Kinematic Analysis of Para Table Tennis Players’ Movement Dynamics in Response to Alternating Directional Ball Feeds
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants’ Characteristics
2.2. Protocol
2.3. Kinematic Variables and Signal Processing Procedures
2.4. Statistical Analysis
3. Results
3.1. Descriptive Statistics of Center of Mass Kinematics
3.2. Relationships Between Functional Classification, Technical Performance, and Kinematic Variables
4. Discussion
4.1. Dominance of Medio-Lateral Dynamics
4.2. Jerk as an Indicator of Movement Smoothness and Motor Control
4.3. Functional Class-Dependent Kinematic Trends
4.4. Implications for Coaching and Training
4.5. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
| Parameter | Outcome Variable | ρ and p-Values (for Parameter Mean Value) | ρ and p-Values (for Parameter Range Value) | ρ and p-Values (for Parameter RMS Value) | |||
|---|---|---|---|---|---|---|---|
| Displacement X | Number of Hits | 0.0417 | 0.8575 | 0.0039 | 0.9866 | −0.0130 | 0.9553 |
| Gómez Score | 0.0222 | 0.9239 | −0.0721 | 0.756 | 0.018 | 0.9382 | |
| Functional Class | 0.0947 | 0.6832 | 0.4329 | 0.0490 | −0.0695 | 0.7647 | |
| Displacement Y | Number of Hits | −0.4133 | 0.0626 | −0.0795 | 0.7318 | 0.4133 | 0.0626 |
| Gómez Score | −0.3142 | 0.1654 | −0.2157 | 0.3477 | 0.3142 | 0.1654 | |
| Functional Class | −0.2681 | 0.24 | −0.0834 | 0.7193 | 0.2681 | 0.24 | |
| Displacement Z | Number of Hits | 0.2542 | 0.2661 | 0.1121 | 0.6285 | 0.2673 | 0.2415 |
| Gómez Score | 0.1547 | 0.5032 | 0.1013 | 0.6623 | 0.1595 | 0.4898 | |
| Functional Class | −0.1648 | 0.4752 | 0.1853 | 0.4212 | −0.1840 | 0.4246 | |
| Velocity X | Number of Hits | −0.0352 | 0.8796 | 0 | 1 | 0.1317 | 0.5694 |
| Gómez Score | −0.2337 | 0.3079 | −0.0229 | 0.9216 | 0.061 | 0.7927 | |
| Functional Class | −0.0020 | 0.9932 | 0.1867 | 0.4178 | 0.3965 | 0.0752 | |
| Velocity Y | Number of Hits | 0.0169 | 0.9419 | 0.1265 | 0.5849 | 0.0469 | 0.8399 |
| Gómez Score | 0.1366 | 0.5548 | 0.0603 | 0.795 | −0.0728 | 0.7538 | |
| Functional Class | 0.0304 | 0.8958 | −0.0973 | 0.6748 | 0.0649 | 0.78 | |
| Velocity Z | Number of Hits | −0.1864 | 0.4184 | 0.0522 | 0.8224 | 0.1199 | 0.6045 |
| Gómez Score | −0.1616 | 0.4841 | 0.0243 | 0.9168 | 0.0673 | 0.772 | |
| Functional Class | 0.004 | 0.9864 | 0.0391 | 0.8665 | 0.3409 | 0.1305 | |
| Acceleration X | Number of Hits | −0.0039 | 0.9866 | −0.0261 | 0.9107 | 0.0143 | 0.9508 |
| Gómez Score | −0.0562 | 0.8089 | −0.0250 | 0.9145 | −0.0021 | 0.9929 | |
| Functional Class | −0.0007 | 0.9977 | 0.0642 | 0.7822 | −0.0126 | 0.9569 | |
| Acceleration Y | Number of Hits | −0.0574 | 0.8049 | 0.1343 | 0.5617 | −0.0887 | 0.7023 |
| Gómez Score | 0.0791 | 0.7334 | 0.102 | 0.6601 | −0.1172 | 0.6129 | |
| Functional Class | 0.184 | 0.4246 | −0.1006 | 0.6643 | −0.0271 | 0.907 | |
| Acceleration Z | Number of Hits | 0.133 | 0.5655 | 0.1226 | 0.5966 | 0.1917 | 0.4053 |
| Gómez Score | −0.0208 | 0.9287 | 0.1352 | 0.5589 | 0.113 | 0.6256 | |
| Functional Class | −0.1364 | 0.5556 | −0.1000 | 0.6664 | 0.2416 | 0.2914 | |
| Jerk X | Number of Hits | 0.0939 | 0.6857 | 0.1434 | 0.5351 | 0.0913 | 0.694 |
| Gómez Score | 0.1075 | 0.6428 | 0.1359 | 0.5569 | 0.1054 | 0.6493 | |
| Functional Class | −0.0093 | 0.9682 | −0.1218 | 0.5989 | −0.1721 | 0.4557 | |
| Jerk Y | Number of Hits | 0.1082 | 0.6406 | 0.1447 | 0.5314 | 0.0104 | 0.9642 |
| Gómez Score | 0.0971 | 0.6754 | 0.1241 | 0.5919 | −0.0208 | 0.9287 | |
| Functional Class | 0.0715 | 0.7581 | −0.2568 | 0.2611 | −0.0927 | 0.6895 | |
| Jerk Z | Number of Hits | 0.09 | 0.6982 | 0.2894 | 0.2032 | 0.2282 | 0.3199 |
| Gómez Score | 0.0548 | 0.8135 | 0.2753 | 0.227 | 0.1574 | 0.4955 | |
| Functional Class | 0.0675 | 0.7712 | −0.0900 | 0.698 | −0.0510 | 0.8263 | |
References
- Kong, P.W.; Yam, J.W. Shoulder biomechanics of para-table tennis: A case study of a standing class para-athlete with severe leg impairment. BMC Sports Sci. Med. Rehabil. 2022, 14, 143. [Google Scholar] [CrossRef] [PubMed]
- International Table Tennis Federation (ITTF). ITTF Para Table Tennis Classification Rules and Regulations. Available online: https://www.ittf.com/para-table-tennis/ (accessed on 21 November 2025).
- Björklund, G.; Swarén, M.; Norman, M.; Alonso, J.; Johansson, F. Metabolic Demands, Center of Mass Movement and Fractional Utilization of V˙O2max in Elite Adolescent Tennis Players During On-Court Drills. Front. Sports Act. Living 2020, 2, 92. [Google Scholar] [CrossRef] [PubMed]
- Wen, S.; Wang, Q. Biomechanical model of forehand stroke of tennis players. Mol. Cell. Biomech. 2025, 22, 1280. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Z. Kinematic differences in forehand serve-receiving techniques of the male tennis players at low and high-speed serves. Sci. Rep. 2024, 14, 26586. [Google Scholar] [CrossRef]
- D’Isanto, T.; Aliberti, S.; Raiola, G.; D’Elia, F. Assessment of motor skills in 5-6 year old Italian children using the MABC-2: A preliminary study. Phys. Act. Rev. 2024, 12, 112–120. [Google Scholar] [CrossRef]
- Talaat, S.; Attaallah, M. Kinematic Analysis of the whole body Center of Gravity Trajectory and Time Structure of the Tennis Serve Performance. J. Appl. Sports Sci. 2015, 5, 76–81. [Google Scholar] [CrossRef]
- Wang, L.H.; Lin, H.T.; Lo, K.C.; Hsieh, Y.C.; Su, F.C. Comparison of segmental linear and angular momentum transfers in two-handed backhand stroke stances for different skill level tennis players. J. Sci. Med. Sport 2010, 13, 452–459. [Google Scholar] [CrossRef]
- Kovacs, M.; Ellenbecker, T. An 8-stage model for evaluating the tennis serve: Implications for performance enhancement and injury prevention. Sports Health 2011, 3, 504–513. [Google Scholar] [CrossRef] [PubMed]
- Wong, D.W.-C.; Lee, W.C.-C.; Lam, W.-K. Biomechanics of Table Tennis: A Systematic Scoping Review of Playing Levels and Maneuvers. Appl. Sci. 2020, 10, 5203. [Google Scholar] [CrossRef]
- Lam, W.K.; Fan, J.X.; Zheng, Y.; Lee, W.C. Joint and plantar loading in table tennis topspin forehand with different footwork. Eur. J. Sport Sci. 2019, 19, 471–479. [Google Scholar] [CrossRef]
- Yam, J.-W.; Pan, J.-W.; Kong, P.-W. Measuring Upper Limb Kinematics of Forehand and Backhand Topspin Drives with IMU Sensors in Wheelchair and Able-Bodied Table Tennis Players. Sensors 2021, 21, 8303. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, H.; Zhu, X.; Sheng, X. Ball Motion Control in the Table Tennis Robot System Using Time-Series Deep Reinforcement Learning. IEEE Access 2021, 9, 99816–99827. [Google Scholar] [CrossRef]
- Morriën, F.; Taylor, M.; Hettinga, F. Biomechanics in Paralympics: Implications for Performance. Int. J. Sports Physiol. Perform. 2017, 12, 578–589. [Google Scholar] [CrossRef]
- Fletcher, J.R.; Gallinger, T.; Prince, F. How Can Biomechanics Improve Physical Preparation and Performance in Paralympic Athletes? A Narrative Review. Sports 2021, 9, 89. [Google Scholar] [CrossRef] [PubMed]
- Judge, L.W.; Garcia-Carrillo, E. Case Report: Constraint led strength and conditioning for Paralympic throwers with skeletal dysplasia. Front. Sports Act. Living 2025, 7, 1677491. [Google Scholar] [CrossRef]
- Rum, L.; Kons, R. Editorial: Advancing performance: Biomechanics in paralympic and adapted sports. Front. Sports Act. Living 2025, 7, 1683091. [Google Scholar] [CrossRef] [PubMed]
- Góra, T.; Mosler, D.; Ortenburger, D.; Wąsik, J. Sex differences in utilizing effective mass among taekwon-do athletes performing turning and side kick. Phys. Act. Rev. 2024, 12, 78–85. [Google Scholar] [CrossRef]
- Hogan, N.; Sternad, D. Sensitivity of smoothness measures to movement duration, amplitude, and arrests. J. Mot. Behav. 2009, 41, 529–534. [Google Scholar] [CrossRef]
- Balasubramanian, S.; Melendez-Calderon, A.; Roby-Brami, A.; Burdet, E. On the analysis of movement smoothness. J. Neuroeng. Rehabil. 2015, 12, 112. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Diraneyya, M.; Ryu, J.; Haas, C.; Abdel-Rahman, E. Jerk as an indicator of physical exertion and fatigue. Autom. Constr. 2019, 104, 120–128. [Google Scholar] [CrossRef]
- Gulde, P.; Hermsdörfer, J. Smoothness Metrics in Complex Movement Tasks. Front. Neurol. 2018, 9, 615. [Google Scholar] [CrossRef]
- Kong, P.W.; Ma, C.M.S. Assessing Table Tennis Technical Proficiency in Individuals with Disabilities: A Scoping Review. Appl. Sci. 2024, 14, 4815. [Google Scholar] [CrossRef]
- Galas, S.; Andrzejewski, M.; Pluta, B. Reliability of Accuracy and Precision Tests for Elite Para Table Tennis Players. Adapt. Phys. Act. Q. APAQ 2024, 41, 268–286. [Google Scholar] [CrossRef]
- Galas, S.; Pluta, B. The Adaptation and validation of selected stroke accuracy tests for elite Para table tennis players. Acta Kinesiol. 2025, 19, 61–69. [Google Scholar] [CrossRef]
- Gomez, P.; Gonzalez, J.; Sainz de Baranda, P.; Nájera López, A. Use of functional performance tests in sports: Evaluation proposal for football players in the rehabilitation phase. Turk. Fiz. Tip. Ve Rehabil. Derg. 2018, 64, 148–154. [Google Scholar] [CrossRef]
- Widodo, H.; Tomoliyus; Alim, A. Battery test innovation for table tennis skills: Content validity. J. Human. Sport. Exerc. 2024, 19, 451–460. [Google Scholar] [CrossRef]
- Bhowmik, K. Effect of Specific Drills through Table Tennis Ball Feeding Machine on Selected Skill Performance Variables of Non- Table Tennis Players. Int. J. Res. Appl. Sci. Eng. Technol. 2018, 6, 3639–3643. [Google Scholar] [CrossRef]
- Guimarães, E.A.; Carrara, P.D.S.; Teruya, T.T.; Neiva, J.F.d.O.; Silva, T.D.d.; Monteiro, C.B.d.M.; Mochizuki, L. Paralympics table tennis’ forehand motion pattern: Comparison of virtual reality and real task conditions. Rev. Bras. Educ. Física Esporte 2022, 36, e36182974. [Google Scholar] [CrossRef]
- Bańkosz, Z.; Winiarski, S. Parameters of Topspin Forehand in Table Tennis and Their Inter-and Intra-Individual Variability. J. Sports Sci. Med. 2020, 19, 138–148. [Google Scholar]
- D’Ambrosio, D.; Abelian, J.; Abeyruwan, S.; Bewley, A.; Boyd, J.; Choromanski, K.; Cortes, O.; Coumans, E.; Ding, T.; Gao, W.; et al. Robotic Table Tennis: A Case Study into a High Speed Learning System. arXiv 2023, arXiv:2309.03315. [Google Scholar] [CrossRef]
- Becker, L. Evaluation of joint angle accuracy using markerless silhouette-based tracking and hybrid tracking against traditional marker tracking. Master’s Thesis, Otto-von-Guericke-University Magdeburg, Faculty of Humanities, Institute of Sport Science, Magdeburg, Germany, 2016. [Google Scholar]
- Frühschütz, H. Evaluation of Markerless Tracking for Kinematics in Tennis. Master’s Thesis, Technical University of Munich, Munich, Germany, 2017. [Google Scholar]
- Roithner, R.; Schwameder, H.; Müller, E. Determination of optimal filter parameters for filtering kinematic walking data using butterworth low pass filter. In Proceedings of the 18 International Symposium on Biomechanics in Sports, Hong Kong, China, 25–30 June 2000. [Google Scholar]
- Crenna, F.; Rossi, G.B.; Berardengo, M. Filtering Biomechanical Signals in Movement Analysis. Sensors 2021, 21, 4580. [Google Scholar] [CrossRef]
- D’Amico, M.; Ferrigno, G. Technique for the evaluation of derivatives from noisy biomechanical displacement data using a model-based bandwidth-selection procedure. Med. Biol. Eng. Comput. 1990, 28, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Salarian, A.; Russmann, H.; Vingerhoets, F.J.; Dehollain, C.; Blanc, Y.; Burkhard, P.R.; Aminian, K. Gait assessment in Parkinson’s disease: Toward an ambulatory system for long-term monitoring. IEEE Trans. Biomed. Eng. 2004, 51, 1434–1443. [Google Scholar] [CrossRef] [PubMed]
- Weiss, A.; Sharifi, S.; Plotnik, M.; van Vugt, J.P.; Giladi, N.; Hausdorff, J.M. Toward automated, at-home assessment of mobility among patients with Parkinson disease, using a body-worn accelerometer. Neurorehabilit. Neural Repair 2011, 25, 810–818. [Google Scholar] [CrossRef] [PubMed]
- Kendall, M.G. The Advanced Theory of Statistics; Charles Griffin: Washington, DC, USA, 1946. [Google Scholar]
- Fritz, C.O.; Morris, P.E.; Richler, J.J. Effect size estimates: Current use, calculations, and interpretation. J. Exp. Psychol. General. 2012, 141, 2–18. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; University of Toronto: Toronto, ON, Canada, 1988. [Google Scholar]
- Kuntze, G.; Mansfield, N.; Sellers, W. A biomechanical analysis of common lunge tasks in badminton. J. Sports Sci. 2010, 28, 183–191. [Google Scholar] [CrossRef]
- Elliott, B.; Reid, M.; Crespo, M. Technique Development in Tennis Stroke Production; ITF Ltd.: Paris, France, 2009. [Google Scholar]
- Horička, P.; Simonek, J.; Paška, Ľ.; Popowczak, M.; Domaradzki, J. Evaluation of offensive and defensive agility depending on the type of visual cue and personal decision-making styles in basketball. Phys. Act. Rev. 2024, 12, 88–99. [Google Scholar] [CrossRef]
- Todorov, E.; Jordan, M.I. Smoothness Maximization Along a Predefined Path Accurately Predicts the Speed Profiles of Complex Arm Movements. J. Neurophysiol. 1998, 80, 696–714. [Google Scholar] [CrossRef]
- Breteler, M.D.K.; Meulenbroek, R.G.J.; Gielen, S.C.A.M. An Evaluation of the Minimum-Jerk and Minimum Torque-Change Principles at the Path, Trajectory, and Movement-Cost Levels. Mot. Control 2002, 6, 69–83. [Google Scholar] [CrossRef]
- Brasiliano, P.; Pavei, G.; Bergamini, E. Smooth Moves: Comparing Log Dimensionless Jerk Metrics from Body Center of Mass Trajectory and Wearable Sensor Acceleration During Walking. Sensors 2025, 25, 1233. [Google Scholar] [CrossRef]
- Dasgupta, P.; VanSwearingen, J.; Godfrey, A.; Redfern, M.; Montero-Odasso, M.; Sejdic, E. Acceleration Gait Measures as Proxies for Motor Skill of Walking: A Narrative Review. IEEE Trans. Neural Syst. Rehabil. Eng. A Publ. IEEE Eng. Med. Biol. Soc. 2021, 29, 249–261. [Google Scholar] [CrossRef] [PubMed]
- Bukova, A.; Hagovska, M.; Zuzana, K.; Zuskova, K.; Pączkowski, T.; Kručanica, L. The effect of length of sport experience on the prevalence of non-specific back pain and injury in soccer and ice hockey. Phys. Act. Rev. 2024, 12, 72–79. [Google Scholar] [CrossRef]
- Zwierko, M.; Jedziniak, W.; Popowczak, M.; Rokita, A. Effects of six-week stroboscopic training program on visuomotor reaction speed in goal-directed movements in young volleyball players: A study focusing on agility performance. BMC Sports Sci. Med. Rehabil. 2024, 16, 59. [Google Scholar] [CrossRef]
- Picha, K.J.; Almaddah, M.R.; Barker, J.; Ciochetty, T.; Black, W.S.; Uhl, T.L. Elastic Resistance Effectiveness on Increasing Strength of Shoulders and Hips. J. Strength. Cond. Res. 2019, 33, 931–943. [Google Scholar] [CrossRef]
- Raya-González, J.; Prat-Luri, A.; López-Valenciano, A.; Sabido, R.; Hernández-Davó, J.L. Effects of Flywheel Resistance Training on Sport Actions. A Systematic Review and Meta-Analysis. J. Hum. Kinet. 2021, 77, 191–204. [Google Scholar] [CrossRef]
- Lockie, R.G.; Murphy, A.J.; Callaghan, S.J.; Jeffriess, M.D. Effects of sprint and plyometrics training on field sport acceleration technique. J. Strength. Cond. Res. 2014, 28, 1790–1801. [Google Scholar] [CrossRef] [PubMed]
| Sport Class | Description | Men (n) | Women (n) | Total (n) |
|---|---|---|---|---|
| Class 6 | Severe lower-limb or playing arm/hand limitation | 2 | 1 | 3 |
| Class 7 | Severe lower-limb and arm/hand limitation | 4 | 0 | 4 |
| Class 8 | Moderate impairment of one or both lower limbs/arm | 5 | 1 | 6 |
| Class 9 | Mild–moderate limitation of one lower limb or arm | 3 | 1 | 4 |
| Class 10 | Mild lower-limb or arm/hand limitation | 1 | 0 | 1 |
| Class 11 | Intellectual impairment | 2 | 1 | 3 |
| Participants | Age [Years] | Body Mass [kg] | Body Height [cm] | Points on Gomez Scale |
|---|---|---|---|---|
| Women (n = 4) | 26.25 ± 10.21 | 55.1 ± 3.81 | 159.5 ± 9 | 4.00 ± 1.41 |
| Men (n = 17) | 17.76 ± 5.97 | 52.58 ± 15.08 | 162.59 ± 13.03 | 3.41 ± 1.80 |
| All | 19.38 ± 7.47 | 53.06 ± 13.6 | 162 ± 12.23 | 3.52 ± 1.72 |
| Points on Gomez Scale (1–5) | Description of Performance Quality | Movement Characteristics |
|---|---|---|
| 1—Very poor | Task execution unsuccessful or highly unstable | Numerous errors, lack of movement control, poor coordination |
| 2—Poor | Low effectiveness and difficulty completing the task | High instability, limited smoothness, disrupted rhythm |
| 3—Average | Acceptable performance but inconsistent or imprecise | Movement with visible compensations or asymmetries |
| 4—Good | Stable, smooth, and precise execution | Good control, minor technical inaccuracies |
| 5—Very good/exemplary | Smooth, well-coordinated, and technically correct movement | High precision and excellent motor control |
| Parameter | Direction | Mean | Range | RMS |
|---|---|---|---|---|
| Displacement [m] | X | −0.88 (−0.91; −0.81) | 0.74 (0.67; 0.92) | 0.9 (0.82; 0.93) |
| Y | −0.96 (−1.01; −0.87) | 0.25 (0.19; 0.28) | 0.96 (0.87; 1.01) | |
| Z | 0.07 (0.05; 0.12) | 0.19 (0.15; 0.2) | 0.08 (0.06; 0.13) | |
| X vs. Y | X ≈ Y, p = 0.49/W = 0.02 | X > Y, p = 0.01*/W = 0.35 | X < Y, p ≈ 0.49/W = 0.02 | |
| X vs. Z | X < Z, p = 0.01*/W = 0.27 | X > Z, p = 0.01*/W = 0.38 | X > Z, p = 0.01*/W = 0.31 | |
| Y vs. Z | Y < Z, p = 0.01*/W = 0.32 | Y ≈ Z, p = 0.49/W = 0.01 | Y > Z, p = 0.01*/W = 0.34 | |
| Velocity [m·s−1] | X | −0.0004 (−0.009; 0.007) | 4.35 (3.41; 5.78) | 0.78 (0.57; 0.88) |
| Y | 0.0007 (−0.007; 0.004) | 1.54 (1.29; 1.89) | 0.16 (0.15; 0.2) | |
| Z | −0.001 (−0.001; 0.001) | 2.25 (1.87; 3.08) | 0.38 (0.29; 0.41) | |
| X vs. Y | X < Y, p = 0.99/W < 0.01 | X > Y, p = 0.01*/W = 0.41 | X > Y, p = 0.01*/W = 0.39 | |
| X vs. Z | X < Z, p = 0.99/W < 0.01 | X > Z, p = 0.01*/W = 0.42 | X > Z, p = 0.01*/W = 0.37 | |
| Y vs. Z | Y > Z, p = 0.99/W < 0.01 | Y < Z, p = 0.13/W = 0.14 | Y < Z, p = 0.01*/W = 0.36 | |
| Acceleration [m·s−2] | X | 0.09 (0.02; 0.15) | 174.95 (94.76; 214.16) | 9.51 (8.39; 12.7) |
| Y | 0.002 (−0.01; 0.02) | 66.83 (46.96; 83.98) | 6.17 (5.29; 7.54) | |
| Z | 0.001 (−0.02; 0.04) | 84.35 (59.34; 108.37) | 7.29 (5.73; 8.85) | |
| X vs. Y | X > Y, p = 0.02*/W = 0.21 | X > Y, p = 0.01*/W = 0.36 | X > Y, p = 0.01*/W = 0.33 | |
| X vs. Z | X > Z, p = 0.01*/W = 0.27 | X > Z, p = 0.01*/W = 0.34 | X > Z, p = 0.01*/W = 0.31 | |
| Y vs. Z | Y > Z, p = 0.99/W < 0.01 | Y < Z, p = 0.65/W = 0.07 | Y < Z, p = 0.01*/W = 0.28 | |
| Jerk [m·s−3] | X | 10,376.06 (8327.87; 13,084.68) | 190,672.346 (117,422.74; 286,867.76) | 14,374.69 (12,020.25; 18,701.95) |
| Y | 14,374.69 (12,020.25; 18,701.95) | 120,751.681 (84,062.26; 181,490.16) | 8599.87 (7361.65; 10,321.56) | |
| Z | 8599.87 (7361.65; 10,321.56) | 117,453.533 (75,801.88; 195,201.82) | 11,976.82 (9807.7; 15,203.42) | |
| X vs. Y | X > Y, p = 0.01*/W = 0.39 | X > Y, p = 0.01*/W = 0.39 | X > Y, p = 0.01*/W = 0.36 | |
| X vs. Z | X > Z, p = 0.01*/W = 0.37 | X > Z, p = 0.01*/W = 0.37 | X > Z, p = 0.01*/W = 0.35 | |
| Y vs. Z | Y > Z, p = 0.06/W = 0.18 | Y > Z, p = 0.86/W = 0.01 | Y > Z, p = 0.01*/W = 0.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kędziorek, J.; Błażkiewicz, M.; Starczewski, M.; Galas, S.; Pluta, B.; Krzepota, J. Kinematic Analysis of Para Table Tennis Players’ Movement Dynamics in Response to Alternating Directional Ball Feeds. Appl. Sci. 2025, 15, 12680. https://doi.org/10.3390/app152312680
Kędziorek J, Błażkiewicz M, Starczewski M, Galas S, Pluta B, Krzepota J. Kinematic Analysis of Para Table Tennis Players’ Movement Dynamics in Response to Alternating Directional Ball Feeds. Applied Sciences. 2025; 15(23):12680. https://doi.org/10.3390/app152312680
Chicago/Turabian StyleKędziorek, Justyna, Michalina Błażkiewicz, Michał Starczewski, Szymon Galas, Beata Pluta, and Justyna Krzepota. 2025. "Kinematic Analysis of Para Table Tennis Players’ Movement Dynamics in Response to Alternating Directional Ball Feeds" Applied Sciences 15, no. 23: 12680. https://doi.org/10.3390/app152312680
APA StyleKędziorek, J., Błażkiewicz, M., Starczewski, M., Galas, S., Pluta, B., & Krzepota, J. (2025). Kinematic Analysis of Para Table Tennis Players’ Movement Dynamics in Response to Alternating Directional Ball Feeds. Applied Sciences, 15(23), 12680. https://doi.org/10.3390/app152312680

