Data-Driven and Structure-Based Modelling for the Discovery of Human DNMT1 Inhibitors: A Pathway to Structure–Activity Relationships
Abstract
1. Introduction
2. Materials and Methods
2.1. In Silico Methodology
2.1.1. Similarity-Based Virtual Screening (SBVS) Workflow
2.1.2. Molecular Docking Protocol
2.1.3. ADMET Properties Prediction
2.2. Machine Learning Model Deployment
2.2.1. Construction of the Prediction Dataset
2.2.2. Descriptor Pre-Processing and Feature Selection
- Mann–Whitney test identified descriptors with statistically significant differences (p < 0.05) between active and not-active classes.
- Classifier-based feature importance analysis (e.g., XGBoost in https://machinelearningmastery.com/feature-importance-and-feature-selection-with-xgboost-in-python/), (accessed on 10 June 2025)was used to refine this list, retaining the most discriminative descriptors for model training.
2.2.3. Model Training Using Multiple Classifiers
2.2.4. Application to External Compounds
- ZINC-derived compounds: A set of 21 candidate molecules identified via molecular docking and sourced from the ZINC database (https://zinc.docking.org, accessed on 20 June 2024). Descriptors were normalized using ChEMBL-derived parameters prior to classification.
- In vitro-validated hDNMT1 inhibitors: A reference group of 5 compounds previously experimentally tested in Kritsi et al. (2024) [27]. These compounds (2-(3-(3,4-dimethoxyphenyl)-3-(2-(2-oxo-2H-chromen-7-yl)oxy)acetamido)propanamido)acetic acid; Phlorizin; Orientin; Bergenin; 2-[(7,8-dihydroxy-6-undecylphenazin-2-yl)formamido]pentanedioic acid] were excluded from the training phase and used instead as a retrospective validation set to evaluate the model’s predictive reliability. Correct classification of these experimentally confirmed inhibitors served as an external benchmark for assessing model performance.
3. Results and Discussion
3.1. In Silico Methodology Results
3.1.1. Similarity-Based Virtual Screening
3.1.2. Molecular Docking Studies
3.2. Machine Learning
3.2.1. Statistical Insights into hDNMT1 Inhibitor Differentiation
3.2.2. Machine Learning Model Performance and Feature Refinement
3.2.3. Prediction of hDNMT1 Activity in Derived Docking Hits, Structural Groupings, and Discussion
3.2.4. Retrospective Validation with Previously Tested hDNMT1 Inhibitors
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bird, A. Perceptions of Epigenetics. Nature 2007, 447, 396–398. [Google Scholar] [CrossRef]
- Bird, A. DNA Methylation: Mega-Year Inheritance with the Help of Darwin. Curr. Biol. 2020, 30, 319–321. [Google Scholar] [CrossRef]
- Wilkinson, A.L.; Zorzan, I.; Rugg-Gunn, P.J. Epigenetic Regulation of Early Human Embryo Development. Cell Stem Cell 2023, 30, 1569–1584. [Google Scholar] [CrossRef]
- Farsetti, A.; Illi, B.; Gaetano, C. How Epigenetics Impacts on Human Diseases. Eur. J. Intern. Med. 2023, 114, 15–22. [Google Scholar] [CrossRef]
- Davletgildeeva, A.T.; Kuznetsov, N.A. The Role of DNMT Methyltransferases and TET Dioxygenases in the Maintenance of the DNA Methylation Level. Biomolecules 2024, 14, 1117. [Google Scholar] [CrossRef]
- Linde, J.; Zimmer-Bensch, G. DNA Methylation-Dependent Dysregulation of GABAergic Interneuron Functionality in Neuropsychiatric Diseases. Front. Neurosci. 2020, 14, 586133. [Google Scholar] [CrossRef]
- Tsymbalova, E.A.; Chernyavskaya, E.A.; Ryzhkova, D.E.; Bisaga, G.N.; Abdurasulova, I.N.; Lioudyno, V.I. Changes in DNMT1 Expression as a Marker of Epigenetic Regulation Disturbanses in Multiple Sclerosis Patients. Med. Acad. J. 2023, 23, 41–53. [Google Scholar] [CrossRef]
- Hazra, A.; Bose, P.; Sunita, P.; Pattanayak, S.P. Molecular Epigenetic Dynamics in Breast Carcinogenesis. Arch. Pharm. Res. 2021, 44, 741–763. [Google Scholar] [CrossRef]
- Valente, S.; Liu, Y.; Schnekenburger, M.; Zwergel, C.; Cosconati, S.; Gros, C.; Tardugno, M.; Labella, D.; Florean, C.; Minden, S.; et al. Selective Non-Nucleoside Inhibitors of Human DNA Methyltransferases Active in Cancer Including in Cancer Stem Cells. J. Med. Chem. 2014, 57, 701–713. [Google Scholar] [CrossRef]
- Chen, T.; Mahdadi, S.; Vidal, M.; Desbène-Finck, S. Non-Nucleoside Inhibitors of DNMT1 and DNMT3 for Targeted Cancer Therapy. Pharmacol. Res. 2024, 207, 107328. [Google Scholar] [CrossRef]
- Dai, W.; Qiao, X.; Fang, Y.; Guo, R.; Bai, P.; Liu, S.; Li, T.; Jiang, Y.; Wei, S.; Na, Z.; et al. Epigenetics-Targeted Drugs: Current Paradigms and Future Challenges. Sig. Transduct. Target Ther. 2024, 9, 332. [Google Scholar] [CrossRef]
- Danieli, M.G.; Casciaro, M.; Paladini, A.; Bartolucci, M.; Sordoni, M.; Shoenfeld, Y.; Gangemi, S. Exposome: Epigenetics and Autoimmune Diseases. Autoimm. Rev. 2024, 23, 103584. [Google Scholar] [CrossRef]
- Shamsi, M.B.; Firoz, A.S.; Imam, S.N.; Alzaman, N.; Samman, M.A. Epigenetics of Human Diseases and Scope in Future Therapeutics. J. Taibah Univ. Med. Sci. 2017, 12, 205–211. [Google Scholar] [CrossRef]
- Lu, W.; Zhang, R.; Jiang, H.; Zhang, H.; Luo, C. Computer-Aided Drug Design in Epigenetics. Front. Chem. 2018, 6, 57. [Google Scholar] [CrossRef]
- Ning, X.; Karypis, G. In Silico Structure-Activity-Relationship (SAR) Models from Machine Learning: A Review. Drug Dev. Res. 2011, 72, 138–146. [Google Scholar] [CrossRef]
- Temml, V.; Kutil, Z. Structure-Based Molecular Modeling in SAR Analysis and Lead Optimization. Comput. Struct. Biotechnol. J. 2021, 19, 1431–1444. [Google Scholar] [CrossRef]
- Jamal, S.; Goyal, S.; Shanker, A.; Grover, A. Machine Learning and Molecular Dynamics Based Insights into Mode of Actions of Insulin Degrading Enzyme Modulators. Comb. Chem. High Throughput Screen. 2017, 20, 279–291. [Google Scholar] [CrossRef]
- Crampon, K.; Giorkallos, A.; Deldossi, M.; Baud, S.; Steffenel, L.A. Machine-Learning Methods for Ligand–Protein Molecular Docking. Drug Discov. Today 2022, 27, 151–164. [Google Scholar] [CrossRef]
- Boczar, D.; Michalska, K. A Review of Machine Learning and QSAR/QSPR Predictions for Complexes of Organic Molecules with Cyclodextrins. Molecules 2024, 29, 3159. [Google Scholar] [CrossRef]
- Wu, H.; Liu, J.; Zhang, R.; Lu, Y.; Cui, G.; Cui, Z.; Ding, Y. A Review of Deep Learning Methods for Ligand Based Drug Virtual Screening. Fundam. Res. 2024, 4, 715–737. [Google Scholar] [CrossRef]
- Liu, X.; Jiang, S.; Duan, X.; Vasan, A.; Liu, C.; Tien, C.; Ma, H.; Brettin, T.; Xia, F.; Foster, I.T.; et al. Binding Affinity Prediction: From Conventional to Machine Learning-Based Approaches. arXiv 2024, arXiv:2410.00709. [Google Scholar] [CrossRef]
- Bragina, M.E.; Daina, A.; Perez, M.A.S.; Michielin, O.; Zoete, V. The SwissSimilarity 2021 Web Tool: Novel Chemical Libraries and Additional Methods for an Enhanced Ligand-Based Virtual Screening Experience. Int. J. Mol. Sci. 2022, 23, 811. [Google Scholar] [CrossRef]
- Saavedra, O.M.; Isakovic, L.; Llewellyn, D.B.; Zhan, L.; Bernstein, N.; Claridge, S.; Raeppel, F.; Vaisburg, A.; Elowe, N.; Petschner, A.J.; et al. SAR around (l)-S-Adenosyl-l-Homocysteine, an Inhibitor of Human DNA Methyltransferase (DNMT) Enzymes. Bioorg. Med. Chem. Lett. 2009, 19, 2747–2751. [Google Scholar] [CrossRef]
- Kochnev, Y.; Hellemann, E.; Cassidy, K.C.; Durrant, J.D. Webina: An Open-Source Library and Web App That Runs AutoDock Vina Entirely in the Web Browser. Bioinformatics 2020, 36, 4513–4515. [Google Scholar] [CrossRef]
- Xiong, G.; Wu, Z.; Yi, J.; Fu, L.; Yang, Z.; Hsieh, C.; Yin, M.; Zeng, X.; Wu, C.; Lu, A.; et al. ADMETlab 2.0: An Integrated Online Platform for Accurate and Comprehensive Predictions of ADMET Properties. Nucleic Acids Res. 2021, 49, 5–14. [Google Scholar] [CrossRef]
- Ladika, G.; Christodoulou, P.; Kritsi, E.; Tsiaka, T.; Sotiroudis, G.; Cavouras, D.; Sinanoglou, V.J. Exploring Postharvest Metabolic Shifts and NOX2 Inhibitory Potential in Strawberry Fruits and Leaves via Untargeted LC-MS/MS and Chemometric Analysis. Metabolites 2025, 15, 321. [Google Scholar] [CrossRef]
- Kritsi, E.; Christodoulou, P.; Tsiaka, T.; Georgiadis, P.; Zervou, M. A Computational Approach for the Discovery of Novel DNA Methyltransferase Inhibitors. Curr. Issues Mol. Biol. 2024, 46, 3394–3407. [Google Scholar] [CrossRef]
- Lee, W.J.; Shim, J.-Y.; Zhu, B.T. Mechanisms for the Inhibition of DNA Methyltransferases by Tea Catechins and Bioflavonoids. Mol. Pharmacol. 2005, 68, 1018–1030. [Google Scholar] [CrossRef]
- Zsidó, B.Z.; Hetényi, C. Molecular Structure, Binding Affinity, and Biological Activity in the Epigenome. Int. J. Mol. Sci. 2020, 21, 4134. [Google Scholar] [CrossRef]
- Zhang, Z.-M.; Liu, S.; Lin, K.; Luo, Y.; Perry, J.J.; Wang, Y.; Song, J. Crystal Structure of Human DNA Methyltransferase 1. J. Mol. Biol. 2015, 427, 2520–2531. [Google Scholar] [CrossRef]
- Fang, M.Z.; Wang, Y.; Ai, N.; Hou, Z.; Sun, Y.; Lu, H.; Welsh, W.; Yang, C.S. Tea Polyphenol (−)-Epigallocatechin-3-Gallate Inhibits DNA Methyltransferase and Reactivates Methylation-Silenced Genes in Cancer Cell Lines. Cancer Res. 2003, 63, 7563–7570. [Google Scholar]
- Medina-Franco, J.L.; Méndez-Lucio, O.; Dueñas-González, A.; Yoo, J. Discovery and Development of DNA Methyltransferase Inhibitors Using in Silico Approaches. Drug Discov. Today 2015, 20, 569–577. [Google Scholar] [CrossRef]
- Yin, J. DNA Methyltransferase and Its Clinical Applications. IOP Conf. Ser. Earth Environ. Sci. 2020, 512, 012082. [Google Scholar] [CrossRef]
- Kaveh, S.; Mani-Varnosfaderani, A.; Neiband, M.S. Deriving General Structure–Activity/Selectivity Relationship Patterns for Different Subfamilies of Cyclin-Dependent Kinase Inhibitors Using Machine Learning Methods. Sci. Rep. 2024, 14, 15315. [Google Scholar] [CrossRef]
- Kaneko, H. Molecular Descriptors, Structure Generation, and Inverse QSAR/QSPR Based on SELFIES. ACS Omega 2023, 8, 21781–21786. [Google Scholar] [CrossRef]
- Uddin, M.G.; Fandy, T.E. DNA Methylation Inhibitors: Retrospective and Perspective View. Adv. Cancer Res. 2021, 152, 205–223. [Google Scholar] [CrossRef]
- Zwergel, C.; Schnekenburger, M.; Sarno, F.; Battistelli, C.; Manara, M.C.; Stazi, G.; Mazzone, R.; Fioravanti, R.; Gros, C.; Ausseil, F.; et al. Identification of a Novel Quinoline-Based DNA Demethylating Compound Highly Potent in Cancer Cells. Clin. Epigenet. 2019, 11, 68. [Google Scholar] [CrossRef]
- Danishuddin; Khan, A.U. Descriptors and Their Selection Methods in QSAR Analysis: Paradigm for Drug Design. Drug Discov. Today 2016, 21, 1291–1302. [Google Scholar] [CrossRef]
- Comesana, A.E.; Huntington, T.T.; Scown, C.D.; Niemeyer, K.E.; Rapp, V.H. A Systematic Method for Selecting Molecular Descriptors as Features When Training Models for Predicting Physiochemical Properties. Fuel 2022, 321, 123836. [Google Scholar] [CrossRef]
- Kausar, S.; Falcao, A.O. An Automated Framework for QSAR Model Building. J. Cheminform. 2018, 10, 1. [Google Scholar] [CrossRef]
- Riniker, S.; Landrum, G.A. Open-Source Platform to Benchmark Fingerprints for Ligand-Based Virtual Screening. J. Cheminform. 2013, 5, 26. [Google Scholar] [CrossRef]
- Goodarzi, M.; Dejaegher, B.; Heyden, Y.V. Feature Selection Methods in QSAR Studies. J. AOAC Int. 2012, 95, 636–651. [Google Scholar] [CrossRef]
- Prado-Romero, D.L.; Saldívar-González, F.I.; López-Mata, I.; Laurel-García, P.A.; Durán-Vargas, A.; García-Hernández, E.; Sánchez-Cruz, N.; Medina-Franco, J.L. De Novo Design of Inhibitors of DNA Methyltransferase 1: A Critical Comparison of Ligand- and Structure-Based Approaches. Biomolecules 2024, 14, 775. [Google Scholar] [CrossRef]
- Saldívar-González, F.I.; Gómez-García, A.; Chávez-Ponce de León, D.E.; Sánchez-Cruz, N.; Ruiz-Rios, J.; Pilón-Jiménez, B.A.; Medina-Franco, J.L. Inhibitors of DNA Methyltransferases From Natural Sources: A Computational Perspective. Front. Pharmacol. 2018, 9, 1144. [Google Scholar] [CrossRef]
- Phanus-Umporn, C.; Prachayasittikul, V.; Nantasenamat, C.; Prachayasittikul, S.; Prachayasittikul, V. QSAR-Driven Rational Design of Novel DNA Methyltransferase 1 Inhibitors. EXCLI J. 2020, 19, 458–475. [Google Scholar] [CrossRef]
- Sánchez-Cruz, N.; Medina-Franco, J.L. Epigenetic Target Profiler: A Web Server to Predict Epigenetic Targets of Small Molecules. J. Chem. Inf. Model. 2021, 61, 1550–1554. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, G.; Li, Y.; Lei, D.; Xiang, J.; Ouyang, L.; Wang, Y.; Yang, J. Recent Progress in DNA Methyltransferase Inhibitors as Anticancer Agents. Front. Pharmacol. 2022, 13, 1072651. [Google Scholar] [CrossRef]




| Compounds | Docking Score (kcal·mol −1) | Interaction Pattern |
|---|---|---|
| S-Adenosyl-L-Homocysteine (SAH) (crystal structure) | −8.61 | pi-pi 1 Phe1145, HB 2 Gly1150, HB Leu1151, Glu1168, HB Met1169, HB Asp1190, HB Cys1191, HB Asn1578, HB Val1580 |
| Epigallocatechin-3-gallate (EGCG) | −7.36 | HB Met1169, HB Gln1227, HB Arg1574, HB Asn1578 |
| Set 1 | ||
| 1 | −8.62 | HB Phe1145, HB Met1169, HB Cys1191, HB Asp1196, HB Glu1266, HB Arg1310, HB Arg1312, HB Asn1578 |
| 2 | −8.45 | HB Cys1148, HB Gly1149, HB Gly1150, HB Leu1151, HB Glu1168, HB Asn1578, HB Val1580 |
| 3 | −8.09 | HB Phe1145, HB Glu1168, HB Asn1578, HB Val1580 |
| 4 | −8.68 | HB Phe1145, HB Glu1168, HB Cys1191, HB Asn1578 |
| 5 | −10.21 | HB Phe1145, HB Gly1149, HB Gly1150, HB Leu1151, HB Glu1266, HB Arg1310, HB Asn1578, HB Val1580 |
| 6 | −8.20 | HB Glu1168, HB Met1169, HB Asn1578, HB Val1580, HB Glu1266, HB Gly1223 |
| 7 | −9.39 | HB Cys1148, HB Gly1149, HB Gly1150, HB Leu1151, HB Glu1169, HB Asn1578, HB Val1580 |
| Set 2 | ||
| 8 | −9.10 | HB Leu1151, HB Glu1169, HB Asn1578, HB Val1580 |
| 9 | −8.44 | HB Glu1150, HB Leu1151, HB Glu1168, HB Met1169, HB Cys1191, HB Asn1578, HB Val1580 |
| 10 | −10.51 | HB Phe1145, HB Gly1150, HB Leu1151, HB Glu1168, HB Met1169, HB Cys1191, HB Gly1223, HB Val1580 |
| 11 | −8.79 | HB Glu1168, HB Met1169, HB Cys1191, HB Asn1578 |
| 12 | −9.56 | HB Cys1148, HB Gly1149, HB Gly1150, HB Leu1151, HB Glu1168, HB Met1169, HB Asp1190, HB Cys1191, HB Val1580 |
| 13 | −9.73 | HB Cys1148, HB Gly1149, HB Gly1150, HB Leu1151, HB Glu1168, HB Met1169, HB Gln1227, HB Val1580 |
| 14 | −8.63 | HB Glu1168, HB Met1169, HB Glu1189, HB Cys1191, HB Asn1578 |
| 15 | −8.96 | HB Met1169, HB Asp1190, HB Cys1191, HB Glu1266, HB Asn1578 |
| 16 | −9.80 | HB Gly1150, HB Leu1151, HB Glu1168, HB Gly1223, HB Asn1578, HB Val1580 |
| 17 | −8.40 | HB Phe1145, HB Ile1167, HB Met1169, HB Cys1191, HB Asn1578 |
| 18 | −8.37 | HB Phe1145, HB Gly1150, HB Leu1151, HB Glu1168, HB Cys1191 |
| 19 | −8.58 | HB Phe1145, HB Gly1150, HB Leu1151, HB Gly1223, HB Arg1310, HB Arg1312, HB Asn1578, HB Val1580 |
| 20 | −8.91 | HB Phe1145, HB Glu1168, HB Cys1191, HB Asn1578 |
| 21 | −8.79 | HB Glu1168, HB Met1169, HB Cys1191, HB Asn1578 |
| DNMT1_Activity_with_Descriptors | |||||
|---|---|---|---|---|---|
| Num. | Feature | p_Stat < 0.05 | Num. | Feature | p_Stat < 0.05 |
| 1 | MinEStateIndex | 0.0002 | 20 | fr_furan | 0.0166 |
| 2 | BCUT2D_MRHI | 0.0002 | 21 | fr_C_O | 0.0203 |
| 3 | fr_bicyclic | 0.0014 | 22 | VSA_EState8 | 0.0226 |
| 4 | MaxEStateIndex | 0.0019 | 23 | VSA_EState5 | 0.0242 |
| 5 | BCUT2D_MWHI | 0.0030 | 24 | Chi3v | 0.0247 |
| 6 | VSA_EState7 | 0.0033 | 25 | Chi2v | 0.0263 |
| 7 | VSA_EState10 | 0.0033 | 26 | HeavyAtomMolWt | 0.0265 |
| 8 | SMR_VSA1 | 0.0038 | 27 | NumAliphaticHeterocycles | 0.0277 |
| 9 | EState_VSA1 | 0.0046 | 28 | Chi4v | 0.0310 |
| 10 | EState_VSA6 | 0.0056 | 29 | EState_VSA8 | 0.0329 |
| 11 | NumSaturatedRings | 0.0067 | 30 | NumAliphaticRings | 0.0331 |
| 12 | BCUT2D_CHGHI | 0.0085 | 31 | AvgIpc | 0.0349 |
| 13 | PEOE_VSA9 | 0.0098 | 32 | SMR_VSA10 | 0.0362 |
| 14 | NumSaturatedHeterocycles | 0.0110 | 33 | NumAromaticCarbocycles | 0.0371 |
| 15 | FpDensityMorgan1 | 0.0116 | 34 | fr_benzene | 0.0371 |
| 16 | FpDensityMorgan2 | 0.0130 | 35 | MolWt | 0.0425 |
| 17 | EState_VSA10 | 0.0151 | 36 | ExactMolWt | 0.0432 |
| 18 | SPS | 0.0152 | 37 | EState_VSA5 | 0.0438 |
| 19 | SlogP_VSA12 | 0.0162 | |||
| Feature | p_Stat < 0.05 | Model.Importances (model: XGBoost Classifier) | |
|---|---|---|---|
| 1 | MinEStateIndex | 0.000177 | 0.12 |
| 2 | MaxEStateIndex | 0.001924 | 0.09 |
| 3 | NumSaturatedHeterocycles | 0.011036 | 0.07 |
| 4 | SPS | 0.015236 | 0.09 |
| 5 | fr_furan | 0.016631 | 0.4 |
| 6 | fr_C_O | 0.020296 | 0.09 |
| 7 | NumAromaticCarbocycles | 0.037109 | 0.08 |
| 8 | MolWt | 0.042499 | 0.07 |
| Compounds | Confidence Active (%) | Active in 50 Epochs | Predicted Activity | Structural Group |
|---|---|---|---|---|
| Compound 6 | 100 | 50 | Active | Phenolic derivative |
| Compound 15 | 100 | 50 | Active | Flavonoid-like/Polyphenolic |
| Compound 13 | 100 | 50 | Active | Flavonoid-like/Polyphenolic |
| Compound 12 | 100 | 50 | Active | Flavonoid-like/Polyphenolic |
| Compound 16 | 100 | 50 | Active | Phenolic derivative |
| Compound 10 | 100 | 50 | Active | Phenolic derivative |
| Compound 8 | 100 | 50 | Active | Flavonoid-like |
| Compound 19 | 100 | 50 | Active | Flavonoid-like |
| Compound 7 | 100 | 50 | Active | Heterocyclic phenol |
| Compound 5 | 100 | 50 | Active | Phenolic derivative |
| Compound 4 | 100 | 50 | Active | Heterocyclic phenol |
| Compound 2 | 100 | 50 | Active | Heterocyclic phenol |
| Compound 1 | 98 | 49 | Active | Phenolic derivative |
| Compound 18 | 98 | 49 | Active | Flavonoid-like |
| Compound 20 | 96 | 48 | Active | Heterocyclic phenol |
| Compound 14 | 96 | 48 | Active | Heterocyclic phenol |
| Compound 3 | 94 | 47 | Active | Phenolic derivative |
| Compound 17 | 84 | 42 | Active | Phenolic derivative |
| Compound 9 | 24 | 12 | Not Active | Small rigid heterocycle |
| Compound 21 | 4 | 2 | Not Active | Small rigid heterocycle |
| Compound Name | Confidence Active (%) | Active in 50 Epochs | Predicted Activity | Structural Group | Experimental Validation Reference |
|---|---|---|---|---|---|
| Bergenin | 100 | 50 | Active | C-glycoside/Polyphenolic | [27] |
| Orientin | 100 | 50 | Active | Flavonoid (C-glycosylated) | [27] |
| Phlorizin | 100 | 50 | Active | Flavonoid glycoside | [27] |
| 2-(3-(3,4-dimethoxyphenyl)-3-(2-((2-oxo-2H-chromen-7-yl)oxy)acetamido) propanamido)acetic acid | 100 | 50 | Active | Aromatic coumarin–phenyl acetic acid derivative | [27] |
| 2-[(7,8-dihydroxy-6-undecylphenazin-2-yl)formamido] pentanedioic acid | 100 | 50 | Active | Phenazinyl pentanedioic acid derivative | [27] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Christodoulou, P.; Chytiri, E.; Zervou, M.; Manushin, I.; Kolvatzis, C.; Sinanoglou, V.J.; Cavouras, D.; Kritsi, E. Data-Driven and Structure-Based Modelling for the Discovery of Human DNMT1 Inhibitors: A Pathway to Structure–Activity Relationships. Appl. Sci. 2025, 15, 11984. https://doi.org/10.3390/app152211984
Christodoulou P, Chytiri E, Zervou M, Manushin I, Kolvatzis C, Sinanoglou VJ, Cavouras D, Kritsi E. Data-Driven and Structure-Based Modelling for the Discovery of Human DNMT1 Inhibitors: A Pathway to Structure–Activity Relationships. Applied Sciences. 2025; 15(22):11984. https://doi.org/10.3390/app152211984
Chicago/Turabian StyleChristodoulou, Paris, Ellie Chytiri, Maria Zervou, Igor Manushin, Charalampos Kolvatzis, Vassilia J. Sinanoglou, Dionisis Cavouras, and Eftichia Kritsi. 2025. "Data-Driven and Structure-Based Modelling for the Discovery of Human DNMT1 Inhibitors: A Pathway to Structure–Activity Relationships" Applied Sciences 15, no. 22: 11984. https://doi.org/10.3390/app152211984
APA StyleChristodoulou, P., Chytiri, E., Zervou, M., Manushin, I., Kolvatzis, C., Sinanoglou, V. J., Cavouras, D., & Kritsi, E. (2025). Data-Driven and Structure-Based Modelling for the Discovery of Human DNMT1 Inhibitors: A Pathway to Structure–Activity Relationships. Applied Sciences, 15(22), 11984. https://doi.org/10.3390/app152211984

