.; Giordano, M.; Troise, A.D.; Vitaglione, P.; De Pascale, S. Reducing Energy Requirements in Future Bioregenerative Life Support Systems (BLSSs): Performance and Bioactive Composition of Diverse Lettuce Genotypes Grown Under Optimal and Suboptimal Light Conditions. Front. Plant Sci. 2019, 10, 1305. [Google Scholar] [CrossRef]
- Massa, G.D.; Wheeler, R.M.; Stutte, G.W.; Richards, J.T.; Spencer, L.E.; Hummerick, M.E.; Sirmons, T. Selection of Leafy Green Vegetable Varieties for a Pick-and-Eat Diet Supplement on ISS. In Proceedings of the 45th International Conference on Environmental Systems, Bellevue, Washington, DC, USA, 12–16 July 2015. [Google Scholar]
- Becerra-Moreno, A.; Alanís-Garza, P.A.; Mora-Nieves, J.L.; Mora-Mora, J.P.; Jacobo-Velázquez, D.A. Kale: An Excellent Source of Vitamin C, pro-Vitamin A, Lutein and Glucosinolates. CYTA J. Food 2014, 12, 298–303. [Google Scholar] [CrossRef]
- De Azevedo, C.H.; Rodriguez-Amaya, D.B. Carotenoid Composition of Kale as Influenced by Maturity, Season and Minimal Processing. J. Sci. Food Agric. 2005, 85, 591–597. [Google Scholar] [CrossRef]
- Lefsrud, M.; Kopsell, D.; Wenzel, A.; Sheehan, J. Changes in Kale (Brassica Oleracea L. Var. Acephala) Carotenoid and Chlorophyll Pigment Concentrations during Leaf Ontogeny. Sci. Hortic. 2007, 112, 136–141. [Google Scholar] [CrossRef]
- Piyarach, K.; Nipawan, K.; Chadapon, C.; Daluwan, S.; Kunjana, R. Effect of Drying on β-Carotene, α Carotene, Lutein and Zeaxanthin Content in Vegetables and Its Application for Vegetable Seasoning. E3S Web Conf. 2020, 141, 6. [Google Scholar] [CrossRef]
- Zhang, C.; Liang, S.; Wang, Y.; Luo, S.; Yao, W.; He, H.; Tian, Y.; Li, H.; Zhang, F.; Sun, B. Variation of Chlorophyll and Carotenoids in Different Varieties and Organs of Chinese Kale. Qual. Assur. Saf. Crops Foods 2022, 14, 136–145. [Google Scholar] [CrossRef]
- Hajare, R.; Ray, A.; Tharachand, C.S.; Avadhani, M.N.A.; Selvaraj, C.I. Extraction and Quantification of Antioxidant Lutein from Various Plant Sources. Int. J. Pharm. Sci. Rev. Res. 2013, 29, 152–157. [Google Scholar]
- Yoo, K.S.; Bang, H.; Pike, L.; Patil, B.S.; Lee, E.J. Comparing Carotene, Anthocyanins, and Terpenoid Concentrations in Selected Carrot Lines of Different Colors. Hortic. Environ. Biotechnol. 2020, 61, 385–393. [Google Scholar] [CrossRef]
- Blando, F.; Marchello, S.; Maiorano, G.; Durante, M.; Signore, A.; Laus, M.N.; Soccio, M.; Mita, G. Bioactive Compounds and Antioxidant Capacity in Anthocyanin-Rich Carrots: A Comparison between the Black Carrot and the Apulian Landrace “Polignano” Carrot. Plants 2021, 10, 564. [Google Scholar] [CrossRef]
- Bohoyo-Gil, D.; Dominguez-Valhondo, D.; García-Parra, J.J.; González-Gómez, D. UHPLC as a Suitable Methodology for the Analysis of Carotenoids in Food Matrix. Eur. Food Res. Technol. 2012, 235, 1055–1061. [Google Scholar] [CrossRef]
- Dadan, M.; Tylewicz, U.; Tappi, S.; Rybak, K.; Witrowa-Rajchert, D.; Rosa, M.D. Effect of Ultrasound, Steaming, and Dipping on Bioactive Compound Contents and Antioxidant Capacity of Basil and Parsley. Pol. J. Food Nutr. Sci. 2021, 71, 311–321. [Google Scholar] [CrossRef]
- Dadan, M.; Rybak, K.; Wiktor, A.; Nowacka, M.; Zubernik, J.; Witrowa-Rajchert, D. Selected Chemical Composition Changes in Microwave-Convective Dried Parsley Leaves Affected by Ultrasound and Steaming Pre-Treatments–An Optimization Approach. Food Chem. 2018, 239, 242–251. [Google Scholar] [CrossRef] [PubMed]
- de los Proz, M.Á.; da Silva, M.A.S.; Rodrigues, E.; Bender, R.J.; Rios, A. de O. Effects of Indoor, Greenhouse, and Field Cultivation on Bioactive Compounds from Parsley and Basil. J. Sci. Food Agric. 2021, 101, 6320–6330. [Google Scholar] [CrossRef]
- Ponder, A.; Kulik, K.; Hallmann, E. Occurrence and Determination of Carotenoids and Polyphenols in Different Paprika Powders from Organic and Conventional Production. Molecules 2021, 26, 2980. [Google Scholar] [CrossRef]
- Arrizabalaga-Larrañaga, A.; Campmajó, G.; Saurina, J.; Núñez, O.; Santos, F.J.; Moyano, E.; Morcillo, E.M. Determination of Capsaicinoids and Carotenoids for the Characterization and Geographical Origin Authentication of Paprika by UHPLC-APCI-HRMS. LWT 2021, 139, 110533. [Google Scholar] [CrossRef]
- Kim, J.S.; An, C.G.; Park, J.S.; Lim, Y.P.; Kim, S. Carotenoid Profiling from 27 Types of Paprika (Capsicum Annuum L.) with Different Colors, Shapes, and Cultivation Methods. Food Chem. 2016, 201, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Carneiro, A.M.; Lima, B.R.; Chibli, L.A.; Carneiro, R.L.; Funari, C.S. An Updated Procedure for Zeaxanthin and Lutein Quantification in Corn Grains Based Only in Water and Ethanol. Food Chem. 2023, 427, 136589. [Google Scholar] [CrossRef]
- Kurilich, A.C.; Juvik, J.A. Quantification of Carotenoid and Tocopherol Antioxidants in Zea Mays. J. Agric. Food Chem. 1999, 47, 1948–1955. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.; Mao, Y.; Gu, Y.; Huang, B.; He, Z.; Zeng, M.; Wang, Z.; Chen, Q.; Tang, M.; Chen, J. Carotenoid and Phenolic Compositions and Antioxidant Activity of 23 Cultivars of Corn Grain and Corn Husk Extract. Foods 2024, 13, 3375. [Google Scholar] [CrossRef]
- Li, X.H.; Guan, P.F.; Huang, S.; Zheng, X.W.; Wu, B.B.; Zhao, J.J.; Qiao, L.; Guo, P.Y.; Zheng, J. Evaluation and Genetic Variation of Lutein Content in Chinese Common Wheat. J. Cereal Sci. 2022, 108, 103545. [Google Scholar] [CrossRef]
- Abdel-Aal, E.S.M.; Young, J.C.; Rabalski, I.; Hucl, P.; Fregeau-Reid, J. Identification and Quantification of Seed Carotenoids in Selected Wheat Species. J. Agric. Food Chem. 2007, 55, 787–794. [Google Scholar] [CrossRef] [PubMed]
Solvent/Solvent Mixture | mg of Lutein/kg of Feed Mixture |
---|---|
methanol:acetone (1:1, v/v) | 4.572 ± 0.28 a |
methanol | 3.499 ± 0.17 b |
ethanol | 3.201 ± 0.13 b |
acetone | 1.214 ± 0.04 c |
2-propanol | 0.543 ± 0.09 d |
p-value | <0.01 |
Method | mg of Lutein/kg of Feed Mixture |
---|---|
SM | 12.753 ± 0.715 b |
MSM | 19.410 ± 1.337 a |
p-value | <0.001 |
Sample | Lutein (mg/L) | |
---|---|---|
S1 | 0.37727 | |
S2 | 0.39106 | |
standard | 0.08794 | |
measured | S1 + standard | 0.48620 |
S2 + standard | 0.48688 | |
theoretically | S1 + standard | 0.46521 |
S2 + standard | 0.47900 | |
recovery (%) | S1 + standard | 95.68 |
S2 + standard | 98.38 |
Sample | Composition | mg of Lutein/kg of Feed Mixture |
---|---|---|
1 | standard hens’ feed mixture | 41.732 ± 0.63 a |
2 | Premix * | 8.482 ± 0.56 e |
3 | standard hens’ feed mixture with the addition of corn | 40.181 ± 1.16 b |
4 | ground corn and Premix * mixed in a ratio of 4:1 | 35.828 ± 0.67 c |
5 | standard hens’ feed mixture mixed with ground corn, barley, and soy | 35.161 ± 0.61 c |
6 | standard hens’ feed mixture mixed with ground corn, oats, and wheat | 3.483 ± 1.70 d |
p-value | <0.001 |
Sample | Moisture (%) | * DW (%) |
---|---|---|
kale | 82.036 | 17.964 |
parsley leaves | 81.846 | 18.154 |
carrot | 89.835 | 10.165 |
lettuce | 94.299 | 5.701 |
butternut squash | 92.704 | 7.296 |
Sample | Previously Conducted Investigations | Our Investigation | |||
---|---|---|---|---|---|
mg/kg of * DW | mg/kg of ** FW | Reference | mg/kg of * DW | mg/kg of ** FW | |
lettuce | 16.4–38.2 | 45 | 1179.246 ± 98.40 b | 67.229 | |
5.58–13.38 | 46 | ||||
176.9–754.5 | 47 | ||||
3160 | 48 | ||||
kale | 71.58–100.05 | 49 | 966.543 ± 74.43 c | 173.62 | |
50.6 | 50 | ||||
15.1 | 51 | ||||
441.44 | 619.37 | 52 | |||
660–2530 | 53 | ||||
carrot | 0.830–1.665 | 54 | 15.734 ± 0.64 e | 1.599 | |
22.3 | 52 | ||||
4.9–15.2 | 55 | ||||
57.58 | 56 | ||||
butternut squash | 16.8 | 57 | 49.234 ± 2.95 e | 3.592 | |
383.98 | 52 | ||||
parsley leaves | 413.0 | 58 | 1581.489 ± 124.82 a | 287.125 | |
811.0–1306.0 | 59 | ||||
780.52 | 60 | ||||
paprika spice | 55.0–61.4 | 61 | 522.734 ± 25.42 d | - | |
n.d. *** | n.d. *** | 62 | |||
291.0–376.9 | 63 | ||||
cornmeal (polenta) | 8.53–10.08 | 64 | 27.185 ± 0.84 e | - | |
27.59 | 65 | ||||
2438.18 | 66 | ||||
wheat flour | 0.87–8.90 | 67 | 4.737 ± 0.17 e | - | |
5.41–5.77 | 68 | ||||
2.01–2.11 | |||||
p-value | <0.001 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galović, O.; Prokopec, D.; Kralik, Z.; Košević, M.; Kralik, G. Improved Efficiency of Lutein Extraction from Hens’ Feed Mixture and Food Samples Using Less Toxic Solvent Mixture. Appl. Sci. 2025, 15, 2360. https://doi.org/10.3390/app15052360
Galović O, Prokopec D, Kralik Z, Košević M, Kralik G. Improved Efficiency of Lutein Extraction from Hens’ Feed Mixture and Food Samples Using Less Toxic Solvent Mixture. Applied Sciences. 2025; 15(5):2360. https://doi.org/10.3390/app15052360
Chicago/Turabian StyleGalović, Olivera, Doris Prokopec, Zlata Kralik, Manuela Košević, and Gordana Kralik. 2025. "Improved Efficiency of Lutein Extraction from Hens’ Feed Mixture and Food Samples Using Less Toxic Solvent Mixture" Applied Sciences 15, no. 5: 2360. https://doi.org/10.3390/app15052360
APA StyleGalović, O., Prokopec, D., Kralik, Z., Košević, M., & Kralik, G. (2025). Improved Efficiency of Lutein Extraction from Hens’ Feed Mixture and Food Samples Using Less Toxic Solvent Mixture. Applied Sciences, 15(5), 2360. https://doi.org/10.3390/app15052360