Dielectric Dispersion Responses for Clay-Bearing Rocks Based on Digital Cores and Numerical Simulation
Abstract
1. Introduction
2. Method Details
2.1. Dielectric Dispersion Model of Pore Water
2.2. Dielectric Dispersion Model of Clay Minerals
2.3. Digital Core and Dielectric Dispersion Simulation
3. Results and Discussion
3.1. Simulation Validation
3.2. Dielectric Dispersion in Single Direction
3.3. Dielectric Dispersion Anisotropy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dash, S.; Garcia, A.P.; Heidari, Z. A new workflow for improved resistivity-based water saturation assessment in organic-rich mudrocks: Application to Haynesville, Eagle ford, and Woodford formations. SPE Reserv. Eval. Eng. 2023, 26, 527–542. [Google Scholar] [CrossRef]
- Carmona, R.; Decoster, E.; Hemingway, J.; Hizem, M.; Mossé, L.; Rizk, T.; Julander, D.; Little, J.; McDonald, T.; Mude, J.; et al. Zapping Rocks. Oilfield Rev. 2011, 23, 36–52. [Google Scholar]
- Clavier, C.; Coates, G.; Dumanoir, J. Theoretical and experimental bases for the dual-water model for interpretation of shaly sands. SPE J. 1986, 24, 153–168. [Google Scholar] [CrossRef]
- Waxman, M.H.; Smits, L.J.M. Electrical conductivities in oil-bearing shaly sands. SPE J. 1968, 8, 107–122. [Google Scholar] [CrossRef]
- Yong, S.H.; Zhang, C.M. Logging Data Processing and Comprehensive Interpretation; China University of Petroleum Press: Qingdao, China, 2007; pp. 174–176. [Google Scholar]
- Herlinger, R. Dielectric Logging: Principles, applications, and examples from the Brazilian oilfields. In Proceedings of the Offshore Technology Conference Brasil, Rio de Janeiro, Brazil, 29–31 October 2019. [Google Scholar] [CrossRef]
- Garcia, A.P.; Heidari, Z. Numerical modeling of multifrequency complex dielectric permittivity dispersion of sedimentary rocks. Geophysics 2021, 86, MR179–MR190. [Google Scholar] [CrossRef]
- Han, M.; Cuadros, J.; Suarez, C.A.P.S.; Decoster, E.E.D.; Faivre, O.; Mosse, L.; Seleznev, N. Continuous estimate of cation exchange capacity from log data: A new approach based on dielectric dispersion analysis. In Proceedings of the SPWLA 53rd Annual Logging Symposium, Cartagena, Colombia, 16–20 April 2012. [Google Scholar]
- Birchak, J.R.; Gardner, C.G.; Hipp, J.E.; Victor, J.M. High dielectric constant microwave probes for sensing soil moisture. Proc. IEEE 1974, 62, 93–98. [Google Scholar] [CrossRef]
- Seleznev, N.; Boyd, A.; Habashy, T.; Luthi, S. Dielectric mixing laws for fully and partially saturated carbonate rocks. In Proceedings of the SPWLA 45th Annual Logging Symposium, Noordwijk, The Netherlands, 6–9 June 2004. [Google Scholar]
- Seleznev, N.; Habashy, T.; Boyd, A.; Hizem, M. Formation properties derived from a multi-frequency dielectric measurement. In Proceedings of the SPWLA 47th Annual Logging Symposium, Veracruz, Mexico, 4–7 June 2006. [Google Scholar]
- Stroud, D.; Milton, G.W.; De, B.R. Analytical model for the dielectric response of brine-saturated rocks. Phys. Rev. B 1986, 34, 5145–5153. [Google Scholar] [CrossRef]
- Seleznev, N.; Habashy, T.M.; Claverie, M.; Wang, H.; Wang, H.; Hermes, A.; Gendur, J.; Feng, L.; Loan, M.E. Determining water-filled porosity of tight oil reservoirs with a new interpretation method for dielectric dispersion measurements. In Proceedings of the 61st Annual Logging Symposium, Virtual Online Webinar, 24–29 June 2020. [Google Scholar]
- Wang, H.; Kostinovsky, A.; Saneifar, M. Case study of dielectric logging in the Permian Basin: An opportunity for solving petrophysical challenges in tight formations. In Proceedings of the 2023 SPE Annual Technical Conference and Exhibition, San Antonio, TX, USA, 16–18 October 2023. [Google Scholar]
- Misra, S.; Torres-Verdín, C.; Revil, A.; Rasmus, J.; Homan, D. Interfacial polarization of disseminated conductive minerals in absence of redox-active species—Part 2: Effective electrical conductivity and dielectric permittivity. Geophysics 2016, 81, E159–E176. [Google Scholar] [CrossRef]
- Jacobsen, S.J.; Decoster, E.; Hemingway, J.; Shray, F.; Anderson, B.I.; Swinburne, P.R. Formation permittivity and conductivity simulation from petrophysical volumetric analysis. In Proceedings of the 63rd Annual Logging Symposium, Stavanger, Norway, 11–15 June 2022. [Google Scholar]
- Chen, S.; Ke, S.; Jia, J.; Cheng, L.; Shi, H.; Zhang, Y. A laboratory study on the dielectric spectroscopy of sandstone and the improvement of dispersion model. J. Pet. Sci. Eng. 2022, 216, 110655. [Google Scholar] [CrossRef]
- Freed, D.E.; Seleznev, N.; Hou, C.Y.; Fellah, K.; Little, J.; Dumy, G.; Sen, P. A physics-based model for the dielectric response of shaly sands and continuous CEC logging. Petrophysics 2018, 59, 354–372. [Google Scholar] [CrossRef]
- Jia, B.; Xian, C.; Jia, W.; Su, J. Improved petrophysical property evaluation of shaly sand reservoirs using modified grey wolf intelligence algorithm. Comput. Geosci. 2023, 27, 537–549. [Google Scholar] [CrossRef]
- Garcia, A.P.; Han, Y.; Heidari, Z. Integrated workflow to estimate permeability through quantification of rock fabric using joint interpretation of nuclear magnetic resonance and electric measurements. Petrophysics 2018, 59, 672–693. [Google Scholar] [CrossRef]
- Wang, B.; Li, X.; Liu, X.; Xing, L.; Gao, M.; Lao, L.; Deng, J.; Ge, X.; Wei, Z. Dielectric dispersion of hydrate-bearing artificial sediment-detection method and experimental observations. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5918217. [Google Scholar] [CrossRef]
- Azizoglu, Z.; Heidari, Z. Influence of grain size and shape on the performance of dielectric permittivity-based water saturation assessment models. In Proceedings of the 64th Annual Logging Symposium, Lake Conroe, TX, USA, 10–14 June 2023. [Google Scholar]
- Gomaa, I.; Azizoglu, Z.; Heidari, Z. Quantifying the sensitivity of dielectric dispersion data to fracture properties in fractured rocks. In Proceedings of the 64th Annual Logging Symposium, Lake Conroe, TX, USA, 10–14 June 2023. [Google Scholar]
- Misra, S.; Torres-Verdín, C.; Revil, A.; Rasmus, J.; Homan, D. Interfacial polarization of disseminated conductive minerals in absence of redox-active species-Part 1: Mechanistic model and validation. Geophysics 2016, 81, E139–E157. [Google Scholar] [CrossRef]
- Stogryn, A. Equations for calculating the dielectric constant of saline water. IEEE Trans. Microw. Theory Tech. 1971, 19, 733–736. [Google Scholar] [CrossRef]
- Liebe, H.J.; Hufford, G.A.; Manabe, T. A model for the complex permittivity of water at frequencies below 1 THz. Int. J. Infrared Millim. Waves 1991, 12, 659–675. [Google Scholar] [CrossRef]
- Meissner, T.; Wentz, F.J. The complex dielectric constant of pure and sea water from microwave satellite observations. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1836–1849. [Google Scholar] [CrossRef]
- Huang, B.; Li, Z.; Mo, X.; Fu, Y.; Tao, H.; Wang, H.; Li, Q.; Xu, S. Research on logging interpretation model of complex clayed sandstone reservoir. Geophys. Prospect. Pet. 2009, 48, 40–47. [Google Scholar]
- Chen, J.; Guo, T.; Zhu, L. Evaluation of oil saturation for volcaniclastic rock reservoir with high shale content and low resistivity. J. Chengdu Univ. Technol. 2019, 46, 153–161. [Google Scholar]
- Tan, M. Digital rock physics and its progress in log interpretation. Well Logging Technol. 2022, 46, 371–379. [Google Scholar]
- Garfi, G.; Lin, Q.; Berg, S.; Krevor, S. Berea Sandstone: X-Ray Micro-CT Imaging of Waterflooding in a Water-Wet and a Mixed-Wet Sample. Digital Rocks Portal. Available online: https://www.doi.org/10.17612/Y7YD-H265 (accessed on 16 May 2025).
- Jiang, L.; Sun, J.; Liu, X.; Wang, H.T. Numerical study of the effect of natural gas saturation on the reservoir rocks’ elastic parameters. Well Logging Technol. 2012, 36, 239–243. [Google Scholar]









| No. | Quartz-Feldspar | Clay | Pore Water | Pore Oil | Calcareous Cement | Other Minerals |
|---|---|---|---|---|---|---|
| S1 | 78.90 | 11.09 | 5.48 | 2.86 | 1.27 | 0.40 |
| S2 | 65.72 | 22.06 | 5.01 | 4.27 | 2.95 | 0.00 |
| S3 | 80.23 | 2.81 | 2.41 | 8.42 | 2.84 | 3.29 |
| S4 | 78.17 | 1.83 | 7.35 | 7.44 | 5.21 | 0.00 |
| S5 | 79.29 | 15.49 | 0.40 | 1.33 | 3.31 | 0.18 |
| S6 | 78.60 | 4.49 | 8.48 | 3.62 | 4.81 | 0.00 |
| S7 | 84.20 | 0.02 | 1.86 | 3.41 | 10.51 | 0.00 |
| S8 | 82.92 | 0.10 | 5.58 | 3.54 | 7.86 | 0.00 |
| S9 | 85.80 | 1.46 | 3.26 | 3.89 | 5.59 | 0.00 |
| S10 | 77.24 | 0.50 | 6.75 | 1.61 | 13.39 | 0.51 |
| S11 | 88.69 | 0.09 | 3.72 | 2.89 | 4.60 | 0.00 |
| S12 | 72.64 | 0.03 | 3.58 | 16.03 | 7.73 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, J.; Wang, J.; Liu, K. Dielectric Dispersion Responses for Clay-Bearing Rocks Based on Digital Cores and Numerical Simulation. Appl. Sci. 2025, 15, 11949. https://doi.org/10.3390/app152211949
Gao J, Wang J, Liu K. Dielectric Dispersion Responses for Clay-Bearing Rocks Based on Digital Cores and Numerical Simulation. Applied Sciences. 2025; 15(22):11949. https://doi.org/10.3390/app152211949
Chicago/Turabian StyleGao, Jianshen, Jiang Wang, and Kun Liu. 2025. "Dielectric Dispersion Responses for Clay-Bearing Rocks Based on Digital Cores and Numerical Simulation" Applied Sciences 15, no. 22: 11949. https://doi.org/10.3390/app152211949
APA StyleGao, J., Wang, J., & Liu, K. (2025). Dielectric Dispersion Responses for Clay-Bearing Rocks Based on Digital Cores and Numerical Simulation. Applied Sciences, 15(22), 11949. https://doi.org/10.3390/app152211949
