Estimation of the Soil–Water Retention Curve from the Grain Size Distribution and Relative Density of Coarse-Grained Soils
Abstract
1. Introduction
2. Methodology
2.1. Representative Elemental Quadrilateral
2.2. Grain Size Distribution and Representative Elemental Quadrilateral Occurrence
2.3. Water Retention Characteristic of the Representative Elemental Quadrilateral
2.3.1. Scenario for
2.3.2. Scenario for
3. Experimental Validation and Discussion
3.1. Experimental Validation
3.2. Sensitivity to Contact Angle and Relative Density Variations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
References
- Wheeler, S.J.; Sharma, R.S.; Buisson, M.S.R. Coupling of hydraulic hysteresis and stress–strain behaviour in unsaturated soils. Géotechnique 2003, 53, 41–54. [Google Scholar] [CrossRef]
- Sun, D.A.; Sheng, D.; Xu, Y. Collapse behaviour of unsaturated compacted soil with different initial densities. Can. Geotech. J. 2007, 44, 673–686. [Google Scholar] [CrossRef]
- Gao, Y.; Sun, D.A.; Zhou, A.; Li, J. Predicting Shear Strength of Unsaturated Soils over Wide Suction Range. Int. J. Geomech. 2020, 20, 04019175. [Google Scholar] [CrossRef]
- Tan, Y.; Zhang, H.; Wang, C.; Li, H. Analysis of Soil–Water Characteristic Curve and Microstructure of Undisturbed Loess. Appl. Sci. 2024, 14, 3329. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, A.; Li, J.; Feng, S. A fully coupled micro-hydromechanical (micro-HM) model for partially saturated soils based on DEM. Comput. Geotech. 2024, 173, 106298. [Google Scholar] [CrossRef]
- Bao, X.; Li, J.; Wang, S.; Cui, X. Investigation of the Water-Retention Characteristics and Mechanical Behavior of Fibre-Reinforced Unsaturated Sand. Appl. Sci. 2023, 13, 11337. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, A.; Li, J.; Feng, S. A micro-mechanical model for unsaturated soils based on DEM. Comput. Methods Appl. Mech. Eng. 2020, 368, 113183. [Google Scholar] [CrossRef]
- Vanapalli, S.K.; Fredlund, D.G.; Pufahl, D.E.; Clifton, A.W. Model for the prediction of shear strength with respect to soil suction. Can. Geotech. J. 1996, 33, 379–392. [Google Scholar] [CrossRef]
- Wang, B.; Cui, C.; Xu, C.; Meng, K.; Li, J.; Xu, L. A novel analytical solution for horizontal vibration of partially embedded offshore piles considering the distribution effect of wave loads. Ocean Eng. 2024, 307, 118179. [Google Scholar] [CrossRef]
- Rahardjo, H.; Satyanaga, A.; Leong, E.C.; Wang, J.Y. Effects of coarse-grained material on hydraulic properties and shear strength of top soil. Eng. Geol. 2008, 101, 165–173. [Google Scholar] [CrossRef]
- Fredlund, M.D.; Wilson, G.W.; Fredlund, D.G. Use of the grain-size distribution for estimation of the soil-water characteristic curve. Can. Geotech. J. 2002, 39, 1103–1117. [Google Scholar] [CrossRef]
- Satyanaga, A.; Rahardjo, H.; Zhai, Q. Estimation of unimodal water characteristic curve for gap-graded soil. Soils Found. 2017, 57, 789–801. [Google Scholar] [CrossRef]
- van Genuchten, M.T. A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- Fredlund, D.G.; Xing, A. Equations for the soil-water characteristic curve. Can. Geotech. J. 1994, 31, 521–532. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, X.; Li, Y.; Liu, Y. Study on the soil water characteristic curve and its fitting model of Ili loess with high level of soluble salts. J. Hydrol. 2019, 578, 124025. [Google Scholar] [CrossRef]
- Zhou, A.N.; Sheng, D.; Carter, J.P. Interpretation of unsaturated soil behaviour in the stress—Saturation space, I: Volume change and water retention behaviour. Comput. Geotech. 2012, 43, 178–187. [Google Scholar] [CrossRef]
- Li, Y.; Vanapalli, S.K. A novel modeling method for the bimodal soil-water characteristic curve. Comput. Geotech. 2021, 138, 104329. [Google Scholar] [CrossRef]
- Gao, Y.; Sun, D.A.; Zhou, A.; Li, J. A simple method for predicting the hydraulic properties of unsaturated soils with different void ratios. Soil Tillage Res. 2021, 209, 104913. [Google Scholar] [CrossRef]
- Gao, Y.; Sun, D.A.; Zhou, A.; Li, J. A novel equation for simulating the bimodal soil–water retention curve of unsaturated soils. Acta Geotech. 2024, 19, 5347–5362. [Google Scholar] [CrossRef]
- Feng, C.; Cui, C.; Li, H.; Zhang, W. Bayesian Updating of Soil–Water Character Curve Parameters Based on the Monitor Data of a Large-Scale Landslide Model Experiment. Appl. Sci. 2020, 10, 5526. [Google Scholar] [CrossRef]
- Arya, L.M.; Paris, J.F. A Physicoempirical Model to Predict the Soil Moisture Characteristic from Particle-Size Distribution and Bulk Density Data. Soil Sci. Soc. Am. J. 1981, 45, 1023–1030. [Google Scholar] [CrossRef]
- Jaafar, R.; Likos, W.J. Estimating Water Retention Characteristics of Sands from Grain Size Distribution using Idealized Packing Conditions. Geotech. Test. J. 2011, 34, 489–502. [Google Scholar] [CrossRef]
- Zhai, Q.; Rahardjo, H.; Satyanaga, A.; Dai, G. Estimation of the soil-water characteristic curve from the grain size distribution of coarse-grained soils. Eng. Geol. 2020, 267, 105502. [Google Scholar] [CrossRef]
- Mohammadi, M.H.; Vanclooster, M. Predicting the Soil Moisture Characteristic Curve from Particle Size Distribution with a Simple Conceptual Model. Vadose Zone J. 2011, 10, 594–602. [Google Scholar] [CrossRef]
- Wang, C.; Li, Y.; Zhang, H.; Wang, J. Estimating soil-water characteristic curve from the particle size distribution with a novel granular packing model. Water Resour. Res. 2025, 61, e2024WR037262. [Google Scholar] [CrossRef]
- Chan, T.P.; Govindaraju, R.S. Estimating Soil Water Retention Curve from Particle-Size Distribution Data Based on Polydisperse Sphere Systems. Vadose Zone J. 2004, 3, 1443–1454. [Google Scholar] [CrossRef]
- Zhai, Q.; Rahardjo, H.; Satyanaga, A.; Dai, G. Estimation of unsaturated shear strength from soil–water characteristic curve. Acta Geotech. 2019, 14, 1977–1990. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, A.; Li, J.; Feng, S. Reproducing micro X-ray computed tomography (microXCT) observations of air–water distribution in porous media using revised pore-morphology method. Can. Geotech. J. 2020, 57, 149–156. [Google Scholar] [CrossRef]
- Liu, P.; Wang, C.; Li, Y.; Zhang, H. Effects of particle morphology on pore structure and SWRC of granular soils. Géotech. Lett. 2023, 13, 29–34. [Google Scholar] [CrossRef]
- Park, J.S.; Kim, J.H.; Lee, S.H.; Kwon, T.H. Hydraulic properties of sands treated with fungal mycelium of trichoderma virens. J. Geotech. Geoenviron. Eng. 2023, 149, 04023109. [Google Scholar] [CrossRef]
- Le, K.N.; Ghayoomi, M. Cyclic Direct Simple Shear Test to Measure Strain-Dependent Dynamic Properties of Unsaturated Sand. Geotech. Test. J. 2017, 40, 20160044. [Google Scholar] [CrossRef]
- Imam, R.; Vaseghi Maghvan, S.; Saaly, M. Effects of hydraulic balance time on the shear strength of an unsaturated granular soil at various densities. In Proceedings of the 70th Canadian Geotechnical Conference, Ottawa, ON, Canada, 24–26 September 2017. [Google Scholar]
- Rahardjo, H.; Satyanaga, A.; Leong, E.C.; Santoso, V.A. Unsaturated properties of recycled concrete aggregate and reclaimed asphalt pavement. Eng. Geol. 2013, 161, 44–54. [Google Scholar] [CrossRef]
- Ustohal, P.; Stauffer, F.; Dracos, T. Measurement and modeling of hydraulic characteristics of unsaturated porous media with mixed wettability. J. Contam. Hydrol. 1998, 33, 5–37. [Google Scholar] [CrossRef]
- Ramírez-Flores, J.C.; Woche, S.K.; Bachmann, J.; Goebel, M.-O.; Hallett, P.D. Comparing capillary rise contact angles of soil aggregates and homogenized soil. Geoderma 2008, 146, 336–343. [Google Scholar] [CrossRef]
- Laput, O.; Vasenina, I.; Salvadori, M.; Kurzina, I. Low-temperature plasma treatment of polylactic acid and PLA/HA composite material. J. Mater. Sci. 2019, 54, 11726–11738. [Google Scholar] [CrossRef]
- Kumar, S.; Malik, R.S. Verification of Quick Capillary Rise Approach for Determining Pore Geometrical Characteristics in Soils of Varying Texture. Soil Sci. 1990, 150, 883–888. [Google Scholar] [CrossRef]
- Goebel, M.O.; Bachmann, J.; Woche, S.K.; Fischer, W.R. Water Potential and Aggregate Size Effects on Contact Angle and Surface Energy. Soil Sci. Soc. Am. J. 2004, 68, 383–393. [Google Scholar] [CrossRef]
- O’Carroll, D.M.; Abriola, L.M.; Polityka, C.A.; Bradford, S.A.; Demond, A.H. Prediction of two-phase capillary pressure–saturation relationships in fractional wettability systems. J. Contam. Hydrol. 2005, 77, 247–270. [Google Scholar] [CrossRef] [PubMed]











| Materials | Reference | ||||
|---|---|---|---|---|---|
| PLA particles | 0.2 | 1 | 1 | 1 | Liu et al. (2023) [29] |
| Ottawa 20/30 sand | 0.4 | 1.38 | 1.17 | 1.02 | Park et al. (2023) [30] |
| Ottawa 50/70 sand | 0.4 | 2.10 | 1.43 | 1.01 | Park et al. (2023) [30] |
| Ottawa F75 sand | 0.45 | 3.01 | 1.67 | 1.01 | Le and Ghayoomi (2017) [31] |
| Silty sand | 0, 0.4, 0.9 | 8.61 | 1.58 | 0.87 | Imam et al. (2017) [32] |
| fine RCA | 0.9 | 139.5 | 18.21 | 2.42 | Rahardjo et al. (2013) [33] |
| fine RAP | 0.9 | 25.8 | 4.78 | 1.23 | Rahardjo et al. (2013) [33] |
| coarse RAP | 0.9 | 2.04 | 1.27 | 0.95 | Rahardjo et al. (2013) [33] |
| Materials | Model Proposed in This Study | Zhai’s Model [23] | Jaafar and Likos’s Model [22] | ||||
|---|---|---|---|---|---|---|---|
| R2 | R2 | R2 | |||||
| PLA particles | 0.2 | 45 | 0.945 | 82 | 0.874 | 0 | −0.484 * |
| Ottawa 20/30 sand | 0.4 | 0 | 0.982 | 75 | 0.951 | 0 | 0.940 |
| Ottawa 50/70 sand | 0.4 | 0 | 0.87 | 75 | 0.825 | 0 | 0.851 |
| Ottawa F75 sand | 0.45 | 0 | 0.981 | 70 | 0.956 | 0 | 0.931 |
| Silty sand | 0, 0.4, 0.9 | 60 | 0.976, 0.945, 0.818 | 70 | 0.823, 0.847, 0.951 | 0 | 0.454, 0.328, 0.828 |
| fine RCA | 0.9 | 0 | 0.928 | 40 | 0.953 | 0 | 0.904 |
| fine RAP | 0.9 | 60 | 0.917 | 75 | 0.903 | 0 | 0.68 |
| coarse RAP | 0.9 | 0 | 0.971 | 60 | 0.968 | 0 | 0.928 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Li, R.; Sun, X.; Li, J.; Wang, X. Estimation of the Soil–Water Retention Curve from the Grain Size Distribution and Relative Density of Coarse-Grained Soils. Appl. Sci. 2025, 15, 12078. https://doi.org/10.3390/app152212078
Liu X, Li R, Sun X, Li J, Wang X. Estimation of the Soil–Water Retention Curve from the Grain Size Distribution and Relative Density of Coarse-Grained Soils. Applied Sciences. 2025; 15(22):12078. https://doi.org/10.3390/app152212078
Chicago/Turabian StyleLiu, Xin, Ruixuan Li, Xi Sun, Jie Li, and Xiaonan Wang. 2025. "Estimation of the Soil–Water Retention Curve from the Grain Size Distribution and Relative Density of Coarse-Grained Soils" Applied Sciences 15, no. 22: 12078. https://doi.org/10.3390/app152212078
APA StyleLiu, X., Li, R., Sun, X., Li, J., & Wang, X. (2025). Estimation of the Soil–Water Retention Curve from the Grain Size Distribution and Relative Density of Coarse-Grained Soils. Applied Sciences, 15(22), 12078. https://doi.org/10.3390/app152212078

