Plant-Derived Molecules Modulate Multidrug Resistance in Gastrointestinal Cancers: A Comprehensive Review
Abstract
1. Introduction
2. Resistance Mechanism
3. Stomach and Esophageal Cancer
4. Colorectal Cancer
5. Pancreatic Cancer
6. Biliary Cancers and Gastrointestinal Stromal Tumors
7. Nanoplatforms, Natural Products, and Resistance
Natural Compound | Nanoformulation | Drug | Main Results on MDR Effect | Reference |
---|---|---|---|---|
Curcumin | Alginate nanodroplet | DOX and curcumin | Increased in vitro cytotoxicity and 5-fold tumor inhibition in in vivo DOX-resistant A2780 ovarian tumor model. | [92] |
Curcumin | Chitosan/poly (butyl cyanoacrylate) (PBCA) NP | DOX and curcumin | Decreased Pgp expression in DOX-resistant MCF-7 human breast carcinoma cell line. | [93] |
Curcumin | NVA622 NP | DOX and curcumin | Increased nuclear accumulation of DOX in DOX-resistant ovarian, prostate, and multiple myeloma tumor cell lines. | [94] |
Curcumin | Poly (lactic-co-glycolic acid) (PLGA) NP | DOX and curcumin | 12-fold decrease in MDR1 and BCL-2 mRNA expression and increased nuclear retention of DOX in chronic myeloid leukemia (CML) blasts like K562 cells. | [95] |
Curcumin | PEG2000-DSPE/d-a-tocopheryl poly-ethylene glycol succinate 2000 (TPGS200) mixed micelle | DOX and curcumin | Increased cellular entry in time-dependent manner, enhanced intracellular accumulation, and reduced DOX efflux in DOX-resistant MCF-7 human breast carcinoma cell line. | [96] |
Curcumin | Folate-conjugated solid lipid nanoparticle | Paclitaxel and curcumin | Decreased more than 80% Pgp protein expression in DOX-resistant MCF-7 human breast carcinoma cell line. | [97] |
Curcumin | Nanoemulsion | Paclitaxel and curcumin | Decreased Pgp and NFκB expression in paclitaxel-resistant SK-OV-3TR human ovarian adenocarcinoma cells. | [98] |
Curcumin | Folate-conjugated poly (lactic-co-glycolic acid) (PLGA) NP | Nutlin-3a and curcumin | Decreased gene and protein expression of MRP-1 and LRP by curcumin in dose-dependent manner in Y79 human retinoblastoma cells. | [99] |
Curcumin | Poly (ethylene glycol)-phosphatidyl ethanolamine (PEG-PE)/vitamin E micelle | Paclitaxel and curcumin | Increased in vitro cytotoxicity and 3-fold tumor inhibition in in vivo paclitaxel-resistant SK-OV-3TR ovarian tumor model. | [100] |
Curcumin | Poly (ethylene glycol)-phosphatidyl ethanolamine (PEG-PE) micelle | Paclitaxel and curcumin | Increased anticancer effect in both spheroids and in vivo paclitaxel-resistant SK-OV-3TR ovarian tumor model. | [101] |
Baicalein | Nanoemulsion | Paclitaxel and baicalein | Increased cell entry, in vitro toxicity, and in vivo antitumor effect in Taxol-resistant MCF-7 breast tumor model. | [102] |
Resveratrol | PEGylated liposome | Paclitaxel and resveratrol | Increased in vitro cytotoxicity; enhanced tumor retention of drugs and antitumor effect in vivo in DOX-resistant MCF-7 breast tumor model. | [103] |
Demethoxycurcumin | CD133 antibody-conjugated chitosan NP | Cisplatin and demethoxycurcumin | Enhanced synergistic effect against MDR A549 lung cancer stem-like cells. | [105] |
Quercetin | Hyaluronic acid-based conjugate/d-α-tocopheryl poly (ethylene glycol) 1000 succinate (TPGS1000) mixed micelle | DOX and quercetin | Decreased Pgp expression, and increased DOX intracellular concentration in breast tumor cell line MDA-MB-231/MDR1. | [109] |
Quercetin | Biotin-conjugated poly(ethylene glycol)-b-poly(ε-caprolactone) (PEG-PCL) NP | DOX and quercetin | Decreased Pgp activity and expression, decreased DOX efflux, and increased antitumor effect in in vitro and in vivo DOX-resistant MCF-7 breast tumor model. | [110] |
EGCG | EGCG-based polyion complex micelle | DOX and EGCG | Increased cell entry and toxicity in DOX-resistant MCF-7 cells. | [111] |
Pachymic acid and dehydrotumulosic acid | Liposome | DOX, pachymic acid, and dehydrotumulosic acid | Decreased Pgp expression and increased antitumor effect in vivo in DOX-resistant MCF-7 breast tumor model. | [112] |
Curcumin | Biotin-conjugated poly (ethylene glycol)(PEG)-poly(curcumin) nanoparticle | Paclitaxel and curcumin | Decreased Pgp expression, 6.6-fold increased intracellular accumulation, and reduced drug efflux in DOX-resistant MCF-7 human breast carcinoma cell line. | [113] |
Nimbolide | Poly (D, l-lactide-co-glycolide) nanoparticles | Nimbolide | Downregulation of AKT, mTOR, mesenchymal marker N-cadherin, and MDR marker ABCG2. Upregulation of epithelial marker E-cadherin. Induction of mesenchymal-to-epithelial transition. | [65] |
Bufalin | Polylactic-co-glycolic acid nanoparticle | Bufalin and 5-fu and GEM | Inhibition of expression of ABCB1 and ABCG2 and decrease in expression of NF-κB and NOD2. Tumor weight reduced by 60% with combined therapy compared with individual treatments. Increase in anticarcinoma activity of 5FU. | [106] |
L-Arg | Gold nanostructures with biomimetic cell membrane coating with PEG2000 | L-Arg and GEM | 63% cell viability reduction and 82% improvement in apoptosis rate between combined therapy and control; 95% tumor volume reduction with respect to control at end of experiment and 100% survival rate improvement 60 days after administration. | [107] |
Piperine | Albumin-bound nanoparticles | Piperine and paclitaxel | Accumulation of paclitaxel increased after co-incubation with piperine compared with paclitaxel alone. P-gp protein decreased as concentration of piperine increased. Piperine downregulated expression of MDR1 gene related to chemoresistance and blocked tumor cell growth, leading to increased apoptosis and decreased cell survival. | [108] |
8. Clinical Trials and Patents
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Hausman, D.M. What Is Cancer? Perspect. Biol. Med. 2019, 62, 778–784. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Bordry, N.; Astaras, C.; Ongaro, M.; Goossens, N.; Frossard, J.L.; Koessler, T. Recent Advances in Gastrointestinal Cancers. World J. Gastroenterol. 2021, 27, 4493–4503. [Google Scholar] [CrossRef]
- Yan, L.; Shi, J.; Zhu, J. Cellular and Molecular Events in Colorectal Cancer: Biological Mechanisms, Cell Death Pathways, Drug Resistance and Signalling Network Interactions. Discov. Oncol. 2024, 15, 294. [Google Scholar] [CrossRef] [PubMed]
- Stem, J.; Flickinger, J.C., Jr.; Merlino, D.; Caparosa, E.M.; Snook, A.E.; Waldman, S.A. Therapeutic Targeting of Gastrointestinal Cancer Stem Cells. Regen. Med. 2019, 14, 331–343. [Google Scholar] [CrossRef]
- Ashique, S.; Bhowmick, M.; Pal, R.; Khatoon, H.; Kumar, P.; Sharma, H.; Garg, A.; Kumar, S.; Das, U. Multi Drug Resistance in Colorectal Cancer- Approaches to Overcome, Advancements and Future Success. Adv. Cancer Biol.—Metastasis 2024, 10, 100114. [Google Scholar] [CrossRef]
- Chen, T.; Xiao, Z.; Liu, X.; Wang, T.; Wang, Y.; Ye, F.; Su, J.; Yao, X.; Xiong, L.; Yang, D.-H. Natural Products for Combating Multidrug Resistance in Cancer. Pharmacol. Res. 2024, 202, 107099. [Google Scholar] [CrossRef]
- Kikuchi, T.; Hayashi, A.; Ikeda, N.; Morita, O.; Tasaki, J. Multidrug Resistance-Associated Protein 2 (MRP2) Is an Efflux Transporter of EGCG and Its Metabolites in the Human Small Intestine. J. Nutr. Biochem. 2022, 107, 109071. [Google Scholar] [CrossRef]
- Risinger, A.L.; Giles, F.J.; Mooberry, S.L. Microtubule Dynamics as a Target in Oncology. Cancer Treat. Rev. 2009, 35, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Kamran, S.; Sinniah, A.; Abdulghani, M.A.M.; Alshawsh, M.A. Therapeutic Potential of Certain Terpenoids as Anticancer Agents: A Scoping Review. Cancers 2022, 14, 1100. [Google Scholar] [CrossRef]
- Küpeli Akkol, E.; Genç, Y.; Karpuz, B.; Sobarzo-Sánchez, E.; Capasso, R. Coumarins and Coumarin-Related Compounds in Pharmacotherapy of Cancer. Cancers 2020, 12, 1959. [Google Scholar] [CrossRef] [PubMed]
- Rebucci, M.; Michiels, C. Molecular Aspects of Cancer Cell Resistance to Chemotherapy. Biochem. Pharmacol. 2013, 85, 1219–1226. [Google Scholar] [CrossRef] [PubMed]
- Mokhtari, R.B.; Homayouni, T.S.; Baluch, N.; Morgatskaya, E.; Kumar, S.; Das, B.; Yeger, H. Combination Therapy in Combating Cancer. Oncotarget 2017, 8, 38022–38043. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Mayea, Y.; Mir, C.; Masson, F.; Paciucci, R.; LLeonart, M.E. Insights into New Mechanisms and Models of Cancer Stem Cell Multidrug Resistance. Semin. Cancer Biol. 2020, 60, 166–180. [Google Scholar] [CrossRef]
- Minko, T.; Rodriguez-Rodriguez, L.; Pozharov, V. Nanotechnology Approaches for Personalized Treatment of Multidrug Resistant Cancers. Adv. Drug Deliv. Rev. 2013, 65, 1880–1895. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Kong, Y.; Wu, Y.; Gao, Q.; Fu, J.; Sun, X.; Geng, Q. CAC1 Knockdown Reverses Drug Resistance through the Downregulation of P-Gp and MRP-1 Expression in Colorectal Cancer. PLoS ONE 2019, 14, e0222035. [Google Scholar] [CrossRef]
- Yu, P.; Du, Y.; Yang, L.; Fan, S.; Wu, J.; Zheng, S. Significance of Multidrug Resistance Gene-Related Proteins in the Postoperative Chemotherapy of Gastric Cancer. Int. J. Clin. Exp. Pathol. 2014, 7, 7945–7950. [Google Scholar]
- Roos, W.P.; Thomas, A.D.; Kaina, B. DNA Damage and the Balance between Survival and Death in Cancer Biology. Nat. Rev. Cancer 2016, 16, 20–33. [Google Scholar] [CrossRef] [PubMed]
- Mansoori, B.; Mohammadi, A.; Davudian, S.; Shirjang, S.; Baradaran, B. The Different Mechanisms of Cancer Drug Resistance: A Brief Review. Adv. Pharm. Bull. 2017, 7, 339–348. [Google Scholar] [CrossRef] [PubMed]
- García-Aranda, M.; Pérez-Ruiz, E.; Redondo, M. Bcl-2 Inhibition to Overcome Resistance to Chemo- and Immunotherapy. Int. J. Mol. Sci. 2018, 19, 3950. [Google Scholar] [CrossRef]
- Huang, J.; Koulaouzidis, A.; Marlicz, W.; Lok, V.; Chu, C.; Ngai, C.H.; Zhang, L.; Chen, P.; Wang, S.; Yuan, J.; et al. Global Burden, Risk Factors, and Trends of Esophageal Cancer: An Analysis of Cancer Registries from 48 Countries. Cancers 2021, 13, 141. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Yu, H.; Hu, F.; Tian, S. Strategy to Enhance Efficacy of Doxorubicin by Curcumin as a Potent Pgp Inhibitor in Gastric Cancer. Biomed. Res. 2017, 28, 1231–1236. [Google Scholar]
- Tang, X.; Bi, H.; Feng, J.; Cao, J. Effect of Curcumin on Multidrug Resistance in Resistant Human Gastric Carcinoma Cell Line SGC7901/VCR. Acta Pharmacol. Sin. 2005, 26, 1009–1016. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.-L.; Wu, J.-G.; Dai, N.; Yu, H.-G.; Si, J.-Μ. Curcumin Reverses Chemoresistance of Human Gastric Cancer Cells by Downregulating the NF-κB Transcription Factor. Oncol. Rep. 2011, 26, 1197–1203. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Wang, W.; Li, P.; Zheng, Z.; Tu, Y.; Zhang, Y.; You, T. Curcumin Enhances the Effects of 5-Fluorouracil and Oxaliplatin in Inducing Gastric Cancer Cell Apoptosis Both In vitro and In vivo. Oncol. Res. 2016, 23, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Geng, D.; Liu, H.; Li, Z.; Cao, J. Co-Delivery of Etoposide and Curcumin by Lipid Nanoparticulate Drug Delivery System for the Treatment of Gastric Tumors. Drug Deliv. 2016, 23, 3665–3673. [Google Scholar] [CrossRef] [PubMed]
- Tsubono, Y.; Nishino, Y.; Komatsu, S.; Hsieh, C.-C.; Kanemura, S.; Tsuji, I.; Nakatsuka, H.; Fukao, A.; Satoh, H.; Hisamichi, S. Green Tea and the Risk of Gastric Cancer in Japan. N. Engl. J. Med. 2001, 344, 632–636. [Google Scholar] [CrossRef]
- Naumovski, N.; Blades, B.L.; Roach, P.D. Food Inhibits the Oral Bioavailability of the Major Green Tea Antioxidant Epigallocatechin Gallate in Humans. Antioxidants 2015, 4, 373–393. [Google Scholar] [CrossRef]
- Horie, N.; Hirabayashi, N.; Takahashi, Y.; Miyauchi, Y.; Taguchi, H.; Takeishi, K. Synergistic Effect of Green Tea Catechins on Cell Growth and Apoptosis Induction in Gastric Carcinoma Cells. Biol. Pharm. Bull. 2005, 28, 574–579. [Google Scholar] [CrossRef]
- Tsunoda, S.; Okumura, T.; Ito, T.; Kondo, K.; Ortiz, C.; Tanaka, E.; Watanabe, G.; Itami, A.; Sakai, Y.; Shimada, Y. ABCG2 Expression Is an Independent Unfavorable Prognostic Factor in Esophageal Squamous Cell Carcinoma. Oncology 2007, 71, 251–258. [Google Scholar] [CrossRef] [PubMed]
- To, K.K.W.; Yu, L.; Liu, S.; Fu, J.; Cho, C.H. Constitutive AhR Activation Leads to Concomitant ABCG2-Mediated Multidrug Resistance in Cisplatin-Resistant Esophageal Carcinoma Cells. Mol. Carcinog. 2012, 51, 449–464. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.-C.; Cao, K.; Xiao, Z.-H.; Qiao, L.; Wang, X.-Q.; Shang, B.; Jia, Y.; Wang, Z. VRK1 Promotes Cisplatin Resistance by Up-Regulating c-MYC via c-Jun Activation and Serves as a Therapeutic Target in Esophageal Squamous Cell Carcinoma. Oncotarget 2017, 8, 65642–65658. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Yang, X.; Zhao, N.; Peng, J.; Gao, H.; Qiu, X. Alpinumisoflavone Induces Apoptosis in Esophageal Squamous Cell Carcinoma by Modulating miR-370/PIM1 Signaling. Am. J. Cancer Res. 2016, 6, 2755–2771. [Google Scholar]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2020. CA A Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef]
- Kuipers, E.J.; Grady, W.M.; Lieberman, D.; Seufferlein, T.; Sung, J.J.; Boelens, P.G.; van de Velde, C.J.H.; Watanabe, T. Colorectal Cancer. Nat. Rev. Dis. Primers 2015, 1, 15065. [Google Scholar] [CrossRef] [PubMed]
- Wu, C. Systemic Therapy for Colon Cancer. Surg. Oncol. Clin. N. Am. 2018, 27, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Bregni, G.; Akin Telli, T.; Camera, S.; Deleporte, A.; Moretti, L.; Bali, A.M.; Liberale, G.; Holbrechts, S.; Hendlisz, A.; Sclafani, F. Adjuvant Chemotherapy for Rectal Cancer: Current Evidence and Recommendations for Clinical Practice. Cancer Treat. Rev. 2020, 83, 101948. [Google Scholar] [CrossRef] [PubMed]
- Loree, J.M.; Kopetz, S. Recent Developments in the Treatment of Metastatic Colorectal Cancer. Ther. Adv. Med. Oncol. 2017, 9, 551–564. [Google Scholar] [CrossRef]
- Nappi, A.; Berretta, M.; Romano, C.; Tafuto, S.; Cassata, A.; Casaretti, R.; Silvestro, L.; Divitiis, C.D.; Alessandrini, L.; Fiorica, F.; et al. Metastatic Colorectal Cancer: Role of Target Therapies and Future Perspectives. Curr. Cancer Drug Targets 2018, 18, 421–429. [Google Scholar] [CrossRef] [PubMed]
- Berrino, F. Life Style Prevention of Cancer Recurrence: The Yin and the Yang. Cancer Treat. Res. 2014, 159, 341–351. [Google Scholar] [CrossRef]
- Idrees, M.; Tejani, M.; Idrees, M.; Tejani, M. Current Treatment Strategies for Elderly Patients with Metastatic Colon Cancer. Cureus 2019, 11, e4713. [Google Scholar] [CrossRef] [PubMed]
- Reglero, C.; Reglero, G. Precision Nutrition and Cancer Relapse Prevention: A Systematic Literature Review. Nutrients 2019, 11, 2799. [Google Scholar] [CrossRef]
- Goyal, S.; Gupta, N.; Chatterjee, S.; Nimesh, S. Natural Plant Extracts as Potential Therapeutic Agents for the Treatment of Cancer. Curr. Top. Med. Chem. 2017, 17, 96–106. [Google Scholar] [CrossRef] [PubMed]
- Ramalhete, C.; Mulhovo, S.; Lage, H.; Ferreira, M.-J.U. Triterpenoids from Momordica Balsamina with a Collateral Sensitivity Effect for Tackling Multidrug Resistance in Cancer Cells. Planta Med. 2018, 84, 1372–1379. [Google Scholar] [CrossRef] [PubMed]
- Wiśniewski, J.; Wesołowska, O.; Środa-Pomianek, K.; Paprocka, M.; Bielawska-Pohl, A.; Krawczenko, A.; Duarte, N.; Ferreira, M.-J.U.; Duś, D.; Michalak, K. Euphorbia Species-Derived Diterpenes and Coumarins as Multidrug Resistance Modulators in Human Colon Carcinoma Cells. Anticancer Res. 2016, 36, 2259–2264. [Google Scholar] [PubMed]
- Engi, H.; Vasas, A.; Rédei, D.; Molnár, J.; Hohmann, J. New MDR Modulators and Apoptosis Inducers from Euphorbia Species. Anticancer Res. 2007, 27, 3451–3458. [Google Scholar] [PubMed]
- Kuete, V.; Mbaveng, A.T.; Nono, E.C.N.; Simo, C.C.; Zeino, M.; Nkengfack, A.E.; Efferth, T. Cytotoxicity of Seven Naturally Occurring Phenolic Compounds towards Multi-Factorial Drug-Resistant Cancer Cells. Phytomedicine 2016, 23, 856–863. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, X.; Feng, Y.; Wang, Y.; Zhang, L.; Wang, Y.; Fang, Z.; Azami, N.L.B.; Sun, M.; Li, Q. Dihydromyricetin Reverses MRP2-Induced Multidrug Resistance by Preventing NF-κB-Nrf2 Signaling in Colorectal Cancer Cell. Phytomedicine 2021, 82, 153414. [Google Scholar] [CrossRef]
- Palko-Labuz, A.; Sroda-Pomianek, K.; Uryga, A.; Kostrzewa-Suslow, E.; Michalak, K. Anticancer Activity of Baicalein and Luteolin Studied in Colorectal Adenocarcinoma LoVo Cells and in Drug-Resistant LoVo/Dx Cells. Biomed. Pharmacother. 2017, 88, 232–241. [Google Scholar] [CrossRef]
- El-Readi, M.Z.; Hamdan, D.; Farrag, N.; El-Shazly, A.; Wink, M. Inhibition of P-Glycoprotein Activity by Limonin and Other Secondary Metabolites from Citrus Species in Human Colon and Leukaemia Cell Lines. Eur. J. Pharmacol. 2010, 626, 139–145. [Google Scholar] [CrossRef]
- Plisson, F.; Huang, X.-C.; Zhang, H.; Khalil, Z.; Capon, R.J. Lamellarins as Inhibitors of P-Glycoprotein-Mediated Multidrug Resistance in a Human Colon Cancer Cell Line. Chem.—Asian J. 2012, 7, 1616–1623. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhang, J.; Wang, K.; Han, W.; Wang, X.; Gao, M.; Wang, Z.; Sun, Y.; Yan, H.; Zhang, H.; et al. Quercetin Overcomes Colon Cancer Cells Resistance to Chemotherapy by Inhibiting Solute Carrier Family 1, Member 5 Transporter. Eur. J. Pharmacol. 2020, 881, 173185. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Gao, M.; Wang, Z.; Zhang, J.; Cui, W.; Li, J.; Zhu, X.; Zhang, H.; Yang, D.-H.; Xu, X. Curcumin Reverses Doxorubicin Resistance in Colon Cancer Cells at the Metabolic Level. J. Pharm. Biomed. Anal. 2021, 201, 114129. [Google Scholar] [CrossRef] [PubMed]
- He, W.-T.; Zhu, Y.-H.; Zhang, T.; Abulimiti, P.; Zeng, F.-Y.; Zhang, L.-P.; Luo, L.-J.; Xie, X.-M.; Zhang, H.-L. Curcumin Reverses 5-Fluorouracil Resistance by Promoting Human Colon Cancer HCT-8/5-FU Cell Apoptosis and Down-Regulating Heat Shock Protein 27 and P-Glycoprotein. Chin. J. Integr. Med. 2019, 25, 416–424. [Google Scholar] [CrossRef]
- Zeng, S.; Pöttler, M.; Lan, B.; Grützmann, R.; Pilarsky, C.; Yang, H. Chemoresistance in Pancreatic Cancer. Int. J. Mol. Sci. 2019, 20, 4504. [Google Scholar] [CrossRef]
- Torphy, R.J.; Fujiwara, Y.; Schulick, R.D. Pancreatic Cancer Treatment: Better, but a Long Way to Go. Surg. Today 2020, 50, 1117–1125. [Google Scholar] [CrossRef] [PubMed]
- Kim, A.; Ha, J.; Kim, J.; Cho, Y.; Ahn, J.; Cheon, C.; Kim, S.-H.; Ko, S.-G.; Kim, B. Natural Products for Pancreatic Cancer Treatment: From Traditional Medicine to Modern Drug Discovery. Nutrients 2021, 13, 3801. [Google Scholar] [CrossRef] [PubMed]
- Kunnumakkara, A.B.; Guha, S.; Krishnan, S.; Diagaradjane, P.; Gelovani, J.; Aggarwal, B.B. Curcumin Potentiates Antitumor Activity of Gemcitabine in an Orthotopic Model of Pancreatic Cancer through Suppression of Proliferation, Angiogenesis, and Inhibition of Nuclear Factor-κB–Regulated Gene Products. Cancer Res. 2007, 67, 3853–3861. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Revalde, J.L.; Reid, G.; Paxton, J.W. Modulatory Effects of Curcumin on Multi-Drug Resistance-Associated Protein 5 in Pancreatic Cancer Cells. Cancer Chemother. Pharmacol. 2011, 68, 603–610. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, K.; Toden, S.; Ravindranathan, P.; Han, H.; Goel, A. Curcumin Sensitizes Pancreatic Cancer Cells to Gemcitabine by Attenuating PRC2 Subunit EZH2, and the lncRNA PVT1 Expression. Carcinogenesis 2017, 38, 1036–1046. [Google Scholar] [CrossRef]
- Xu, H.; Li, Y.; Paxton, J.W.; Wu, Z. Co-Delivery Using pH-Sensitive Liposomes to Pancreatic Cancer Cells: The Effects of Curcumin on Cellular Concentration and Pharmacokinetics of Gemcitabine. Pharm. Res. 2021, 38, 1209–1219. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhao, S.L.; Yue, G.G.L.; Wong, T.P.; Pu, J.X.; Sun, H.D.; Fung, K.P.; Leung, P.C.; Han, Q.B.; Lau, C.B.S.; et al. Isodon eriocalyx and Its Bioactive Component Eriocalyxin B Enhance Cytotoxic and Apoptotic Effects of Gemcitabine in Pancreatic Cancer. Phytomedicine 2018, 44, 56–64. [Google Scholar] [CrossRef]
- Reis, M.A.; Ahmed, O.B.; Spengler, G.; Molnár, J.; Lage, H.; Ferreira, M.-J.U. Jatrophane Diterpenes and Cancer Multidrug Resistance—ABCB1 Efflux Modulation and Selective Cell Death Induction. Phytomedicine 2016, 23, 968–978. [Google Scholar] [CrossRef] [PubMed]
- Shapira, S.; Pleban, S.; Kazanov, D.; Tirosh, P.; Arber, N. Terpinen-4-Ol: A Novel and Promising Therapeutic Agent for Human Gastrointestinal Cancers. PLoS ONE 2016, 11, e0156540. [Google Scholar] [CrossRef]
- Singh, D.; Mohapatra, P.; Kumar, S.; Behera, S.; Dixit, A.; Sahoo, S.K. Nimbolide-Encapsulated PLGA Nanoparticles Induces Mesenchymal-to-Epithelial Transition by Dual Inhibition of AKT and mTOR in Pancreatic Cancer Stem Cells. Toxicol. In Vitro 2022, 79, 105293. [Google Scholar] [CrossRef] [PubMed]
- Somasagara, R.R.; Deep, G.; Shrotriya, S.; Patel, M.; Agarwal, C.; Agarwal, R. Bitter Melon Juice Targets Molecular Mechanisms Underlying Gemcitabine Resistance in Pancreatic Cancer Cells. Int. J. Oncol. 2015, 46, 1849–1857. [Google Scholar] [CrossRef]
- Kim, M.; Mun, J.-G.; Lee, H.J.; Son, S.-R.; Lee, M.-J.; Kee, J.-Y. Inhibitory Effect of Oat Bran Ethanol Extract on Survival and Gemcitabine Resistance of Pancreatic Cancer Cells. Molecules 2019, 24, 3829. [Google Scholar] [CrossRef]
- Qian, Y.; Yang, B.; Xiong, Y.; Gu, M. Coix Seed Emulsion Synergistically Enhances the Antitumor Activity of Gemcitabine in Pancreatic Cancer through Abrogation of NF-κB Signaling. Oncol. Rep. 2016, 36, 1517–1525. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.; Xiong, Y.; Feng, D.; Wu, Y.; Zhang, X.; Chen, L.; Gu, M. Coix Seed Extract Enhances the Anti-Pancreatic Cancer Efficacy of Gemcitabine through Regulating ABCB1- and ABCG2-Mediated Drug Efflux: A Bioluminescent Pharmacokinetic and Pharmacodynamic Study. Int. J. Mol. Sci. 2019, 20, 5250. [Google Scholar] [CrossRef]
- Wei, Z.; Chen, H.; Liu, D.-L.; Li, H.; Luo, J.; Zhang, J.-H.; Li, Y.; Chen, K.-J.; Tong, H.-F.; Lin, S.-Z. Emodin Sensitizes the Gemcitabine-Resistant Cell Line Bxpc-3/Gem to Gemcitabine via Downregulation of NF-ΚB and Its Regulated Targets. Int. J. Oncol. 2013, 42, 1189–1196. [Google Scholar] [CrossRef]
- Shimada, T.; Nanimoto, Y.; Baron, B.; Kitagawa, T.; Tokuda, K.; Kuramitsu, Y. Enzyme-Treated Asparagus Extract Down-Regulates Heat Shock Protein 27 of Pancreatic Cancer Cells. In Vivo 2018, 32, 759–763. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.; Su, H.; Zou, C.; Liang, X.; Fei, Z. Ginsenoside Rg3 Suppresses the Growth of Gemcitabine-Resistant Pancreatic Cancer Cells by Upregulating lncRNA-CASC2 and Activating PTEN Signaling. J. Biochem. Mol. Toxicol. 2020, 34, e22480. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xi, Z.; Chen, X.; Cai, S.; Liang, C.; Wang, Z.; Li, Y.; Tan, H.; Lao, Y.; Xu, H. Natural Compound Oblongifolin C Confers Gemcitabine Resistance in Pancreatic Cancer by Downregulating Src/MAPK/ERK Pathways. Cell Death Dis. 2018, 9, 538. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Jia, X.; Gao, Y.; Zhang, Q. Chaetospirolactone Reverses the Apoptotic Resistance towards TRAIL in Pancreatic Cancer. Biochem. Biophys. Res. Commun. 2018, 495, 621–628. [Google Scholar] [CrossRef]
- Chen, P.; Wang, M.; Wang, C. Qingyihuaji Formula Reverses Gemcitabine Resistant Human Pancreatic Cancer through Regulate lncRNA AB209630/miR-373/EphB2-NANOG Signals. Biosci. Rep. 2019, 39, BSR20190610. [Google Scholar] [CrossRef] [PubMed]
- Dong, R.; Chen, P.; Chen, Q. Extract of the Medicinal Plant Pao Pereira Inhibits Pancreatic Cancer Stem-Like Cell In vitro and In vivo. Integr. Cancer Ther. 2018, 17, 1204–1215. [Google Scholar] [CrossRef] [PubMed]
- Dong, R.; Chen, P.; Chen, Q. Inhibition of Pancreatic Cancer Stem Cells by Rauwolfia Vomitoria Extract. Oncol. Rep. 2018, 40, 3144–3154. [Google Scholar] [CrossRef]
- Cao, C.; Sun, L.; Mo, W.; Sun, L.; Luo, J.; Yang, Z.; Ran, Y. Quercetin Mediates β-Catenin in Pancreatic Cancer Stem-Like Cells. Pancreas 2015, 44, 1334. [Google Scholar] [CrossRef] [PubMed]
- Delma, C.R.; Thirugnanasambandan, S.; Srinivasan, G.P.; Raviprakash, N.; Manna, S.K.; Natarajan, M.; Aravindan, N. Fucoidan from Marine Brown Algae Attenuates Pancreatic Cancer Progression by Regulating P53—NFκB Crosstalk. Phytochemistry 2019, 167, 112078. [Google Scholar] [CrossRef]
- Li, Y.; Xu, C.; Han, H.; Pascual-Sabater, S.; Fillat, C.; Goel, A. Aronia Berry Extract Modulates MYD88/NF-kB/P-Glycoprotein Axis to Overcome Gemcitabine Resistance in Pancreatic Cancer. Pharmaceuticals 2024, 17, 911. [Google Scholar] [CrossRef]
- Prashanth, N.; Meghana, P.; Rajaput, P.S.; Satyanarayan, N.D.; Kumaraswamy, H.M. Nicotine Promotes Epithelial to Mesenchymal Transition and Gemcitabine Resistance via hENT1/RRM1 Signalling in Pancreatic Cancer and Chemosensitizing Effects of Embelin-a Naturally Occurring Benzoquinone. Sci. Total Environ. 2024, 914, 169727. [Google Scholar] [CrossRef] [PubMed]
- Bae, E.S.; Hong, J.; Lim, Y.; Byun, W.S.; Chun, S.; Hong, S.; Lee, S.K. Evo312: An Evodiamine Analog and Novel PKCβI Inhibitor with Potent Antitumor Activity in Gemcitabine-Resistant Pancreatic Cancer. J. Med. Chem. 2024, 67, 14885–14911. [Google Scholar] [CrossRef] [PubMed]
- Denda, Y.; Matsuo, Y.; Sugita, S.; Eguchi, Y.; Nonoyama, K.; Murase, H.; Kato, T.; Imafuji, H.; Saito, K.; Morimoto, M.; et al. The Natural Product Parthenolide Inhibits Both Angiogenesis and Invasiveness and Improves Gemcitabine Resistance by Suppressing Nuclear Factor κB Activation in Pancreatic Cancer Cell Lines. Nutrients 2024, 16, 705. [Google Scholar] [CrossRef]
- Zhou, L.; Yang, C.; Zhong, W.; Wang, Q.; Zhang, D.; Zhang, J.; Xie, S.; Xu, M. Chrysin Induces Autophagy-Dependent Ferroptosis to Increase Chemosensitivity to Gemcitabine by Targeting CBR1 in Pancreatic Cancer Cells. Biochem. Pharmacol. 2021, 193, 114813. [Google Scholar] [CrossRef] [PubMed]
- DeVita, V.T.; Lawrence, T.S.; Rosenberg, S.A. DeVita, Hellman, and Rosenberg’s Cancer: Principles and Practice of Oncology, 10th ed.; Wolters Kluwer: Philadelphia, PA, USA, 2015; ISBN 978-1-4511-9294-0. [Google Scholar]
- Qian, J.-Q.; Sun, P.; Pan, Z.-Y.; Fang, Z.-Z. Annonaceous Acetogenins Reverses Drug Resistance of Human Hepatocellular Carcinoma BEL-7402/5-FU and HepG2/ADM Cell Lines. Int. J. Clin. Exp. Pathol. 2015, 8, 11934–11944. [Google Scholar]
- Sun, B.T.; Zheng, L.H.; Bao, Y.L.; Yu, C.L.; Wu, Y.; Meng, X.Y.; Li, Y.X. Reversal Effect of Dioscin on Multidrug Resistance in Human Hepatoma HepG2/Adriamycin Cells. Eur. J. Pharmacol. 2011, 654, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Hahnvajanawong, C.; Wattanawongdon, W.; Chomvarin, C.; Anantachoke, N.; Kanthawong, S.; Sripa, B.; Reutrakul, V. Synergistic Effects of Isomorellin and Forbesione with Doxorubicin on Apoptosis Induction in Human Cholangiocarcinoma Cell Lines. Cancer Cell Int. 2014, 14, 68. [Google Scholar] [CrossRef] [PubMed]
- Kashyap, D.; Tuli, H.S.; Yerer, M.B.; Sharma, A.; Sak, K.; Srivastava, S.; Pandey, A.; Garg, V.K.; Sethi, G.; Bishayee, A. Natural Product-Based Nanoformulations for Cancer Therapy: Opportunities and Challenges. Semin. Cancer Biol. 2021, 69, 5–23. [Google Scholar] [CrossRef]
- Lepeltier, E.; Rijo, P.; Rizzolio, F.; Popovtzer, R.; Petrikaite, V.; Assaraf, Y.G.; Passirani, C. Nanomedicine to Target Multidrug Resistant Tumors. Drug Resist. Updates 2020, 52, 100704. [Google Scholar] [CrossRef] [PubMed]
- Zoi, V.; Galani, V.; Lianos, G.D.; Voulgaris, S.; Kyritsis, A.P.; Alexiou, G.A. The Role of Curcumin in Cancer Treatment. Biomedicines 2021, 9, 1086. [Google Scholar] [CrossRef]
- Baghbani, F.; Moztarzadeh, F. Bypassing Multidrug Resistant Ovarian Cancer Using Ultrasound Responsive Doxorubicin/Curcumin Co-Deliver Alginate Nanodroplets. Colloids Surf. B Biointerfaces 2017, 153, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Duan, J.; Mansour, H.M.; Zhang, Y.; Deng, X.; Chen, Y.; Wang, J.; Pan, Y.; Zhao, J. Reversion of Multidrug Resistance by Co-Encapsulation of Doxorubicin and Curcumin in Chitosan/Poly(Butyl Cyanoacrylate) Nanoparticles. Int. J. Pharm. 2012, 426, 193–201. [Google Scholar] [CrossRef]
- Pramanik, D.; Campbell, N.R.; Das, S.; Gupta, S.; Chenna, V.; Bisht, S.; Sysa-shah, P.; Bedja, D.; Karikari, C.; Steenbergen, C.; et al. A Composite Polymer Nanoparticle Overcomes Multidrug Resistance and Ameliorates Doxorubicin-Associated Cardiomyopathy. Oncotarget 2012, 3, 640–650. [Google Scholar] [CrossRef]
- Misra, R.; Sahoo, S.K. Coformulation of Doxorubicin and Curcumin in Poly(d,l-Lactide-Co-Glycolide) Nanoparticles Suppresses the Development of Multidrug Resistance in K562 Cells. Mol. Pharm. 2011, 8, 852–866. [Google Scholar] [CrossRef]
- Wang, J.; Ma, W.; Tu, P. Synergistically Improved Anti-Tumor Efficacy by Co-Delivery Doxorubicin and Curcumin Polymeric Micelles. Macromol. Biosci. 2015, 15, 1252–1261. [Google Scholar] [CrossRef]
- Baek, J.-S.; Cho, C.-W. A Multifunctional Lipid Nanoparticle for Co-Delivery of Paclitaxel and Curcumin for Targeted Delivery and Enhanced Cytotoxicity in Multidrug Resistant Breast Cancer Cells. Oncotarget 2017, 8, 30369–30382. [Google Scholar] [CrossRef]
- Ganta, S.; Amiji, M. Coadministration of Paclitaxel and Curcumin in Nanoemulsion Formulations To Overcome Multidrug Resistance in Tumor Cells. Mol. Pharm. 2009, 6, 928–939. [Google Scholar] [CrossRef] [PubMed]
- Das, M.; Sahoo, S.K. Folate Decorated Dual Drug Loaded Nanoparticle: Role of Curcumin in Enhancing Therapeutic Potential of Nutlin-3a by Reversing Multidrug Resistance. PLoS ONE 2012, 7, e32920. [Google Scholar] [CrossRef] [PubMed]
- Abouzeid, A.H.; Patel, N.R.; Torchilin, V.P. Polyethylene Glycol-Phosphatidylethanolamine (PEG-PE)/Vitamin E Micelles for Co-Delivery of Paclitaxel and Curcumin to Overcome Multi-Drug Resistance in Ovarian Cancer. Int. J. Pharm. 2014, 464, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Sarisozen, C.; Abouzeid, A.H.; Torchilin, V.P. The Effect of Co-Delivery of Paclitaxel and Curcumin by Transferrin-Targeted PEG-PE-Based Mixed Micelles on Resistant Ovarian Cancer in 3-D Spheroids and in vivo Tumors. Eur. J. Pharm. Biopharm. 2014, 88, 539–550. [Google Scholar] [CrossRef]
- Meng, J.; Guo, F.; Xu, H.; Liang, W.; Wang, C.; Yang, X.-D. Combination Therapy Using Co-Encapsulated Resveratrol and Paclitaxel in Liposomes for Drug Resistance Reversal in Breast Cancer Cells in vivo. Sci. Rep. 2016, 6, 22390. [Google Scholar] [CrossRef]
- Meng, L.; Xia, X.; Yang, Y.; Ye, J.; Dong, W.; Ma, P.; Jin, Y.; Liu, Y. Co-Encapsulation of Paclitaxel and Baicalein in Nanoemulsions to Overcome Multidrug Resistance via Oxidative Stress Augmentation and P-Glycoprotein Inhibition. Int. J. Pharm. 2016, 513, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Chueh, F.-S.; Lien, J.-C.; Chou, Y.-C.; Huang, W.-W.; Huang, Y.-P.; Huang, J.-Y.; Kuo, J.-Y.; Huang, W.-N.; Sheng, S.-Y.; Tung, H.-Y.; et al. Demethoxycurcumin Inhibits In vivo Growth of Xenograft Tumors of Human Cervical Cancer Cells. In Vivo 2020, 34, 2469–2474. [Google Scholar] [CrossRef]
- Huang, W.-T.; Larsson, M.; Lee, Y.-C.; Liu, D.-M.; Chiou, G.-Y. Dual Drug-Loaded Biofunctionalized Amphiphilic Chitosan Nanoparticles: Enhanced Synergy between Cisplatin and Demethoxycurcumin against Multidrug-Resistant Stem-like Lung Cancer Cells. Eur. J. Pharm. Biopharm. 2016, 109, 165–173. [Google Scholar] [CrossRef]
- Zhang, W.; Fan, Y.; Zhang, J.; Shi, D.; Yuan, J.; Ashrafizadeh, M.; Li, W.; Hu, M.; Abd El-Aty, A.M.; Hacimuftuoglu, A.; et al. Cell Membrane-Camouflaged Bufalin Targets NOD2 and Overcomes Multidrug Resistance in Pancreatic Cancer. Drug Resist. Updates 2023, 71, 101005. [Google Scholar] [CrossRef]
- Zhang, F.; Hu, Q.; Li, B.; Huang, Y.; Wang, M.; Shao, S.; Tang, H.; Yao, Z.; Ping, Y.; Liang, T. A Biomimetic Nanodrug for Enhanced Chemotherapy of Pancreatic Tumors. J. Control. Release 2023, 354, 835–850. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Xiao, Y.; Zheng, L.; Xu, M.; Jiang, X.; Wang, L. Enhancing Paclitaxel Efficacy with Piperine-Paclitaxel Albumin Nanoparticles in Multidrug-Resistant Triple-Negative Breast Cancer by Inhibiting P-Glycoprotein. Pharmaceutics 2023, 15, 2703. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Li, R.; Qian, J.; Sun, J.; Li, G.; Shen, J.; Xie, Y. Combination Therapy of Doxorubicin and Quercetin on Multidrug-Resistant Breast Cancer and Their Sequential Delivery by Reduction-Sensitive Hyaluronic Acid-Based Conjugate/d-α-Tocopheryl Poly(Ethylene Glycol) 1000 Succinate Mixed Micelles. Mol. Pharm. 2020, 17, 1415–1427. [Google Scholar] [CrossRef] [PubMed]
- Lv, L.; Liu, C.; Chen, C.; Yu, X.; Chen, G.; Shi, Y.; Qin, F.; Ou, J.; Qiu, K.; Li, G. Quercetin and Doxorubicin Co-Encapsulated Biotin Receptor-Targeting Nanoparticles for Minimizing Drug Resistance in Breast Cancer. Oncotarget 2016, 7, 32184–32199. [Google Scholar] [CrossRef]
- Cheng, T.; Liu, J.; Ren, J.; Huang, F.; Ou, H.; Ding, Y.; Zhang, Y.; Ma, R.; An, Y.; Liu, J.; et al. Green Tea Catechin-Based Complex Micelles Combined with Doxorubicin to Overcome Cardiotoxicity and Multidrug Resistance. Theranostics 2016, 6, 1277–1292. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Lu, Y.; Chaurasiya, B.; Mi, G.; Shi, D.; Chen, D.; Webster, T.J.; Tu, J.; Shen, Y. Co-Delivery of Poria Cocos Extract and Doxorubicin as an ‘All-in-One’ Nanocarrier to Combat Breast Cancer Multidrug Resistance during Chemotherapy. Nanomed. Nanotechnol. Biol. Med. 2020, 23, 102095. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Li, M.; Zhang, Z.; Shen, Y.; Guo, S. Self-Assembly of Biotinylated Poly(Ethylene Glycol)-Poly(Curcumin) for Paclitaxel Delivery. Int. J. Pharm. 2018, 553, 510–521. [Google Scholar] [CrossRef] [PubMed]
- Zang, X.; Cheng, M.; Zhang, X.; Chen, X. Quercetin Nanoformulations: A Promising Strategy for Tumor Therapy. Food Funct. 2021, 12, 6664–6681. [Google Scholar] [CrossRef]
- Yu, C.; Ronghua, Z. Traditional Chinese Medicine Composition of Reversing Tumor Multi-Drug Resistance (MDR) and Preparation Method Thereof. Patent No. CN102908405A, 29 September 2013. [Google Scholar]
- Seong-gyu, G.; Yang, Y.J.; Sun, L.H.; Choi, H. Composition for Inhibition of Multidrug Resistance Containing an Extract of Morus alba L. Patent No. KR20120124151A, 13 November 2012. [Google Scholar]
- Seong-gyu, G.; Cheol, S.H.; Sun, L.H.; Choi, H. Composition for Inhibition of Multidrug Resistance Containing an Extract of Dictamnus Dasycarpus Turcz. Patent No. KR20120124142A, 13 November 2012. [Google Scholar]
- Seong-gyu, G. Pharmaceutical Composition for Cancer and Resistant Cancer Comprising Trichosanthes Kirilowii Maxim, Dictamnus Dasycarpus Turcz and Morus alba L. Patent No. WO2021187905A1, 23 November 2021. [Google Scholar]
- Seong-gyu, G.; Yang, Y.J.; Sun, L.H.; Choi, H. Composition for Inhibition of Multidrug Resistance Containing an Extract of Trichosanthes Kirilowii Maxim. Patent No. KR101283562B1, 15 July 2013. [Google Scholar]
- Wang, X.; Wang, C.; Lu, G.; Meng, Q.; Zhu, F.; Zhang, L.; Zhang, Z.; Niu, H.; Huang, J.; Xi, H.; et al. Application of Salvianolic Acid a in Preparation of Medicine for Treating Tumour Multi-Drug Resistance. Patent No. CN103690519A, 2 April 2014. [Google Scholar]
- Ma, Y.; Guo, H.; Yang, W. Application of the Ergotamine as Tumor Multi-Drug Resistance Reversal Agents. Patent No. CN110327337A, 15 October 2019. [Google Scholar]
- Chen, X.; Zhang, Y.; Wang, X. Application of Dicoumarol in Antitumor. Patent No. CN112121043A, 25 December 2020. [Google Scholar]
- Ma, Y.; Xie, C.; Guo, H.; Yang, W. Application of the 5 A-Epoxy Alantolactone in Terms of Anti-Multidrug Resistance of Tumor. Patent No. CN110051663A, 26 July 2019. [Google Scholar]
- Jianmin, Y.; Liguang, L.; Cuiping, L.; Chengying, X.; Kailong, J.; Jinxin, Z. Novel Skeleton Cyclic Lipopeptide Compound with Tumor Multidrug Resistance Reversing Activity, Preparation Method and Application Thereof. Patent No. CN111689923A, 22 September 2020. [Google Scholar]
- Aisa, A.; Rui, H. To The Macrocyclic Diterpene Compounds in the Fruit of the Leaf Root of Beijing Euphorbia and Preparation Method and Multi-Medicine Tolerant Reversal Purposes. Patent No. CN107827752A, 23 March 2018. [Google Scholar]
- Li, Y.; Shen, P.; Yuan, C.; Yang, J.; Zeng, Y.; Li, Y. Monocyclic Heteroterpene Structural Compound, Preparation Method and Application Thereof. Patent No. CN113149820A, 23 July 2021. [Google Scholar]
- Cheng, Z.; Wu, Y. The Method for Transformation and Its Purposes in Antineoplastic Is Prepared of the Terpane Type Derivative of Hydroxylating Euphorbia Lathyris Two. Patent No. CN107164421A, 15 September 2017. [Google Scholar]
- Sun, Y.; Zhong, L.; Lin, D.; Yin, J. Anti-Tumor Combined Medicament. Patent No. CN102697795A, 3 October 2012. [Google Scholar]
- Maitra, A.; Pramanik, D. Smart Polymeric Nanoparticles Which Overcome Multidrug Resistance to Cancer Chemotherapeutics and Treatment-Related Systemic Toxicity. Patent No. WO2012078831A3, 14 June 2012. [Google Scholar]
- Yang, X.; Meng, J.; Wang, C. Drug-Loaded Liposome Overcoming Tumor Drug Resistance, Preparation Method and Application Thereof. Patent No. CN103142481A, 12 June 2013. [Google Scholar]
- Ren, J.; Xie, N.; Shen, Y.; Gu, S.; Tang, K. Compound Curcumin Nanoparticle and Preparation Method and Application Thereof. Patent No. CN111568882A, 25 August 2020. [Google Scholar]
- Huang, Q.; Zhang, L.; Zhan, Z.; Ma, L.; Shan, W. Canarium Diterpene and Its Extraction Method and Application. Patent No. CN112479889A, 12 March 2021. [Google Scholar]
Compound or Extract | Cell Lines Studied | Molecular Effect | In Vivo Study | Reference |
---|---|---|---|---|
Bitter melon juice | PANC-1 and MIA PaCa-2 | Decrease in Akt and ERK1/2 phosphorylation. | - | [66] |
Oat bran ethanolic extract | PANC-1 and MIA PaCa-2 | AMPK activation. JNK and RRM1/2 downregulation. | [67] | |
Enzyme-treated asparagus extract | KLM1-R | Decrease in HSP27 expression. | [71] | |
Quercetin | PANC-1 and HPAC | Upregulation of β-catenin expression. | [78] | |
Coix seed emulsion | BXPC-3, PANC-1, and AsPC-1 | Upregulation of proapoptotic markers (Bax) and downregulation of antiapoptotic markers (COX-2, survivin, and Bcl-2). | BALB/c mice bearing BXPC-3 tumors | [68] |
Coix seed extracts | PANC-1 and BXPC-3 | Decrease in ABCB1 and ABCG2 expression. | [69] | |
Pao Pereira extract | PANC-1, AsPC-1, HPAF-II, BxPC-3, and MIA PaCa-2 | Suppression of Wnt/β-catenin signaling pathway. | BALB/c mice bearing PANC-1 tumors | [76] |
Rauwolfia vomitoria extract | [77] | |||
Emodin | Bxpc-3 | Decrease in NF-kB, survivin and and XIAP expression. Upregulation of Caspase 3 and 9 | - | [70] |
Rg3 gingenoside | PANC-1/GEM and SW1990/GEM | Increased expression of lncRNA CAS2 and PTEN. | BALB/c mice bearing PANC-1/GEM tumors | [72] |
Oblongifolin C | MIA PaCa-2/GEM and PANC-1/GEM | Decrease in SRC expression and MAPK pathway. | BALB/c mice bearing MIA PaCa-2 tumors | [73] |
Chaetospirolactone | PANC-1 and AsPC-1 | Increased expression of DR4 and downregulation of EZH2. | BALB/c mice bearing AsPC-1 tumors | [74] |
Qingyihuaii | CFPAC-1 | Increased expression of lncRNA AB209630 and downregulation of miR373, EphB2, and NANOG. | BALB/c mice bearing CFPAC-1 tumors | [75] |
Fucoidan | Panc-1, MiaPaCa-2, Panc-3.27, and BxPC-3 | Increase in cleaved caspases 3, 8, and 9 and PARP. Inhibition of NFκB signaling pathway and activation of p53. | - | [79] |
Aronia berry extracts | Gem-R PDAC cell lines BxPC-3 and MIA-PaCa-2 and patient-derived 3D tumor organoids | Significant reduction in clonogenicity with the combination of GEM and ABE compared with individual treatments, with an apoptosis improvement. Combination of ABE and GEM could target the MYD88/NF-κB signaling pathway associated with GEM resistance in PDAC cells through downregulation of TLR3, MYD88, and p65 by the combined treatment. | - | [80] |
Embelin | PC cell lines PANC-1 and MIA PaCa-2 | Embelin upregulated Bax, γH2AX, p53, ERK1/2, and hENT1 expression and downregulated Bcl-2 and RRM1. Morphological changes like bulged cells, membrane blebbing, chromatin disintegration, and cytoplasmic vacuole formation were visualized. | - | [81] |
Evo312 | Human PC cells (PANC-1) and GEM-resistant cell line PANC-GR | PKCβI expression was suppressed, as well as the protein expression levels of glycogen synthase kinase 3β, protein kinase B, signal transducer and activator of transcription 5, ribosomal protein S6 kinase β-1, and proline-rich AKT. | BALB/c-nu, weighing ∼23 g | [82] |
Parthenolide | GEM-resistant AsPC-1 (cat. CRL-1682) and MIA PaCa-2 | p65 activity was decreased compared with the control, as well as vascular tube formation, IL-8 secretion, and VEGF secretion. Parthenolide also suppressed the expression of the multidrug-resistance-related protein MRP1 and NF-κB. | - | [83] |
Chrysin | PANC-1, Capan-2, BxPC-3, and AsPC-1 cells | CBR1 expression was inhibited. Cell viability was reduced by 70% with chrysin compared with control in Panc-1 and AsPC-1. Increased levels of autophagy-related proteins such as Beclin-1, ATG5, and LC3. The FTH1 protein level was downregulated, while the expression of NCOA4 increased along with LC3-II levels. | Male BALB/c nude mice | [84] |
Patent No. | Inventors | Title | Natural Compound, Extract, or Preparation | Year | Reference |
---|---|---|---|---|---|
CN102908405A | C. Yu and Z. Ronghua | Traditional Chinese medicine composition of reversing tumor multi-drug resistance (MDR) and preparation method thereof | Traditional Chinese medicine composition | 2013 | [115] |
KR20120124151A | G. Seong-gyu et al. | Composition for inhibition of MDR containing an extract of Morus alba L. | Extract of Morus alba L. | 2012 | [116] |
KR20120124142A | G. Seong-gyu et al. | Composition for inhibition of MDR containing an extract of Dictamnus dasycarpus Turcz. | Extract of Dictamnus dasycarpus Turcz. | 2012 | [117] |
WO2021187905A1 | G. Seong-gyu | Pharmaceutical composition for cancer and resistant cancer comprising Trichosanthes kirilowii maxim, Dictamnus dasycarpus Turcz and Morus alba L. | Extract of Trichosanthes kirilowii Maxim, Dictamnus dasycarpus Turcz., and Morus alba L. | 2021 | [118] |
KR101283562B1 | G. Seong-gyu et al. | Composition for inhibition of MDR containing an extract of Trichosanthes kirilowii maxim | Extract of Trichosanthes kirilowii maxim | 2013 | [119] |
CN103690519A | X. Wang et al. | Application of salvianolic acid A in preparation of medicine for treating tumor multi-drug resistance | Salvianolic acid A | 2014 | [120] |
CN110327337A | Y. Ma et al. | Application of ergotamine as a tumor multiple drug resistance reversal agent | Ergotamine | 2019 | [121] |
CN112121043A | X. Chen et al. | Application of dicoumarol in tumor resistance | Dicoumarol | 2020 | [122] |
CN110051663A | Y. Ma et al. | Application of 5alpha-epoxyalantolactone in resisting multidrug resistant tumors | 5alpha-epoxyalantolactone isolated and purified from methanol extract of Compositae | 2019 | [123] |
CN111689923A | Y. Jianmin et al. | Novel skeleton cyclic lipopeptide compound with activity of reversing MDR of tumor as well as preparation method and application of same | A new skeleton cyclic lipopeptide from a plant of the neem family | 2020 | [124] |
CN107827752A | A. Aisa and H. Rui | Macrocyclic diterpene compounds in fruit of Euphorbia sororia A. schrenk as well as preparation method of macrocyclic diterpene compounds and use of macrocyclic diterpene compounds in reversion of MDR | Three macrocyclic diterpenoids isolated from the fruit of Euphorbia sororia | 2018 | [125] |
CN113149820A | Y. Li et al. | Monocyclic meroterpenoid structure compound and preparation method and application thereof | Monocyclic meroterpenoid from Hypericum monogynum L. | 2021 | [126] |
CN107164421A | Z. Chen and Y. Wu | The method for transformation and its purposes in antineoplastic is prepared of the terpane type derivative of hydroxylating Euphorbia lathyris two | Hydroxylated lathyrane derivatives from Euphorbia lathyris L. | 2017 | [127] |
CN102697795A | Y. Sun et al. | Anti-tumor combined medicament | Nanoformulation loaded with epirubicin and quercetin | 2012 | [128] |
WO2012078831A3 | A. Maitra and D. Pramanik | Smart polymeric nanoparticles which overcome MDR to cancer therapeutics and treatment-related systemic toxicity | Nanoformulation loaded with curcumin | 2012 | [129] |
CN103142481A | X. Yang et al. | Drug-loaded liposome overcoming tumor drug resistance, preparation method and application thereof | Nanoformulation loaded with paclitaxel and resveratrol | 2013 | [130] |
CN111568882A | J. Ren et al. | Compound curcumin nanoparticle, and preparation method and application thereof | Nanoformulation loaded with curcumin | 2020 | [131] |
CN112479889A | Q. Huang et al. | Canarium album alkane diterpenoids and extraction method and application thereof | Pseudolephane diterpenoids extracted from kansui tuber | 2021 | [132] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perazzoli, G.; Mesas, C.; Quiñonero, F.; Doello, K.; Peña, M.; Cepero, A.; Rodríguez-Criado, J.; Prados, J.; Melguizo, C. Plant-Derived Molecules Modulate Multidrug Resistance in Gastrointestinal Cancers: A Comprehensive Review. Appl. Sci. 2025, 15, 1125. https://doi.org/10.3390/app15031125
Perazzoli G, Mesas C, Quiñonero F, Doello K, Peña M, Cepero A, Rodríguez-Criado J, Prados J, Melguizo C. Plant-Derived Molecules Modulate Multidrug Resistance in Gastrointestinal Cancers: A Comprehensive Review. Applied Sciences. 2025; 15(3):1125. https://doi.org/10.3390/app15031125
Chicago/Turabian StylePerazzoli, Gloria, Cristina Mesas, Francisco Quiñonero, Kevin Doello, Mercedes Peña, Ana Cepero, Jorge Rodríguez-Criado, Jose Prados, and Consolación Melguizo. 2025. "Plant-Derived Molecules Modulate Multidrug Resistance in Gastrointestinal Cancers: A Comprehensive Review" Applied Sciences 15, no. 3: 1125. https://doi.org/10.3390/app15031125
APA StylePerazzoli, G., Mesas, C., Quiñonero, F., Doello, K., Peña, M., Cepero, A., Rodríguez-Criado, J., Prados, J., & Melguizo, C. (2025). Plant-Derived Molecules Modulate Multidrug Resistance in Gastrointestinal Cancers: A Comprehensive Review. Applied Sciences, 15(3), 1125. https://doi.org/10.3390/app15031125