Optimizing Bioremediation of β-Blockers: Cometabolic Transformation of Propranolol and Metoprolol by Raoultella terrigena BB2 and Stenotrophomonas terrae BB3
Abstract
1. Introduction
2. Results
2.1. Isolation of Propranolol- and Metoprolol-Degrading Bacteria from Activated Sludge
2.2. Molecular Identification of the Selected Strains
2.3. Phenotypic Characterisation
2.4. Various Carbon and Nitrogen Sources Impact Culture Growth and Drug Degradation Dynamics
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Screening for Propranolol- and Metoprolol-Degrading Bacteria
4.3. Cultivation of the Isolated Bacterial Strains
4.4. DNA Isolation and Phylogenetic Identification of the Isolated Strains
4.5. Propranolol and Metoprolol Degradation Assays
4.6. Metabolic Characterisation of the Isolated Strains
4.7. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Küster, A.; Alder, A.C.; Escher, B.I.; Duis, K.; Fenner, K.; Garric, J.; Knacker, T. Environmental risk assessment of human pharmaceuticals in the European Union: A case study with the β-blocker atenolol. Integr. Environ. Assess. Manag. 2010, 6, 514–523. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; An, W.; Mei, S.; Zhu, Q.; Li, C.; Yang, L.; Huo, J. Real-world research on beta-blocker usage trends in China and safety exploration based on the FDA Adverse Event Reporting System (FAERS). BMC Pharmacol. Toxicol. 2024, 25, 86. [Google Scholar] [CrossRef]
- Lin, A.Y.C.; Lin, C.A.; Tung, H.H.; Chary, N.S. Potential for biodegradation and sorption of acetaminophen, caffeine, propranolol and acebutolol in lab-scale aqueous environments. J. Hazard. Mater. 2010, 183, 242–250. [Google Scholar] [CrossRef]
- Mohapatra, S.; Huang, C.H.; Mukherji, S.; Padhye, L.P. Occurrence and fate of pharmaceuticals in WWTPs in India and comparison with a similar study in the United States. Chemosphere 2016, 159, 526–535. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Priyadarshini, M.; Raj, R.; Das, S.; Ghangrekar, M.M. Appraising efficacy of existing and advanced technologies for the remediation of beta-blockers from wastewater: A review. Environ. Sci. Pollut. Res. 2023, 30, 25427–25451. [Google Scholar] [CrossRef]
- Martín, J.; Camacho-Muñoz, D.; Santos, J.L.; Aparicio, I.; Alonso, E. Occurrence of pharmaceutical compounds in wastewater and sludge from wastewater treatment plants: Removal and ecotoxicological impact of wastewater discharges and sludge disposal. J. Hazard. Mater. 2012, 239, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Langford, K.H.; Thomas, K.V. Determination of pharmaceutical compounds in hospital effluents and their contribution to wastewater treatment works. Environ. Int. 2009, 35, 766–770. [Google Scholar] [CrossRef]
- Rubirola, A.; Llorca, M.; Rodriguez-Mozaz, S.; Casas, N.; Rodriguez-Roda, I.; Barceló, D.; Buttiglieri, G. Characterization of metoprolol biodegradation and its transformation products generated in activated sludge batch experiments and in full scale WWTPs. Water Res. 2014, 63, 21–32. [Google Scholar] [CrossRef]
- Yi, M.; Lou, J.; Zhu, W.; Li, D.; Yu, P.; Lu, H. Mechanism of β-blocker biodegradation by wastewater microorganisms. J. Hazard. Mater. 2023, 444, 130338. [Google Scholar] [CrossRef]
- Liu, W.; Sutton, N.B.; Rijnaarts, H.H.; Langenhoff, A.A. Anaerobic biodegradation of pharmaceutical compounds coupled to dissimilatory manganese (IV) or iron (III) reduction. J. Hazard. Mater. 2020, 388, 119361. [Google Scholar] [CrossRef] [PubMed]
- Godoy, A.A.; Kummrow, F.; Pamplin, P.A.Z. Occurrence, ecotoxicological effects and risk assessment of antihypertensive pharmaceutical residues in the aquatic environment-a review. Chemosphere 2015, 138, 281–291. [Google Scholar] [CrossRef] [PubMed]
- Minguez, L.; Pedelucq, J.; Farcy, E.; Ballandonne, C.; Budzinski, H.; Halm-Lemeille, M.P. Toxicities of 48 pharmaceuticals and their freshwater and marine environmental assessment in northwestern France. Environ. Sci. Pollut. Res. 2016, 23, 4992–5001. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, L.L.D.; Antunes, S.C.; Gonçalves, F.; Rocha, O.; Nunes, B. Acute and chronic ecotoxicological effects of four pharmaceuticals drugs on cladoceran Daphnia magna. Drug Chem. Toxicol. 2016, 39, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Hernando, M.D.; Gómez, M.J.; Agüera, A.; Fernández-Alba, A.R. LC-MS analysis of basic pharmaceuticals (beta-blockers and anti-ulcer agents) in wastewater and surface water. TrAC Trends Anal. Chem. 2007, 26, 581–594. [Google Scholar] [CrossRef]
- Huggett, D.B.; Brooks, B.W.; Peterson, B.; Foran, C.M.; Schlenk, D. Toxicity of select beta adrenergic receptor-blocking pharmaceuticals (B-blockers) on aquatic organisms. Arch. Environ. Contam. Toxicol. 2002, 43, 229–235. [Google Scholar] [CrossRef]
- Jeong, T.Y.; Kim, H.Y.; Kim, S.D. Multi-generational effects of propranolol on Daphnia magna at different environmental concentrations. Environ. Pollut. 2015, 206, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Santos, L.H.; Araújo, A.N.; Fachini, A.; Pena, A.; Delerue-Matos, C.; Montenegro, M.C.B.S.M. Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. J. Hazard. Mater. 2010, 175, 45–95. [Google Scholar] [CrossRef] [PubMed]
- Yi, M.; Sheng, Q.; Sui, Q.; Lu, H. β-blockers in the environment: Distribution, transformation, and ecotoxicity. Environ. Pollut. 2020, 266, 115269. [Google Scholar] [CrossRef] [PubMed]
- Velázquez, Y.F.; Nacheva, P.M. Biodegradability of fluoxetine, mefenamic acid, and metoprolol using different microbial consortiums. Environ. Sci. Pollut. Res. 2017, 24, 6779–6793. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Radjenovic, J.; Yuan, Z.; Ni, B.J. Biodegradation of atenolol by an enriched nitrifying sludge: Products and pathways. Chem. Eng. J. 2017, 312, 351–359. [Google Scholar] [CrossRef]
- Herrero, M.; Stuckey, D.C. Bioaugmentation and its application in wastewater treatment: A review. Chemosphere 2015, 140, 119–128. [Google Scholar] [CrossRef]
- Zhang, Q.Q.; Yang, G.F.; Zhang, L.; Zhang, Z.Z.; Tian, G.M.; Jin, R.C. Bioaugmentation as a useful strategy for performance enhancement in biological wastewater treatment undergoing different stresses: Application and mechanisms. Crit. Rev. Environ. Sci. Technol. 2017, 47, 1877–1899. [Google Scholar] [CrossRef]
- Sękowska, A. The many faces of Raoultella spp. Adv. Hyg. Exp. Med. 2019, 73, 713–720. Available online: https://phmd.hirszfeld.pl/wp-content/uploads/2023/08/01.3001.0013.6377.pdf (accessed on 9 November 2025). [CrossRef]
- Sugimori, D.; Watanabe, M.; Utsue, T. Isolation and lipid degradation profile of Raoultella planticola strain 232-2 capable of efficiently catabolizing edible oils under acidic conditions. Appl. Microbiol. Biotechnol. 2013, 97, 871–880. [Google Scholar] [CrossRef] [PubMed]
- Alegbeleye, O.O.; Opeolu, B.O.; Jackson, V. Bioremediation of polycyclic aromatic hydrocarbon (PAH) compounds:(acenaphthene and fluorene) in water using indigenous bacterial species isolated from the Diep and Plankenburg rivers, Western Cape, South Africa. Braz. J. Microbiol. 2017, 48, 314–325. [Google Scholar] [CrossRef]
- Thijs, S.; Van Hamme, J.; Gkorezis, P.; Rineau, F.; Weyens, N.; Vangronsveld, J. Draft genome sequence of Raoultella ornithinolytica TNT, a trinitrotoluene-denitrating and plant growth-promoting strain isolated from explosive-contaminated soil. Genome Announc. 2014, 2, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Sklodowska, A.; Mielnicki, S.; Drewniak, L. Raoultella sp. SM1, a novel iron-reducing and uranium-precipitating strain. Chemosphere 2018, 195, 722–726. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Kuang, X.; Ren, Y.; Luo, L. Biostimulants promote biodegradation of n-hexadecane by Raoultella planticola: Generation of lipopeptide biosurfactants. J. Environ. Chem. Eng. 2022, 10, 108382. [Google Scholar] [CrossRef]
- Jain, R.M.; Mody, K.; Joshi, N.; Mishra, A.; Jha, B. Production and structural characterization of biosurfactant produced by an alkaliphilic bacterium, Klebsiella sp.: Evaluation of different carbon sources. Colloids Surf. B Biointerfaces 2013, 108, 199–204. [Google Scholar] [CrossRef]
- Appel, T.M.; Quijano-Martínez, N.; De La Cadena, E.; Mojica, M.F.; Villegas, M.V. Microbiological and clinical aspects of Raoultella spp. Front. Public Health 2021, 9, 686789. [Google Scholar] [CrossRef]
- Husain, S. Effect of ferric iron on siderophore production and pyrene degradation by Pseudomonas fluorescens 29L. Curr. Microbiol. 2008, 57, 331–334. [Google Scholar] [CrossRef]
- Ryan, R.P.; Monchy, S.; Cardinale, M.; Taghavi, S.; Crossman, L.; Avison, M.B.; Dow, J.M. The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nat. Rev. Microbiol. 2009, 7, 514–525. [Google Scholar] [CrossRef] [PubMed]
- Guzik, U.; Greń, I.; Wojcieszyńska, D.; Łabużek, S. Isolation and characterization of a novel strain of Stenotrophomonas maltophilia possessing various dioxygenases for monocyclic hydrocarbon degradation. Braz. J. Microbiol. 2009, 40, 285–291. [Google Scholar] [CrossRef]
- Heylen, K.; Vanparys, B.; Peirsegaele, F.; Lebbe, L.; De Vos, P. Stenotrophomonas terrae sp. nov. and Stenotrophomonas humi sp. nov., two nitrate-reducing bacteria isolated from soil. Int. J. Syst. Evol. Microbiol. 2007, 57, 2056–2061. [Google Scholar] [CrossRef]
- Shalini, D.; Benson, A.; Gomathi, R.; Henry, A.J.; Jerritta, S.; Joe, M.M. Isolation and characterization of glycolipid-type biosurfactant from endophytic Acinetobacter sp. ACMS25 and evaluation of its biocontrol efficiency against Xanthomonas oryzae. Biocatal. Agric. Biotechnol. 2017, 11, 252–258. [Google Scholar] [CrossRef]
- Parales, R.E.; Ditty, J.L.; Harwood, C.S. Toluene-degrading bacteria are chemotactic towards the environmental pollutants benzene, toluene, and trichloroethylene. Appl. Environ. Microbiol. 2000, 66, 4098–4104. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.D.; Apel, W.A.; DeVeaux, L.C.; Sheridan, P.P. Concurrent metabolism of pentose and hexose sugars by the polyextremophile Alicyclobacillus acidocaldarius. J. Ind. Microbiol. Biotechnol. 2017, 44, 1443–1458. [Google Scholar] [CrossRef] [PubMed]
- Shoja, M.; Minai-Tehrani, D. Effect of tween type non-ionic detergent on the activity of lipase of Pseudomonas aeruginosa. Cell Biochem. Biophys. 2021, 79, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Al Mohaini, M.; Farid, A.; Muzammal, M.; Ghazanfar, S.; Dadrasnia, A.; Alsalman, A.J.; Ismail, S. Enhancing lipase production of Bacillus salmalaya strain 139SI using different carbon sources and surfactants. Appl. Microbiol. 2022, 2, 237–247. [Google Scholar] [CrossRef]
- Legendre, F.; MacLean, A.; Appanna, V.P.; Appanna, V.D. Biochemical pathways to α-ketoglutarate, a multi-faceted metabolite. World J. Microbiol. Biotechnol. 2020, 36, 123. [Google Scholar] [CrossRef]
- Cunningham, C.J.; Kuyukina, M.S.; Ivshina, I.B.; Konev, A.I.; Peshkur, T.A.; Knapp, C.W. Potential risks of antibiotic resistant bacteria and genes in bioremediation of petroleum hydrocarbon contaminated soils. Environ. Sci. Process. Impacts 2020, 22, 1110–1124. [Google Scholar] [CrossRef] [PubMed]
- Phale, P.S.; Shah, B.A.; Malhotra, H. Variability in assembly of degradation operons for naphthalene and its derivative, carbaryl, suggests mobilization through horizontal gene transfer. Genes 2019, 10, 569. [Google Scholar] [CrossRef] [PubMed]
- Hajjar, R.; Ambaraghassi, G.; Sebajang, H.; Schwenter, F.; Su, S.H. Raoultella ornithinolytica: Emergence and resistance. Infect. Drug Resist. 2020, 13, 1091–1104. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.; Zhang, J.; Ji, J.; Fang, Y.; Shen, P.; Ying, C.; Li, L. Emergence of Raoultella ornithinolytica coproducing IMP-4 and KPC-2 carbapenemases in China. Antimicrob. Agents Chemother. 2015, 59, 7086–7089. [Google Scholar] [CrossRef]
- Håkonsholm, F.; Hetland, M.A.; Svanevik, C.S.; Sundsfjord, A.; Lunestad, B.T.; Marathe, N.P. Antibiotic sensitivity screening of Klebsiella spp. and Raoultella spp. isolated from marine bivalve molluscs reveal presence of CTX-M-producing K. pneumoniae. Microorganisms 2020, 8, 1909. [Google Scholar] [CrossRef]
- Sabença, C.; de la Rivière, R.; Barros, P.; Cabral, J.A.; Sargo, R.; Sousa, L.; Poeta, P. Assessment of Antibiotic Resistance Among Isolates of Klebsiella spp. and Raoultella spp. in Wildlife and Their Environment from Portugal: A Positive Epidemiologic Outcome. Pathogens 2025, 14, 99. [Google Scholar] [CrossRef]
- Ni, R.T.; Onishi, M.; Mizusawa, M.; Kitagawa, R.; Kishino, T.; Matsubara, F.; Ogawa, W. The role of RND-type efflux pumps in multidrug-resistant mutants of Klebsiella pneumoniae. Sci. Rep. 2020, 10, 10876. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.H.; Hwang, J.H.; Lee, W.K.; Shin, M.K.; Woo, H.R.; Chung, K.M.; Lee, C.S. ArmA and RmtB were the predominant 16S RMTase genes responsible for aminoglycoside-resistant isolates in Korea. J. Korean Med. Sci. 2018, 33, e262. [Google Scholar] [CrossRef]
- Gil-Gil, T.; Martínez, J.L.; Blanco, P. Mechanisms of antimicrobial resistance in Stenotrophomonas maltophilia: A review of current knowledge. Expert Rev. Anti-Infect. Ther. 2020, 18, 335–347. [Google Scholar] [CrossRef]
- Sanchez, M.B.; Hernandez, A.; Martinez, J.L. Stenotrophomonas maltophilia drug resistance. Future Microbiol. 2009, 4, 655–660. [Google Scholar] [CrossRef] [PubMed]
- Fukao, M.; Ishida, K.; Horie, A.; Taguchi, M.; Nozawa, T.; Inoue, H.; Hashimoto, Y. Variability of bioavailability and intestinal absorption mechanisms of metoprolol. Drug Metab. Pharmacokinet. 2014, 29, 162–167. [Google Scholar] [CrossRef]
- Mohsen-Nia, M.; Ebrahimabadi, A.H.; Niknahad, B. Partition coefficient n-octanol/water of propranolol and atenolol at different temperatures: Experimental and theoretical studies. J. Chem. Thermodyn. 2012, 54, 393–397. [Google Scholar] [CrossRef]
- Wick, A.; Fink, G.; Joss, A.; Siegrist, H.; Ternes, T.A. Fate of beta blockers and psycho-active drugs in conventional wastewater treatment. Water Res. 2009, 43, 1060–1074. [Google Scholar] [CrossRef] [PubMed]
- Sayeda, K.; Mohtara, W.H.M.W.; Hanafiaha, Z.M.; Bithia, A.S.; Imad, W.A.A.Q. Removal Of Pharmaceuticals from Municipal Wastewater Using Malaysian Ganoderma Lucidum Fungal Strain. J. Kejuruter. 2024, 36, 1467–1476. [Google Scholar] [CrossRef]
- Nzila, A. Update on the cometabolism of organic pollutants by bacteria. Environ. Pollut. 2013, 178, 474–482. [Google Scholar] [CrossRef]
- Brückner, R.; Titgemeyer, F. Carbon catabolite repression in bacteria: Choice of the carbon source and autoregulatory limitation of sugar utilization. FEMS Microbiol. Lett. 2002, 209, 141–148. [Google Scholar] [CrossRef]
- Liu, Z.; Dai, Y.; Huan, Y.; Liu, Z.; Sun, L.; Zhou, Q.; Yuan, S. Different utilizable substrates have different effects on cometabolic fate of imidacloprid in Stenotrophomonas maltophilia. Appl. Microbiol. Biotechnol. 2013, 97, 6537–6547. [Google Scholar] [CrossRef] [PubMed]
- Nowak, A.; Greń, I.; Mrozik, A. Changes in fatty acid composition of Stenotrophomonas maltophilia KB2 during co-metabolic degradation of monochlorophenols. World J. Microbiol. Biotechnol. 2016, 32, 198. [Google Scholar] [CrossRef]
- Wojcieszyńska, D.; Guzik, U.; Greń, I.; Perkosz, M.; Hupert-Kocurek, K. Induction of aromatic ring: Cleavage dioxygenases in Stenotrophomonas maltophilia strain KB2 in cometabolic systems. World J. Microbiol. Biotechnol. 2011, 27, 805–811. [Google Scholar] [CrossRef] [PubMed]
- McDonald, D.; Jiang, Y.; Balaban, M.; Cantrell, K.; Zhu, Q.; Gonzalez, A.; Knight, R. Greengenes2 unifies microbial data in a single reference tree. Nat. Biotechnol. 2024, 42, 715–718. [Google Scholar] [CrossRef]
- Katoh, K.; Toh, H. Recent developments in the MAFFT multiple sequence alignment program. Brief. Bioinform. 2008, 9, 286–298. [Google Scholar] [CrossRef] [PubMed]
- von Haeseler, A.; Schmidt, H.A.; Bui, M.Q.; Nguyen, L.T. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2014, 32, 268–274. [Google Scholar]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.; Von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef]
- Hoang, D.T.; Chernomor, O.; Von Haeseler, A.; Minh, B.Q.; Vinh, L.S. UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 2018, 35, 518–522. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. Interactive Tree Of Life (iTOL) v4: Recent updates and new developments. Nucleic Acids Res. 2019, 4, W256–W259. [Google Scholar] [CrossRef]
- Okonechnikov, K.; Golosova, O.; Fursov, M.; Ugene Team. Unipro UGENE: A unified bioinformatics toolkit. Bioinformatics 2012, 28, 1166–1167. [Google Scholar] [CrossRef] [PubMed]
- Imam, S.S.; Ahad, A.; Aqil, M.; Sultana, Y.; Ali, A. A validated RP-HPLC method for simultaneous determination of propranolol and valsartan in bulk drug and gel formulation. J. Pharm. Bioallied Sci. 2013, 5, 61–65. [Google Scholar] [CrossRef] [PubMed]
- Advaita, P.; Deepa, P.; Dhaval, P.; Avani, S. Method Development and Validation for Simultaneous Estimation of Benidipine Hydrochloride and Metoprolol Succinate in Tablet. J. Drug Deliv. Ther. 2019, 9, 28–33. [Google Scholar] [CrossRef]
- Bapat, P.; Nandy, S.K.; Wangikar, P.; Venkatesh, K.V. Quantification of metabolically active biomass using methylene blue dye reduction test (MBRT): Measurement of CFU in about 200 s. J. Microbiol. Methods 2006, 65, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Thakur, R.; Srivastava, S.; Yadav, S. Multitrait Pseudomonas sp. isolated from the rhizosphere of Bergenia ciliata acts as a growth-promoting bioinoculant for plants. Front. Sustain. Food Syst. 2023, 7, 1097587. [Google Scholar] [CrossRef]
- Reiner, K. Catalase test protocol. Am. Soc. Microbiol. 2010, 1, 1–9. [Google Scholar]
- Buxton, R. Nitrate and nitrite reduction test protocols. Am. Soc. Microbiol. 2011, 1–20. [Google Scholar]
- Louden, B.C.; Haarmann, D.; Lynne, A.M. Use of blue agar CAS assay for siderophore detection. J. Microbiol. Biol. Educ. 2011, 12, 51–53. [Google Scholar] [CrossRef] [PubMed]
- Shields, P.; Cathcart, L. Motility test medium protocol. Am. Soc. Microbiol. 2011, 214, 215. [Google Scholar]



| Bacterial Strain | ||
|---|---|---|
| Tested Enzyme/Feature | BB2 | BB3 |
| Dehydrogenases | + | + |
| Cytochrome oxidase | − | + |
| Catalase | + | + |
| Nitrate reductase | + | + |
| Siderophores | + | + |
| Motility | − | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dzionek, A.; Taskin, C.; Siupka, P. Optimizing Bioremediation of β-Blockers: Cometabolic Transformation of Propranolol and Metoprolol by Raoultella terrigena BB2 and Stenotrophomonas terrae BB3. Appl. Sci. 2025, 15, 12052. https://doi.org/10.3390/app152212052
Dzionek A, Taskin C, Siupka P. Optimizing Bioremediation of β-Blockers: Cometabolic Transformation of Propranolol and Metoprolol by Raoultella terrigena BB2 and Stenotrophomonas terrae BB3. Applied Sciences. 2025; 15(22):12052. https://doi.org/10.3390/app152212052
Chicago/Turabian StyleDzionek, Anna, Cansel Taskin, and Piotr Siupka. 2025. "Optimizing Bioremediation of β-Blockers: Cometabolic Transformation of Propranolol and Metoprolol by Raoultella terrigena BB2 and Stenotrophomonas terrae BB3" Applied Sciences 15, no. 22: 12052. https://doi.org/10.3390/app152212052
APA StyleDzionek, A., Taskin, C., & Siupka, P. (2025). Optimizing Bioremediation of β-Blockers: Cometabolic Transformation of Propranolol and Metoprolol by Raoultella terrigena BB2 and Stenotrophomonas terrae BB3. Applied Sciences, 15(22), 12052. https://doi.org/10.3390/app152212052

