Examination of Conductive WC-Ni and Thermal Barrier Coatings Using an Eddy Current Probe
Abstract
1. Introduction
2. Materials and Methods
2.1. Eddy Current Method
2.2. Carbide Coatings
2.3. TBCs
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kumar, M.; Ramachandran, C.S.; Sharma, V. Thermal spray coatings on high-temperature oxidation and corrosion applications—A comprehensive review. Surf. Interfaces 2024, 40, 103340. [Google Scholar]
- Savarimuthu, A.C.; Taber, H.F.; Megat, I.; Shadley, J.R.; Rybicki, E.F.; Cornell, W.C.; Emery, W.A.; Somerville, D.A.; Nuse, J.D. Sliding wear behavior of tungsten carbide thermal spray coatings for replacement of chromium electroplate in aircraft applications. J. Therm. Spray Technol. 2001, 10, 502–510. [Google Scholar] [CrossRef]
- Vaßen, R.; Bakan, E.; Mack, D.E.; Guillon, O. A perspective on thermally sprayed thermal barrier coatings: Current status and trends. J. Therm. Spray Technol. 2022, 31, 685–698. [Google Scholar] [CrossRef]
- Yuan, G.X.; Wang, S.H.; Geng, J.L. Plasma Sprayed Tungsten Carbide Coating; SAE Technical Paper, 840822; SAE International: Warrendale, PA, USA, 1984. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Y.; Wang, J. Microstructure and tribological properties of plasma-sprayed WC–17Co coatings with different carbide grain size distribution. J. Therm. Spray Technol. 2024, 63, 1234–1245. [Google Scholar]
- Jude, S.A.A.; Winowlin Jappes, J.T.; Adamkhan, M. Thermal barrier coatings for high-temperature application on superalloy substrates—A review. Mater. Today Proc. 2022, 60, 1670–1675. [Google Scholar] [CrossRef]
- Vagge, S.T.; Ghogare, S. Thermal barrier coatings: Review. Mater. Today Proc. 2022, 56, 1201–1216. [Google Scholar] [CrossRef]
- Wei, Z.-Y.; Cai, H.-N.; Li, C.-J. Comprehensive dynamic failure mechanism of thermal barrier coatings based on a novel crack propagation and TGO growth coupling model. J. Therm. Spray Technol. 2018, in press. [Google Scholar] [CrossRef]
- Shi, J.; Zhang, T.; Sun, B.; Wang, B.; Zhang, X.; Song, L. Isothermal oxidation and TGO growth behavior of NiCoCrAlY-YSZ thermal barrier coatings on a Ni-based superalloy. J. Alloys Compd. 2020, 844, 156093. [Google Scholar] [CrossRef]
- Doleker, K.M.; Ozgurluk, Y.; Karaoglanli, A.C. TGO growth and kinetic study of single and double layered TBC systems. Surf. Coat. Technol. 2021, 415, 127135. [Google Scholar] [CrossRef]
- Hejran, E.; Sebold, D.; Nowak, W.J.; Mauer, G.; Naumenko, D.; Vaßen, R.; Quadakkers, W.J. Isothermal and cyclic oxidation behavior of free-standing MCrAlY coatings manufactured by high-velocity atmospheric plasma spraying. Surf. Coat. Technol. 2017, 313, 191–201. [Google Scholar] [CrossRef]
- Swadźba, R.; Hetmańczyk, M.; Sozańska, M.; Witala, B.; Swadźba, L. Structure and cyclic oxidation resistance of Pt, Pt/Pd-modified and simple aluminide coatings on CMSX-4 superalloy. Surf. Coat. Technol. 2011, 206, 1538–1544. [Google Scholar] [CrossRef]
- Tahir, M.; Qasim, M.; Ahmed, N.; Satti, A.N.; Malik, A.E.; Khan, Z.S.; Anwar, M. Impact of atmospheric plasma spraying parameters on microstructure, mechanical properties and thermal cycling performance of YSZ coatings. Ceram. Int. 2024, 50, 53976–53986. [Google Scholar] [CrossRef]
- Swadźba, R.; Wiedermann, J.; Swadźba, L.; Hetmańczyk, M.; Witala, B.; Schulz, U.; Jung, T. High temperature oxidation of EB-PVD TBCs on Pt-diffused single crystal Ni superalloy. Surf. Coat. Technol. 2014, 260, 2–8. [Google Scholar] [CrossRef]
- Pędrak, P.; Dychtoń, K.; Drajewicz, M.; Góral, M. Synthesis of Gd2Zr2O7 coatings using the novel reactive PS-PVD process. Coatings 2021, 11, 1208. [Google Scholar] [CrossRef]
- Smith, J.; Kumar, A. Porosity and its significance in plasma-sprayed coatings. Surf. Coat. Technol. 2020, 385, 125412. [Google Scholar]
- Guo, W.; Zhao, Y.; Qiao, L.; Deng, K.; Yang, Y.; Chen, X.; Xie, S. High precision thickness evaluation of thermal barrier coating with high frequency eddy current testing method. NDT E Int. 2023, 132, 102963. [Google Scholar] [CrossRef]
- Sun, L.; Lin, L.; Lei, M. Ultrasonic characterization of elastic constants of plasma sprayed Al2O3 coatings based on simulated annealing algorithm. NDT E Int. 2022, 123, 102584. [Google Scholar] [CrossRef]
- Yang, Y.; He, C.; Wu, B. Non-destructive microwave evaluation of plasma sprayed TBCs porosity. NDT E Int. 2013, 58, 102–108. [Google Scholar] [CrossRef]
- Cernuschi, F.; Bison, P. Thirty Years of Thermal Barrier Coatings (TBC), Photothermal and Thermographic Techniques: Best Practices and Lessons Learned. J. Therm. Spray Technol. 2022, 31, 716–744. [Google Scholar] [CrossRef]
- Yang, X.; Luo, Y.; Kyrgiazoglou, A.; Zhou, X.; Theodoulidis, T.; Tytko, G. Impedance variation of a reflection probe near the edge of a magnetic metal plate. IEEE Sens. J. 2023, 23, 15479–15488. [Google Scholar] [CrossRef]
- Ai, J.; Zhou, Q.; Zhang, X.; Li, S.; Long, B.; Bai, L. Improving magnetic field response of eddy current magneto-optical imaging for defect detection in carbon fiber reinforced polymers. Appl. Sci. 2023, 13, 4541. [Google Scholar] [CrossRef]
- Li, C.; Guo, Z.; Zhen, M.; Liu, L.; Xu, A.; Xue, W.; Gao, L.; Xiong, J. A non-contact rotational speed sensor for bearing cages in a high-temperature and high-speed environment. IEEE Sens. J. 2024, 24, 22773–22780. [Google Scholar] [CrossRef]
- Tytko, G.; Dziczkowski, L. An analytical model of an I-cored coil located above a conductive material with a hole. Eur. Phys. J. Appl. Phys. 2018, 82, 21001. [Google Scholar] [CrossRef]
- Cabral-Miramontes, J.; Gaona-Tiburcio, C.; Maldonado-Bandala, E.; Vera Cervantes, D.; Nieves-Mendoza, D.; Mendez-Ramirez, C.T.; Lara-Banda, M.; Baltazar-Zamora, M.A.; Olguin-Coca, J.; Almeraya-Calderon, F. Comparative method between eddy current and optical microscopy in the determination of thickness of 6063 aluminum alloy anodization. Appl. Sci. 2025, 15, 9025. [Google Scholar] [CrossRef]
- Zhang, S. An analytical model of a new T-cored coil used for eddy current nondestructive evaluation. Appl. Comput. Electromagn. Soc. J. 2020, 35, 1099–1104. [Google Scholar] [CrossRef]
- Zhang, S. Modeling of a novel T-core sensor with an air gap for applications in eddy current nondestructive evaluation. Sensors 2024, 24, 7931. [Google Scholar] [CrossRef]
- Syasko, M.; Solomenchuk, P.; Soloviev, I.; Ampilova, N. A technique for multi-parameter signal processing of an eddy-current probe for measuring the thickness of non-conductive coatings on non-magnetic electrically conductive base metals. Appl. Sci. 2023, 13, 5144. [Google Scholar] [CrossRef]
- Frankowski, P.K.; Majzner, P.; Mąka, M.; Stawicki, T. Non-destructive evaluation of reinforced concrete structures with magnetic flux leakage and eddy current methods—Comparative analysis. Appl. Sci. 2024, 14, 11965. [Google Scholar] [CrossRef]
- Meng, B.; Zhuang, Z.; Ma, J.; Zhao, S. Research on the detection method for feeding metallic foreign objects in coal mine crushers based on reflective pulsed eddy current testing. Appl. Sci. 2024, 14, 11704. [Google Scholar] [CrossRef]
- Zhang, S.; Cao, S.; Wang, M. Research and analysis of carbon fiber-reinforced polymer prepreg detection based on electromagnetic coil sensors. Appl. Sci. 2024, 14, 10807. [Google Scholar] [CrossRef]
- Zhou, Y.; Ye, B.; Cao, H.; Zou, Y.; Zhu, Z.; Xing, H. High-sensitivity detection of carbon fiber-reinforced polymer delamination using a novel eddy current probe. Appl. Sci. 2024, 14, 3765. [Google Scholar] [CrossRef]
- Gorbunov, A.; Syasko, V.; Solomenchuk, P.; Umanskii, A. Methods and means of eddy current testing of soldered lap joints of electrical machines. Appl. Sci. 2025, 15, 2036. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Z.; Yin, W. A novel conductivity classification technique for nonmagnetic metal immune to tilt variations using eddy current testing. IEEE Access 2021, 9, 135334. [Google Scholar] [CrossRef]
- Ma, H.; Wang, D.; Zhang, Z.; Yin, W.; Chen, H.; Zhou, G. A simple conductivity measurement method using a peak-frequency feature of ferrite-cored eddy current sensor. NDT E Int. 2024, 142, 103024. [Google Scholar] [CrossRef]
- Deng, Z.; Wang, Y.; Shi, Q.; Guo, J. 2-D analytical model of sinusoidal eddy current field based on permeability distortion. IEEE Sens. J. 2024, 24, 14392–14403. [Google Scholar] [CrossRef]
- Li, Y.; Xiao, Q.; Peng, L.; Huang, S.; Ye, C. A precise oxide film thickness measurement method based on swept frequency and transmission cable impedance correction. Sensors 2025, 25, 579. [Google Scholar] [CrossRef]
- Tytko, G.; Adamczyk-Habrajska, M.; Li, Y.; Pengpeng, S.; Kopec, M. Eddy current method in non-magnetic aluminide coating thickness assessment. J. Nondestruct. Eval. 2025, 44, 65. [Google Scholar] [CrossRef]
- Zhao, G.; Huang, Y.; Zhang, W. Advances in high-precision displacement and thickness measurement based on eddy current sensors: A review. Measurement 2025, 243, 116410. [Google Scholar] [CrossRef]
- Feng, B.; Xie, S.; Xie, L.; Deng, K.; Wang, S.; Kang, Y. Analysis of the lift-off effect in motion-induced eddy current testing based on semi-analytical model. IEEE Trans. Instrum. Meas. 2023, 73, 6002008. [Google Scholar] [CrossRef]
- Tytko, G.; Dziczkowski, L. Calculation of the impedance of an E-cored coil placed above a conductive material with a surface hole. Meas. Sci. Rev. 2019, 19, 43–47. [Google Scholar] [CrossRef]
- Kubaszek, T.; Góral, M.; Słyś, A.; Szczęch, D.; Gancarczyk, K.; Drajewicz, M. The influence of HV-APS process parameters on microstructure and erosion resistance of metalloceramic WC-CrC-Ni coatings. Ceram. Int. 2023, 49, 18007–18013. [Google Scholar] [CrossRef]
- Kubaszek, T.; Góral, M.; Pędrak, P. Influence of air plasma spraying process parameters on the thermal barrier coating deposited with micro- and nanopowders. Mater. Sci.-Pol. 2022, 40, 80–92. [Google Scholar] [CrossRef]








| Number of coil turns | 740 |
| Inner radius of the core column | 1.5 mm ± 0.2 mm |
| Outer radius of the core column | 2.8 mm ± 0.2 mm |
| Inner core radius | 6.0 mm ± 0.2 mm |
| Outer core radius | 7.1 mm ± 0.2 mm |
| Inner core height | 3.0 mm ± 0.2 mm |
| Outer core height | 4.2 mm ± 0.2 mm |
| Inner coil radius | 3.4 mm ± 0.2 mm |
| Outer coil radius | 5.8 mm ± 0.2 mm |
| Coil height | 2.7 mm ± 0.2 mm |
| Sample width | 20 mm ± 1 mm |
| Sample length | 35 mm ± 1 mm |
| Spraying Parameters | Sample 1 | Sample 2 |
|---|---|---|
| Ar flow [NLPM] | 160 | 170 |
| H2 flow [NLPM] | 20 | 10 |
| N2 flow [NLPM] | 100 | 100 |
| I [A] | 480 | 480 |
| Spraying Parameters | Sample 3 | Sample 4 | Sample 5 | Sample 6 |
|---|---|---|---|---|
| Amdry 386 bond coat praying parameters | ||||
| Ar flow [NLPM] | 70 | 68 | 72 | 70 |
| H2 flow [NLPM] | 4 | 6 | 2 | 4 |
| I [A] | 550 | 550 | 550 | 400 |
| Metco 204 top coat spraying parameters | ||||
| Ar flow [NLPM] | 48 | 54 | 42 | 48 |
| H2 flow [NLPM] | 12 | 6 | 18 | 12 |
| I [A] | 700 | 700 | 700 | 500 |
| Sample Number | Coating Type | Coating Thickness [μm] | Standard Deviation [μm] | ||||
|---|---|---|---|---|---|---|---|
| 1 | WC | 295.8 | 5.2 | ||||
| 2 | WC | 305 | 20.9 | ||||
| Bond coat thickness [μm] | Standard deviation [μm] | Top coat thickness [μm] | Standard deviation [μm] | Total coating thickness [μm] | Standard deviation [μm] | ||
| 3 | YSZ/TBC | 156 | 9.1 | 229.6 | 14.3 | 385.6 | 9.7 |
| 4 | YSZ/TBC | 59.5 | 10.5 | 230.4 | 8.1 | 289.9 | 6.9 |
| 5 | YSZ/TBC | 175.8 | 16.4 | 255.2 | 16.1 | 431 | 16.5 |
| 6 | YSZ/TBC | 86.8 | 13.3 | 197.6 | 10.4 | 284.4 | 9.4 |
| f [kHz] | Sample 1 | Sample 2 | Relative Difference | |||
|---|---|---|---|---|---|---|
| R [Ω] | X [Ω] | R [Ω] | X [Ω] | δR [%] | δX [%] | |
| 0.5 | 119.2 ± 0.1 | 212.6 ± 0.1 | 127.9 ± 0.1 | 244.8 ± 0.1 | 7.3 | 15.1 |
| 5 | 607.0 ± 0.3 | 1662.7 ± 0.8 | 735.9 ± 0.4 | 1770.4 ± 0.9 | 21.2 | 6.5 |
| 25 | 3173.2 ± 1.6 | 5186.1 ± 2.6 | 3422.7 ± 1.7 | 5244.9 ± 2.6 | 7.9 | 1.1 |
| 50 | 7503.1 ± 3.8 | 8489.2 ± 4.2 | 7879.1 ± 3.9 | 8518.1 ± 4.3 | 5.0 | 0.3 |
| f [kHz] | Sample 3 | Sample 4 | Sample 5 | Sample 6 | ||||
|---|---|---|---|---|---|---|---|---|
| R [Ω] | X [Ω] | R [Ω] | X [Ω] | R [Ω] | X [Ω] | R [Ω] | X [Ω] | |
| 0.5 | 110.2 ± 0.1 | 152.4 ± 0.1 | 113.1 ± 0.1 | 173.2 ± 0.1 | 108.1 ± 0.1 | 135.4 ± 0.1 | 111.4 ± 0.1 | 163.1 ± 0.1 |
| 5 | 353.3 ± 0.2 | 1319.6 ± 0.7 | 419.0 ± 0.2 | 1458.3 ± 0.7 | 295.3 ± 0.1 | 1205.0 ± 0.6 | 387.5 ± 0.2 | 1395.7 ± 0.7 |
| 25 | 2049.3 ± 1.0 | 5107.4 ± 2.6 | 2461.1 ± 1.2 | 5382.6 ± 2.7 | 1722.9 ± 0.9 | 4913.4 ± 2.5 | 2260.7 ± 1.1 | 5254.2 ± 2.6 |
| 50 | 5734.8 ± 2.9 | 9875.5 ± 4.9 | 6739.5 ± 3.4 | 9904.8 ± 5.0 | 4980.6 ± 2.5 | 9814.0 ± 4.9 | 6213.8 ± 3.1 | 9937.4 ± 5.0 |
| Lift-Off [mm] | Sample 1 R [Ω] | Sample 2 R [Ω] | Relative Difference δR [%] |
|---|---|---|---|
| 0 | 355.55 ± 0.18 | 437.90 ± 0.22 | 23.16 |
| 0.2 | 263.01 ± 0.13 | 320.82 ± 0.16 | 21.98 |
| 0.4 | 218.03 ± 0.11 | 263.23 ± 0.13 | 20.73 |
| 0.6 | 190.30 ± 0.10 | 227.20 ± 0.11 | 19.39 |
| 0.8 | 171.58 ± 0.09 | 202.34 ± 0.10 | 17.93 |
| 1.0 | 158.15 ± 0.08 | 183.96 ± 0.09 | 16.32 |
| 1.2 | 148.00 ± 0.07 | 169.67 ± 0.08 | 14.64 |
| 1.4 | 140.22 ± 0.07 | 157.97 ± 0.08 | 12.66 |
| 1.6 | 134.05 ± 0.07 | 148.24 ± 0.07 | 10.58 |
| 1.8 | 129.09 ± 0.06 | 139.99 ± 0.07 | 8.45 |
| 2.0 | 125.05 ± 0.06 | 132.81 ± 0.07 | 6.21 |
| Lift-Off [mm] | Sample 1 X [Ω] | Sample 2 X [Ω] | Relative Difference δX [%] |
|---|---|---|---|
| 0 | 212.64 ± 0.11 | 244.81 ± 0.12 | 15.13 |
| 0.2 | 160.78 ± 0.08 | 184.50 ± 0.09 | 14.75 |
| 0.4 | 137.53 ± 0.07 | 157.22 ± 0.08 | 14.31 |
| 0.6 | 123.75 ± 0.06 | 140.84 ± 0.07 | 13.81 |
| 0.8 | 114.69 ± 0.06 | 129.88 ± 0.06 | 13.24 |
| 1.0 | 108.33 ± 0.05 | 121.85 ± 0.06 | 12.48 |
| 1.2 | 103.57 ± 0.05 | 115.57 ± 0.06 | 11.59 |
| 1.4 | 99.97 ± 0.05 | 110.48 ± 0.06 | 10.52 |
| 1.6 | 97.15 ± 0.05 | 106.15 ± 0.05 | 9.27 |
| 1.8 | 94.90 ± 0.05 | 102.40 ± 0.05 | 7.90 |
| 2.0 | 93.11 ± 0.05 | 99.09 ± 0.05 | 6.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tytko, G.; Kubaszek, T.; Góral, M.; Feng, B.; Yu, Y. Examination of Conductive WC-Ni and Thermal Barrier Coatings Using an Eddy Current Probe. Appl. Sci. 2025, 15, 12913. https://doi.org/10.3390/app152412913
Tytko G, Kubaszek T, Góral M, Feng B, Yu Y. Examination of Conductive WC-Ni and Thermal Barrier Coatings Using an Eddy Current Probe. Applied Sciences. 2025; 15(24):12913. https://doi.org/10.3390/app152412913
Chicago/Turabian StyleTytko, Grzegorz, Tadeusz Kubaszek, Marek Góral, Bo Feng, and Yating Yu. 2025. "Examination of Conductive WC-Ni and Thermal Barrier Coatings Using an Eddy Current Probe" Applied Sciences 15, no. 24: 12913. https://doi.org/10.3390/app152412913
APA StyleTytko, G., Kubaszek, T., Góral, M., Feng, B., & Yu, Y. (2025). Examination of Conductive WC-Ni and Thermal Barrier Coatings Using an Eddy Current Probe. Applied Sciences, 15(24), 12913. https://doi.org/10.3390/app152412913

