Rainwater ‘Piggy Banks’ and Green Roofs in School Buildings: Integrated Strategies for Sustainable Water Management
Abstract
1. Introduction
2. Materials and Methods
2.1. Case Studies and Water-Saving Scenarios
- o
- S1—replacement of existing washbasin and kitchen taps with efficient models
- o
- S2—installation of an RWHS with conventional roofs;
- o
- S3—combination of S1 and S2;
- o
- S4—RWHS integrated with a full green roof;
- o
- S5—combination of S1 and S4;
- o
- S6—RWHS with 50% green and 50% conventional roof;
- o
- S7—RWHS with 70% green and 30% conventional roof;
- o
- S8—combination of S1 and S6;
- o
- S9—combination of S1 and S7.
2.2. Sizing of Rainwater Harvesting Systems
- ▪
- : volume of rainwater in the reference period that can be used (L);
- ▪
- : runoff coefficient (dimensionless);
- ▪
- : average precipitation accumulated at the site (mm);
- ▪
- : roof area (m2);
- ▪
- : hydraulic filtering efficiency (dimensionless).
2.3. Economic Feasibility of the Proposed Scenarios
3. Results and Discussion
3.1. Proposed Scenarios and Their Impact on Potable Water Saving
3.2. Economic Feasibility of the Proposed Scenarios
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
| Month | Monthly Precipitation (mm) | Roof Area (m2) | Available Rainwater Volume (m3) | Monthly Consumption (m3) | Available Consumption (m3) | Cistern Volume (m3) | Water at the End of the Month (m3) | Public Network Supply (m3) |
|---|---|---|---|---|---|---|---|---|
| October | 104.09 | 1537.79 | 115.25 | 55.03 | 60.22 | 60 | 60.00 | 0.00 |
| November | 94.63 | 104.77 | 55.03 | 49.74 | 60.00 | 0.00 | ||
| December | 86.38 | 95.64 | 55.03 | 40.61 | 60.00 | 0.00 | ||
| January | 88.62 | 98.12 | 55.03 | 43.09 | 60.00 | 0.00 | ||
| February | 74.94 | 82.97 | 55.03 | 27.94 | 60.00 | 0.00 | ||
| March | 66.83 | 73.99 | 55.03 | 18.96 | 60.00 | 0.00 | ||
| April | 69.88 | 77.37 | 55.03 | 22.35 | 60.00 | 0.00 | ||
| May | 47.05 | 52.09 | 55.03 | −2.94 | 57.06 | 0.00 | ||
| June | 38.82 | 42.98 | 55.03 | −12.05 | 45.01 | 0.00 | ||
| July | 10.24 | 11.33 | 55.03 | −43.69 | 1.32 | 0.00 | ||
| August | 13.89 | 15.38 | 55.03 | −39.65 | 0.00 | 38.33 | ||
| September | 47.61 | 52.71 | 55.03 | −2.31 | 0.00 | 2.31 | ||
| Total | 742.96 | 822.62 | 660.34 | 40.64 |
| Month | Monthly Precipitation (mm) | Roof Area (m2) | Available Rainwater Volume (m3) | Monthly Consumption (m3) | Available Consumption (m3) | Cistern Volume (m3) | Water at the End of the Month (m3) | Public Network Supply (m3) |
|---|---|---|---|---|---|---|---|---|
| October | 104.09 | 1537.79 | 72.03 | 55.03 | 17.00 | 60 | 17.00 | 0.00 |
| November | 94.63 | 65.48 | 55.03 | 10.45 | 27.46 | 0.00 | ||
| December | 86.38 | 59.78 | 55.03 | 4.75 | 32.21 | 0.00 | ||
| January | 88.62 | 61.32 | 55.03 | 6.30 | 38.50 | 0.00 | ||
| February | 74.94 | 51.86 | 55.03 | −3.17 | 35.33 | 0.00 | ||
| March | 66.83 | 46.24 | 55.03 | −8.78 | 26.55 | 0.00 | ||
| April | 69.88 | 48.36 | 55.03 | −6.67 | 19.88 | 0.00 | ||
| May | 47.05 | 32.56 | 55.03 | −22.47 | 0.00 | 2.59 | ||
| June | 38.82 | 26.86 | 55.03 | −28.17 | 0.00 | 28.17 | ||
| July | 104.09 | 11.33 | 55.03 | −43.69 | 0.00 | 47.94 | ||
| August | 94.63 | 15.38 | 55.03 | −39.65 | 0.00 | 45.42 | ||
| September | 86.38 | 52.71 | 55.03 | −2.31 | 0.00 | 22.08 | ||
| Total | 742.96 | 514.13 | 660.34 | 146.20 |
| Month | Monthly Precipitation (mm) | Roof Area (m2) | Available Rainwater Volume (m3) | Monthly Consumption (m3) | Available Consumption (m3) | Cistern Volume (m3) | Water at the End of the Month (m3) | Public Network Supply (m3) |
|---|---|---|---|---|---|---|---|---|
| October | 104.09 | 768.90 | 93.64 | 55.03 | 38.61 | 60 | 38.61 | 0.00 |
| November | 94.63 | 85.13 | 55.03 | 30.10 | 60.00 | 0.00 | ||
| December | 86.38 | 77.71 | 55.03 | 22.68 | 60.00 | 0.00 | ||
| January | 88.62 | 79.72 | 55.03 | 24.69 | 60.00 | 0.00 | ||
| February | 74.94 | 67.41 | 55.03 | 12.39 | 60.00 | 0.00 | ||
| March | 66.83 | 60.12 | 55.03 | 5.09 | 60.00 | 0.00 | ||
| April | 69.88 | 62.87 | 55.03 | 7.84 | 60.00 | 0.00 | ||
| May | 47.05 | 42.32 | 55.03 | −12.71 | 47.29 | 0.00 | ||
| June | 38.82 | 34.92 | 55.03 | −20.11 | 27.19 | 0.00 | ||
| July | 104.09 | 9.21 | 55.03 | −45.82 | 0.00 | 18.63 | ||
| August | 94.63 | 12.50 | 55.03 | −42.53 | 0.00 | 42.53 | ||
| September | 86.38 | 42.83 | 55.03 | −12.20 | 0.00 | 12.20 | ||
| Total | 742.96 | 668.37 | 660.34 | 73.36 |
| Month | Monthly Precipitation (mm) | Roof Area (m2) | Available Rainwater Volume (m3) | Monthly Consumption (m3) | Available Consumption (m3) | Cistern Volume (m3) | Water at the End of the Month (m3) | Public Network Supply (m3) |
|---|---|---|---|---|---|---|---|---|
| October | 104.09 | 1076.45 (a) 461.34 (b) | 85.00 | 55.03 | 29.97 | 60 | 29.97 | 0.00 |
| November | 94.63 | 77.27 | 55.03 | 22.24 | 52.21 | 0.00 | ||
| December | 86.38 | 70.54 | 55.03 | 15.51 | 60.00 | 0.00 | ||
| January | 88.62 | 72.36 | 55.03 | 17.33 | 60.00 | 0.00 | ||
| February | 74.94 | 61.19 | 55.03 | 6.16 | 60.00 | 0.00 | ||
| March | 66.83 | 54.57 | 55.03 | −0.46 | 59.54 | 0.00 | ||
| April | 69.88 | 57.06 | 55.03 | 2.04 | 60.00 | 0.00 | ||
| May | 47.05 | 38.42 | 55.03 | −16.61 | 43.39 | 0.00 | ||
| June | 38.82 | 31.70 | 55.03 | −23.33 | 20.06 | 0.00 | ||
| July | 104.09 | 8.36 | 55.03 | −46.67 | 0.00 | 26.61 | ||
| August | 94.63 | 11.34 | 55.03 | −43.69 | 0.00 | 43.69 | ||
| September | 86.38 | 38.88 | 55.03 | −16.15 | 0.00 | 16.15 | ||
| Total | 742.96 | 606.68 | 660.34 | 86.45 |
| Month | Monthly Precipitation (mm) | Roof Area (m2) | Available Rainwater Volume (m3) | Monthly Consumption (m3) | Available Consumption (m3) | Cistern Volume (m3) | Water at the End of the Month (m3) | Public Network Supply (m3) |
|---|---|---|---|---|---|---|---|---|
| October | 104.09 | 1804.36 | 135.23 | 63.04 | 72.19 | 70 | 70.00 | 0.00 |
| November | 94.63 | 122.93 | 63.04 | 59.90 | 70.00 | 0.00 | ||
| December | 86.38 | 112.22 | 63.04 | 49.19 | 70.00 | 0.00 | ||
| January | 88.62 | 115.13 | 63.04 | 52.09 | 70.00 | 0.00 | ||
| February | 74.94 | 97.35 | 63.04 | 34.32 | 70.00 | 0.00 | ||
| March | 66.83 | 86.82 | 63.04 | 23.78 | 70.00 | 0.00 | ||
| April | 69.88 | 90.79 | 63.04 | 27.75 | 70.00 | 0.00 | ||
| May | 47.05 | 61.12 | 63.04 | −1.92 | 68.08 | 0.00 | ||
| June | 38.82 | 50.43 | 63.04 | −12.61 | 55.47 | 0.00 | ||
| July | 104.09 | 13.30 | 63.04 | −49.74 | 5.74 | 0.00 | ||
| August | 94.63 | 18.05 | 63.04 | −44.99 | 0.00 | 39.26 | ||
| September | 86.38 | 61.85 | 63.04 | −1.19 | 0.00 | 1.19 | ||
| Total | 742.96 | 965.21 | 756.44 | 40.44 |
| Month | Monthly Precipitation (mm) | Roof Area (m2) | Available Rainwater Volume (m3) | Monthly Consumption (m3) | Available Consumption (m3) | Cistern Volume (m3) | Water at the End of the Month (m3) | Public Network Supply (m3) |
|---|---|---|---|---|---|---|---|---|
| October | 104.09 | 1804.36 | 84.52 | 63.04 | 21.48 | 70 | 21.48 | 0.00 |
| November | 94.63 | 76.83 | 63.04 | 13.80 | 35.28 | 0.00 | ||
| December | 86.38 | 70.14 | 63.04 | 7.10 | 42.38 | 0.00 | ||
| January | 88.62 | 71.95 | 63.04 | 8.92 | 51.30 | 0.00 | ||
| February | 74.94 | 60.85 | 63.04 | −2.19 | 49.11 | 0.00 | ||
| March | 66.83 | 54.26 | 63.04 | −8.78 | 40.33 | 0.00 | ||
| April | 69.88 | 56.74 | 63.04 | −6.30 | 34.03 | 0.00 | ||
| May | 47.05 | 38.20 | 63.04 | −24.84 | 9.20 | 0.00 | ||
| June | 38.82 | 31.52 | 63.04 | −31.52 | 0.00 | 22.32 | ||
| July | 104.09 | 8.31 | 63.04 | −54.73 | 0.00 | 54.73 | ||
| August | 94.63 | 11.28 | 63.04 | −51.76 | 0.00 | 51.76 | ||
| September | 86.38 | 38.66 | 63.04 | −24.38 | 0.00 | 24.38 | ||
| Total | 742.96 | 603.26 | 756.44 | 153.19 |
| Month | Monthly Precipitation (mm) | Roof Area (m2) | Available Rainwater Volume (m3) | Monthly Consumption (m3) | Available Consumption (m3) | Cistern Volume (m3) | Water at the End of the Month (m3) | Public Network Supply (m3) |
|---|---|---|---|---|---|---|---|---|
| October | 104.09 | 902.18 | 109.87 | 63.04 | 46.84 | 70 | 46.84 | 0.00 |
| November | 94.63 | 99.88 | 63.04 | 36.85 | 70.00 | 0.00 | ||
| December | 86.38 | 91.18 | 63.04 | 28.14 | 70.00 | 0.00 | ||
| January | 88.62 | 93.54 | 63.04 | 30.50 | 70.00 | 0.00 | ||
| February | 74.94 | 79.10 | 63.04 | 16.06 | 70.00 | 0.00 | ||
| March | 66.83 | 70.54 | 63.04 | 7.50 | 70.00 | 0.00 | ||
| April | 69.88 | 73.76 | 63.04 | 10.73 | 70.00 | 0.00 | ||
| May | 47.05 | 49.66 | 63.04 | −13.38 | 56.62 | 0.00 | ||
| June | 38.82 | 40.97 | 63.04 | −22.06 | 34.56 | 0.00 | ||
| July | 104.09 | 10.80 | 63.04 | −52.23 | 0.00 | 17.67 | ||
| August | 94.63 | 14.66 | 63.04 | −48.38 | 0.00 | 48.38 | ||
| September | 86.38 | 50.25 | 63.04 | −12.78 | 0.00 | 12.78 | ||
| Total | 742.96 | 668.37 | 756.44 | 78.83 |
| Month | Monthly Precipitation (mm) | Roof Area (m2) | Available Rainwater Volume (m3) | Monthly Consumption (m3) | Available Consumption (m3) | Cistern Volume (m3) | Water at the End of the Month (m3) | Public Network Supply (m3) |
|---|---|---|---|---|---|---|---|---|
| October | 104.09 | 1263.05 (a) 541.31 (b) | 99.73 | 63.04 | 36.69 | 60 | 36.69 | 0.00 |
| November | 94.63 | 90.66 | 63.04 | 27.63 | 64.32 | 0.00 | ||
| December | 86.38 | 82.76 | 63.04 | 19.73 | 70.00 | 0.00 | ||
| January | 88.62 | 84.91 | 63.04 | 21.87 | 70.00 | 0.00 | ||
| February | 74.94 | 71.80 | 63.04 | 8.76 | 70.00 | 0.00 | ||
| March | 66.83 | 64.03 | 63.04 | 0.99 | 70.00 | 0.00 | ||
| April | 69.88 | 66.95 | 63.04 | 3.92 | 70.00 | 0.00 | ||
| May | 47.05 | 45.07 | 63.04 | −17.96 | 52.04 | 0.00 | ||
| June | 38.82 | 37.19 | 63.04 | −25.84 | 26.19 | 0.00 | ||
| July | 104.09 | 9.81 | 63.04 | −53.23 | 0.00 | 27.04 | ||
| August | 94.63 | 13.31 | 63.04 | −49.73 | 0.00 | 49.73 | ||
| September | 86.38 | 45.62 | 63.04 | −17.42 | 0.00 | 17.42 | ||
| Total | 742.96 | 711.84 | 756.44 | 94.19 |
References
- Sheng, S.; Zhang, P.; Huang, J.; Ning, L. Research Advances and Emerging Trends in the Impact of Urban Expansion on Food Security: A Global Overview. Agriculture 2025, 15, 1509. [Google Scholar] [CrossRef]
- Hurtado, A.R.; Mesa-Pérez, E.; Berbel, J. Systems Modeling of the Water-Energy-Food-Ecosystems Nexus: Insights from a Region Facing Structural Water Scarcity in Southern Spain. Environ. Manag. 2024, 74, 1045–1062. [Google Scholar] [CrossRef]
- Heard, B.R.; Miller, S.A.; Liang, S.; Xu, M. Emerging challenges and opportunities for the food–energy–water nexus in urban systems. Curr. Opin. Chem. Eng. 2017, 17, 48–53. [Google Scholar] [CrossRef]
- Xia, Q.; Tian, G.; Zhao, D.; Zhao, Q.; Varis, O. Effects of new-type urbanization on resource pressure: Evidence from a water-energy-food system perspective in China. Sustain. Cities Soc. 2024, 107, 105411. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Liermann, C.R.; et al. Global threats to human water security and river biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef]
- Ma, T.; Sun, S.; Fu, G.; Hall, J.W.; Ni, Y.; He, L.; Yi, J.; Zhao, N.; Du, Y.; Pei, T.; et al. Pollution exacerbates China’s water scarcity and its regional inequality. Nat. Commun. 2020, 11, 650. [Google Scholar] [CrossRef] [PubMed]
- Cristiano, E.; Farris, S.; Deidda, R.; Viola, F. How much green roofs and rainwater harvesting systems can contribute to urban flood mitigation? Urban. Water J. 2023, 20, 140–157. [Google Scholar] [CrossRef]
- Almeida, A.P.; Liberalesso, T.; Silva, C.M.; Sousa, V. Combining green roofs and rainwater harvesting systems in university buildings under different climate conditions. Sci. Total Environ. 2023, 887, 163719. [Google Scholar] [CrossRef] [PubMed]
- Nandi, S.; Gonela, V. Rainwater harvesting for domestic use: A systematic review and outlook from the utility policy and management perspectives. Util. Policy 2022, 77, 101383. [Google Scholar] [CrossRef]
- Teston, A.; Scolaro, T.P.; Maykot, J.K.; Ghisi, E. Comprehensive Environmental Assessment of Rainwater Harvesting Systems: A Literature Review. Water 2022, 14, 2716. [Google Scholar] [CrossRef]
- Pimentel-Rodrigues, C.; Silva-Afonso, A. Contributions of Water-Related Building Installations to Urban Strategies for Mitigation and Adaptation to Face Climate Change. Appl. Sci. 2019, 9, 3575. [Google Scholar] [CrossRef]
- Semaan, M.; Day, S.D.; Garvin, M.; Ramakrishnan, N.; Pearce, A. Optimal sizing of rainwater harvesting systems for domestic water usages: A systematic literature review. Resour. Conserv. Recycl. X 2020, 6, 100033. [Google Scholar] [CrossRef]
- Suni, S.; Firdaous, M.H.; Zailani, F.F.; Gödeke, S.; Raffi, R.M.; Abas, P.E. Urban Water Management and Public Acceptance of Rainwater Harvesting Systems: Insights from Young and Educated Respondents in Muslim Communities. Sustainability 2025, 17, 3046. [Google Scholar] [CrossRef]
- Antão-Geraldes, A.M.; Pinto, M.; Afonso, M.J.; Albuquerque, A.; Calheiros, C.S.C.; Silva, F. Promoting Water Efficiency in a Municipal Market Building: A Case Study. Hydrology 2023, 10, 69. [Google Scholar] [CrossRef]
- Ribeiro, L.M.L.; Ghisi, E. Potential for drinking water savings through rainwater use: A case study in Brazil. Ambiente Construído 2023, 23, 47–64. [Google Scholar]
- Zabidi, H.A.; Goh, H.W.; Chang, C.K.; Chan, N.W.; Zakaria, N.A. A Review of Roof and Pond Rainwater Harvesting Systems for Water Security: The Design, Performance and Way Forward. Water 2020, 12, 3163. [Google Scholar] [CrossRef]
- Campisano, A.; Butler, D.; Ward, S.; Burns, M.J.; Friedler, E.; DeBusk, K.; Fisher-Jeffes, L.N.; Ghisi, E.; Rahman, A.; Furumai, H.; et al. Urban rainwater harvesting systems: Research, implementation and future perspectives. Water Res. 2017, 115, 195–209. [Google Scholar] [CrossRef]
- Santos, C.; Imteaz, M.A.; Ghisi, E.; Matos, C. The effect of climate change on domestic Rainwater Harvesting. Sci. Total Environ. 2020, 729, 138967. [Google Scholar] [CrossRef]
- Associação Nacional Para Qualidade Nas Instalações Prediais. “Sistemas de Aproveitamento de Águas Pluviais em Edifícios (SAAP)”. 1o de junho de 2022. Available online: https://anqip.pt/images/stories/comissoes/0701/eta%200701%20v.11.pdf (accessed on 1 June 2022).
- Netzer, L.; Kurtzman, D.; Ben-Hur, M.; Livshitz, Y.; Katzir, R.; Nachshon, U. Novel approach to roof rainwater harvesting and aquifer recharge in an urban environment: Dry and wet infiltration wells comparison. Water Res. 2024, 252, 121183. [Google Scholar] [CrossRef]
- Ahmed, A.; Smithson, E.; McGough, D. The Potential of Rain Water Harvesting for Increasing Building and Urban Resilience: A Case Study of Coventry University and Coventry City Centre. In Proceedings of the EventWater Efficiency in Building Research Network Conference, Brighton, UK, 9–11 September 2014. [Google Scholar]
- Araujo, M.C.; Leão, A.S.; De Jesus, T.B.; Cohim, E. The role of rainwater harvesting in urban stormwater runoff in the semiarid region of Brazil. Urban Water J. 2021, 18, 248–256. [Google Scholar] [CrossRef]
- Bañas, K.; Robles, M.E.; Maniquiz-Redillas, M. Stormwater Harvesting from Roof Catchments: A Review of Design, Efficiency, and Sustainability. Water 2023, 15, 1774. [Google Scholar] [CrossRef]
- Burszta-Adamiak, E.; Przybylska, A. The potential for sustainable rainwater management through domestic rainwater harvesting based on real rainfall. J. Water Land Dev. 2024, 37–43. [Google Scholar] [CrossRef]
- Silva, F.; Calheiros, C.S.C.; Valle, G.; Pinto, P.; Albuquerque, A.; Antão-Geraldes, A.M. Influence of Green Roofs on the Design of a Public Stormwater Drainage System: A Case Study. Sustainability 2023, 15, 5762. [Google Scholar] [CrossRef]
- Calheiros, C.S.C.; Castiglione, B.; Palha, P. Chapter 14—Nature-based solutions for socially and environmentally responsible new cities: The contribution of green roofs. In Circular Economy and Sustainability, Volume 2: Environmental Engineering; Elsevier: Amsterdam, The Netherlands, 2022; pp. 235–255. [Google Scholar] [CrossRef]
- Shafique, M.; Kim, R.; Rafiq, M. Green roof benefits, opportunities and challenges—A review. Renew. Sustain. Energy Rev. 2018, 90, 757–773. [Google Scholar] [CrossRef]
- GSA. US. The Benefits and Challenges of Green Roofs on Public and Commercial Buildings. 2011. Available online: https://share.google/h4k0zGrlCbmZsrr9g (accessed on 30 March 2025).
- Shahmohammad, M.; Hosseinzadeh, M.; Dvorak, B.; Bordbar, F.; Shahmohammadmirab, H.; Aghamohammadi, N. Sustainable green roofs: A comprehensive review of influential factors. Environ. Sci. Pollut. Res. 2022, 29, 78228–78254. [Google Scholar] [CrossRef]
- Cascone, S. Green Roof Design: State of the Art on Technology and Materials. Sustainability 2019, 11, 3020. [Google Scholar] [CrossRef]
- Fiorentin, D.P.; Martín-Gamboa, M.; Rafael, S.; Quinteiro, P. Life Cycle Assessment of green roofs: A comprehensive review of methodological approaches and climate change impacts. Sustain. Prod. Consum. 2024, 45, 598–611. [Google Scholar] [CrossRef]
- Barriuso, F.; Urbano, B. Green Roofs and Walls Design Intended to Mitigate Climate Change in Urban Areas across All Continents. Sustainability 2021, 13, 2245. [Google Scholar] [CrossRef]
- Lee, J.Y.; Lee, M.J.; Han, M. A pilot study to evaluate runoff quantity from green roofs. J. Environ. Manag. 2015, 152, 171–176. [Google Scholar] [CrossRef]
- Bengtsson, L.; Grahn, L.; Olsson, J. Hydrological function of a thin extensive green roof in southern Sweden. Hydrol. Res. 2005, 36, 259–268. [Google Scholar] [CrossRef]
- Silva, M.D.; Najjar, M.K.; Hammad, A.W.A.; Haddad, A.; Vazquez, E. Assessing the Retention Capacity of an Experimental Green Roof Prototype. Water 2019, 12, 90. [Google Scholar] [CrossRef]
- Longobardi, A.; D’Ambrosio, R.; Mobilia, M. Predicting Stormwater Retention Capacity of Green Roofs: An Experimental Study of the Roles of Climate, Substrate Soil Moisture, and Drainage Layer Properties. Sustainability 2019, 11, 6956. [Google Scholar] [CrossRef]
- Berardi, U.; GhaffarianHoseini, A.; GhaffarianHoseini, A. State-of-the-art analysis of the environmental benefits of green roofs. Appl. Energy 2014, 115, 411–428. [Google Scholar] [CrossRef]
- Mentens, J.; Raes, D.; Hermy, M. Green roofs as a tool for solving the rainwater runoff problem in the urbanized 21st century? Landsc. Urban Plan. 2006, 77, 217–226. [Google Scholar] [CrossRef]
- Van Renterghem, T.; Botteldooren, D. Reducing the acoustical façade load from road traffic with green roofs. Build. Environ. 2009, 44, 1081–1087. [Google Scholar] [CrossRef]
- Van Renterghem, T.; Botteldooren, D. Numerical evaluation of sound propagating over green roofs. J. Sound Vib. 2008, 317, 781–799. [Google Scholar] [CrossRef]
- Mihalakakou, G.; Souliotis, M.; Papadaki, M.; Menounou, P.; Dimopoulos, P.; Kolokotsa, D.; Paravantis, J.A.; Tsangrassoulis, A.; Panaras, G.; Giannakopoulos, E.; et al. Green roofs as a nature-based solution for improving urban sustainability: Progress and perspectives. Renew. Sustain. Energy Rev. 2023, 180, 113306. [Google Scholar] [CrossRef]
- Galbrun, L.; Scerri, L. Sound insulation of lightweight extensive green roofs. Build. Environ. 2017, 116, 130–139. [Google Scholar] [CrossRef]
- Parveen, S. Integration of Green Roofs and Rainwater Harvesting System as Sustainable Approach to Urban Water Management. In The Legacy of Traditional Architecture; COPAL PUBLISHING GROUP: Ghaziabad, India, 2024; pp. 102–107. [Google Scholar]
- Almeida, A.P.; Liberalesso, T.; Silva, C.M.; Sousa, V. Dynamic modelling of rainwater harvesting with green roofs in university buildings. J. Clean. Prod. 2021, 312, 127655. [Google Scholar] [CrossRef]
- Ignatieva, M.; Stewart, G.H.; Meurk, C. Planning and design of ecological networks in urban areas. Landsc. Ecol. Eng. 2011, 7, 17–25. [Google Scholar] [CrossRef]
- Calheiros, C.S.C.; Stefanakis, A.I. Green Roofs Towards Circular and Resilient Cities. Circ. Econ. Sust. 2021, 1, 395–411. [Google Scholar] [CrossRef] [PubMed]
- Santos, M.L.; Silva, C.M.; Ferreira, F.; Matos, J.S. Hydrological Analysis of Green Roofs Performance under a Mediterranean Climate: A Case Study in Lisbon, Portugal. Sustainability 2023, 15, 1064. [Google Scholar] [CrossRef]
- Da Silva, S.; Britto, V.; Azevedo, C.; Kiperstok, A. Rational Consumption of Water in Administrative Public Buildings: The Experience of the Bahia Administrative Center, Brazil. Water 2014, 6, 2552–2574. [Google Scholar] [CrossRef]
- Bonnet, J.-F.; Devel, C.; Faucher, P.; Roturier, J. Analysis of electricity and water end-uses in university campuses: Case-study of the University of Bordeaux in the framework of the Ecocampus European Collaboration. J. Clean. Prod. 2002, 10, 13–24. [Google Scholar] [CrossRef]
- Rodrigues, F.; Silva-Afonso, A.; Pinto, A.; Macedo, J.; Santos, A.S.; Pimentel-Rodrigues, C. Increasing water and energy efficiency in university buildings: A case study. Environ. Sci. Pollut. Res. 2020, 27, 4571–4581. [Google Scholar] [CrossRef]
- Instituto Nacional de Estatística, “Censo 2021”. Available online: https://censos.ine.pt/xportal/xmain?xpgid=censos21_main&xpid=CENSOS21&xlang=pt (accessed on 28 May 2025).
- Instituto Português do Mar e Atmosfera (IPMA), “Séries Longas”. Available online: https://www.ipma.pt/pt/oclima/series.longas/?loc=Bragan%C3%A7a&type=raw (accessed on 28 May 2025).
- Silva-Afonso, A.; Pimentel-Rodrigues, C. The Portuguese system of certifying and labeling water efficiency products. AWWA J. 2010, 102, 52–57. [Google Scholar]
- Ministério das Obras Públicas, Transportes e Comunicações. “Decreto Regulamentar n.o 23/95, de 23 de Agosto”. Diário da República n.o 194/1995, Série I-B de 1995-08-23, 23 de Agosto de 1995. Available online: https://diariodarepublica.pt/dr/detalhe/decreto-regulamentar/23-431873 (accessed on 3 July 2025).
- Ampim, P.A.Y.; Sloan, J.J.; Cabrera, R.I.; Harp, D.A.; Jaber, F.H. Green Roof Growing Substrates: Types, Ingredients, Composition and Properties. J. Environ. Hortic. 2010, 28, 244–252. [Google Scholar] [CrossRef]
- Município de Bragança. Edital n.º 96/2024—Tarifários Públicos de Fornecimento de Água. Available online: https://www.cm-braganca.pt/cmbraganca2020/uploads/document/file/5275/edital_n_o_96_2024___tarifarios_publicos_fornecimento_de_agua.pdf (accessed on 1 April 2025).
- Instituto Nacional de Estatística (INE). “Índice de Preços no Consumidor”. 13 de Janeiro de 2025. Available online: https://www.ersar.pt/pt/consumidor/tarifas-dos-servicos/encargos-tarifarios/pesquisa-por-concelho (accessed on 1 April 2025).
- Portal De Serviços Públicos Da República Portuguesa. “Imposto Sobre Valor Acrescentado (IVA) em Portugal”. Available online: https://www2.gov.pt/cidadaos-europeus-viajar-viver-e-fazer-negocios-em-portugal/impostos-para-atividades-economicas-em-portugal/imposto-sobre-valor-acrescentado-iva-em-portugal (accessed on 1 April 2025).
- Silva, F.; Calheiros, C.S.C.; Albuquerque, A.; Lopes, J.P.; Antão-Geraldes, A.M. Technical and Financial Feasibility Analysis of Rainwater Harvesting Using Conventional or Green Roofs in an Industrial Building. Sustainability 2023, 15, 12430. [Google Scholar] [CrossRef]
- Pelak, N.; Porporato, A. Sizing a rainwater harvesting cistern by minimizing costs. J. Hydrol. 2016, 541, 1340–1347. [Google Scholar] [CrossRef]
- Sousa, V.; Silva, C.M.; Meireles, I.C. Technical-financial evaluation of rainwater harvesting systems in commercial buildings–case ase studies from Sonae Sierra in Portugal and Brazil. Environ. Sci. Pollut. Res. 2018, 25, 19283–19297. [Google Scholar] [CrossRef] [PubMed]
- Rosas, D.F.; de Faria, A.A.; de Oliveira, F.G.; Gondim, F.R.; Carvalho, F.S.; Lemos, J.d.S.; Ribeiro, A.D.C.; Junior, A.A.O.; Obraczka, M. Análise do potencial de aproveitamento da água de chuva para uso doméstico em sistemas individuais localizados no município de Maricá-RJ. Cad. Pedagógico 2024, 21, e3840. [Google Scholar] [CrossRef]
- Carter, T.L.; Rasmussen, T.C. Use of green roofs for ultra-urban stream restoration in the georgia piedmont (USA). In Proceedings of the 2005 Georgia Water Resources Conference, Athens, GA, USA, 25–27 April 2005. [Google Scholar]
- Brandão, C.; Cameira, M.D.R.; Valente, F.; De Carvalho, R.C.; Paço, T.A. Wet season hydrological performance of green roofs using native species under Mediterranean climate. Ecol. Eng. 2017, 102, 596–611. [Google Scholar] [CrossRef]
- Ioris, M.D.; Ghisi, E.; Ramos, P.J. Avaliação do potencial de economia de água potável por meio do aproveitamento de água pluvial em um condomínio multifamiliar localizado na cidade de matão–sp. In Proceedings of the XVIII Encontro Nacional de Tecnologia do Ambiente Construído, Porto Alegre, Brazil, 4–6 November 2020; pp. 1–8. [Google Scholar] [CrossRef]
- Silva, M.; Lima, D.; Ribeiro, M. Governança de água e planejamento urbano: Aproveitamento de água de chuva para construção de cidades mais resilientes. Rega 2021, 18, 18. [Google Scholar] [CrossRef]
- Herrmann, T.; Schmida, U. Rainwater utilisation in Germany: Efficiency, dimensioning, hydraulic and environmental aspects. Urban Water 2000, 1, 307–316. [Google Scholar] [CrossRef]
- Lima, J.A.D.; Dambros, M.V.R.; Antonio, M.A.P.M.D.; Janzen, J.G.; Marchetto, M. Potencial da economia de água potável pelo uso de água pluvial: Análise de 40 cidades da Amazônia. Eng. Sanit. Ambient. 2011, 16, 291–298. [Google Scholar] [CrossRef]
- Ward, S.; Memon, F.A.; Butler, D. Performance of a large building rainwater harvesting system. Water Res. 2012, 46, 5127–5134. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; He, B.-J. Towards green roof implementation: Drivers, motivations, barriers and recommendations. Urban. For. Urban. Green. 2021, 58, 126992. [Google Scholar] [CrossRef]
- Barcelos, D.D.A.M.; Jonov, C.M.P.; Silva, A.D.P.E.; Filho, E.R.; Barcelos, H.J. Principais barreiras à adoção de telhados verdes: Uma revisão de literatura para evitá-las no Brasil. Ambient. Constr. 2025, 25, e136793. [Google Scholar] [CrossRef]
- Zhang, X.; Shen, L.; Tam, V.W.Y.; Lee, W.W.Y. Barriers to implement extensive green roof systems: A Hong Kong study. Renew. Sustain. Energy Rev. 2012, 16, 314–319. [Google Scholar] [CrossRef]
- Li, W.C.; Yeung, K.K.A. A comprehensive study of green roof performance from environmental perspective. Int. J. Sustain. Built Environ. 2014, 3, 127–134. [Google Scholar] [CrossRef]
- Dhakal, K.P.; Chevalier, L.R. Managing urban stormwater for urban sustainability: Barriers and policy solutions for green infrastructure application. J. Environ. Manag. 2017, 203, 171–181. [Google Scholar] [CrossRef] [PubMed]
- ANCV. Coberturas Verdes: Guia Técnico para Projeto, Construção e Manutenção de Coberturas Verdes, 1st ed.; Associação Nacional de Coberturas Verdes: Lisboa, Portugal, 2019. [Google Scholar]
- Zaid, S.; Zaid, L.M.; Esfandiari, M.; Hasan, Z.F.A. Green roof maintenance for non-residential buildings in tropical climate: Case study of Kuala Lumpur. Environ. Dev. Sustain. 2022, 24, 2471–2496. [Google Scholar] [CrossRef]
| SC1 | SC2 | |||||
|---|---|---|---|---|---|---|
| Devices | (m3/month) | (m3/year) | % | (m3/month) | (m3/year) | % |
| Washbasin taps | 56.32 | 675.84 | 31.23 | 77.42 | 929.02 | 42.34 |
| Flushing cisterns | 55.03 | 660.36 | 30.51 | 63.04 | 756.44 | 34.47 |
| Urinals | 20.02 | 240.24 | 11.10 | 9.20 | 176.64 | 5.03 |
| Kitchen taps | 47.41 | 568.97 | 26.29 | 27.60 | 331.20 | 15.09 |
| Other uses | 1.57 | 18.79 | 0.87 | 5.60 | 67.20 | 3.06 |
| Total | 180.35 | 2164.20 | 100 | 182.86 | 2260.5 | 100 |
| Rainwater Harvesting | ||||
|---|---|---|---|---|
| SC1 | SC2 | |||
| Tank capacity (m3) | 60 | 70 | ||
| Conventional roofs (S2) | 619.7 m3 | 93.84% | 716.0 m3 | 94.65% |
| 100% Green roofs (S4) | 514.1 m3 | 77.86% | 603.3 m3 | 79.75% |
| 50% conventional roofs and 50% green roofs (S6) | 587.0 m3 | 88.89% | 677.6 m3 | 89.58% |
| 70% green roofs and 30% conventional roofs (S7) | 573.9 m3 | 86.91% | 662.3 m3 | 87.55% |
| Average Annual Potable Water Consumption Volume for Each Scenario (m3) | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Initial | S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | |
| Flushing cisterns | 660.34 | 660.34 | 40.64 | 40.64 | 146.20 | 146.20 | 73.36 | 86.45 | 73.36 | 86.45 |
| Washbasin taps | 675.84 | 337.92 | 675.84 | 337.92 | 675.84 | 337.92 | 675.84 | 675.84 | 337.92 | 337.92 |
| Kitchen taps | 568.97 | 253.44 | 521.80 | 253.44 | 521.80 | 253.44 | 521.80 | 521.80 | 253.44 | 253.44 |
| Urinals | 240.24 | 240.24 | 240.24 | 240.24 | 240.24 | 240.24 | 240.24 | 240.24 | 240.24 | 240.24 |
| Other uses | 18.79 | 18.79 | 18.79 | 18.79 | 18.79 | 18.79 | 18.79 | 18.79 | 18.79 | 18.79 |
| Total | 660.34 | 660.34 | 40.64 | 40.64 | 146.2 | 146.2 | 73.36 | 86.45 | 73.36 | 86.45 |
| Savings (%) | 30.19 | 30.81 | 58.83 | 25.94 | 53.95 | 29.30 | 28.70 | 57.32 | 56.71 | |
| Average Annual Potable Water Consumption Volume with Measures (m3) | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Initial | S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | |
| Flushing cisterns | 756.44 | 756.44 | 40.44 | 40.44 | 153.19 | 153.19 | 78.83 | 94.19 | 78.83 | 94.19 |
| Washbasin taps | 929.02 | 437.93 | 929.02 | 437.93 | 929.02 | 437.93 | 929.02 | 929.02 | 437.93 | 437.93 |
| Kitchen taps | 331.20 | 165.60 | 331.20 | 165.60 | 331.20 | 165.60 | 331.20 | 331.20 | 165.60 | 165.60 |
| Urinals | 176.64 | 176.64 | 176.64 | 176.64 | 176.64 | 176.64 | 176.64 | 176.64 | 176.64 | 176.64 |
| Other uses | 67.20 | 67.20 | 67.20 | 67.20 | 67.20 | 67.20 | 67.20 | 67.20 | 67.20 | 67.20 |
| Total | 2260.5 | 1603.81 | 1544.5 | 887.81 | 1657.24 | 1000.56 | 1582.89 | 1598.24 | 926.2 | 941.56 |
| Savings | 29.05% | 31.67% | 60.73% | 26.69% | 55.74% | 29.98% | 29.30% | 59.03% | 58.35% | |
| Initial Investment | Taps | RWHS | Roofs | Water Bill with Measures | Annual Bill Reduction | Return on Investment | |
|---|---|---|---|---|---|---|---|
| (€ + VAT) | (€ + VAT) | (€ + VAT) | (€ + VAT) | (€/year + VAT) | (€/year + VAT) | (years) | |
| S1 | 2556.00 | 2556.00 | - | - | 8699.31 | 3678.91 | 1 |
| S2 | 54,785.57 | - | 54,785.57 | - | 8623.83 | 3754.39 | 14 |
| S3 | 57,341.57 | 2556.00 | 54,785.57 | - | 5210.45 | 7167.77 | 8 |
| S4 | 208,564.57 | - | 54,785.57 | 153,779.00 | 9218.11 | 3160.11 | 42 |
| S5 | 211,120.57 | 2556.00 | 54,785.57 | 153,779.00 | 5804.73 | 6573.49 | 25 |
| S6 | 131,675.57 | - | 54,785.57 | 76,890.00 | 8808.03 | 3570.19 | 28 |
| S7 | 162,430.57 | - | 54,785.57 | 107,645.00 | 8881.71 | 3496.51 | 33 |
| S8 | 134,231.57 | 2556.00 | 54,785.57 | 76,890.00 | 5394.65 | 6983.57 | 17 |
| S9 | 164,986.57 | 2556.00 | 54,785.57 | 107,645.00 | 5468.33 | 6909.89 | 20 |
| Initial Investment | Taps | RWHS | Roofs | Water Bill with Measures | Annual Bill Reduction | Return on Investment | |
|---|---|---|---|---|---|---|---|
| (€ + VAT) | (€ + VAT) | (€ + VAT) | (€ + VAT) | (€/year + VAT) | (€/year + VAT) | (years) | |
| S1 | 2556.0 | 2556.00 | - | - | 9223.39 | 3697.15 | 1 |
| S2 | 49,679.70 | - | 49,679.70 | - | 8889.44 | 4031.09 | 12 |
| S3 | 52,235.70 | 2556.00 | 49,679.70 | - | 5192.30 | 7728.24 | 7 |
| S4 | 203,458.70 | - | 49,679.70 | 155,779.00 | 9524.20 | 3396.34 | 39 |
| S5 | 206,014.70 | 2556.00 | 49,679.70 | 155,779.00 | 5827.05 | 7093.49 | 23 |
| S6 | 139,897.70 | - | 49,679.70 | 90,218.00 | 9105.57 | 3814.96 | 28 |
| S7 | 175,984.70 | - | 49,679.70 | 126,305.00 | 9192.03 | 3728.51 | 35 |
| S8 | 142,453.70 | 2556.00 | 49,679.70 | 90,218.00 | 5408.43 | 7512.11 | 17 |
| S9 | 178,540.70 | 2556.00 | 49,679.70 | 126.305,00 | 9223.39 | 3697.15 | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Antão-Geraldes, A.M.; Jabur, A.; Vale, P.; Morais, T.; Silva, F. Rainwater ‘Piggy Banks’ and Green Roofs in School Buildings: Integrated Strategies for Sustainable Water Management. Appl. Sci. 2025, 15, 11870. https://doi.org/10.3390/app152211870
Chen S, Antão-Geraldes AM, Jabur A, Vale P, Morais T, Silva F. Rainwater ‘Piggy Banks’ and Green Roofs in School Buildings: Integrated Strategies for Sustainable Water Management. Applied Sciences. 2025; 15(22):11870. https://doi.org/10.3390/app152211870
Chicago/Turabian StyleChen, Sanlira, Ana M. Antão-Geraldes, Andrea Jabur, Patrícia Vale, Tiago Morais, and Flora Silva. 2025. "Rainwater ‘Piggy Banks’ and Green Roofs in School Buildings: Integrated Strategies for Sustainable Water Management" Applied Sciences 15, no. 22: 11870. https://doi.org/10.3390/app152211870
APA StyleChen, S., Antão-Geraldes, A. M., Jabur, A., Vale, P., Morais, T., & Silva, F. (2025). Rainwater ‘Piggy Banks’ and Green Roofs in School Buildings: Integrated Strategies for Sustainable Water Management. Applied Sciences, 15(22), 11870. https://doi.org/10.3390/app152211870

