Judgment Method for Maintenance Accessibility Based on Human Visual Range in Virtual Environment
Abstract
1. Introduction
1.1. Importance of Maintainability
1.2. Importance of Visibility and Accessibility Analysis in Virtual Maintenance
1.3. Virtual Maintenance-Based Approaches for Conducting Visibility and Accessibility Analysis
1.4. Advantage Analysis of Simultaneous Visibility and Accessibility Evaluation
2. Preparations
2.1. Quantitative Auxiliary Tools in Virtual Maintenance Environment
2.1.1. Auxiliary Grid
2.1.2. Auxiliary Object
2.1.3. Auxiliary Ruler
2.2. Image Processing Method
2.2.1. Gray-Scale Processing
2.2.2. Image Binarization Processing
2.2.3. Calculation of Image Pixel Area
3. Quantitative Analysis of Correlation Between Visibility and Accessibility
3.1. Ratio Calculation
3.1.1. Calculation of Projected Area of Auxiliary Object
3.1.2. Calculation of Ratio of Projected Area to Basic Area
3.2. Analysis of Correlation Between Visibility and Accessibility
3.2.1. Trend Analysis
3.2.2. Consistency Analysis
3.2.3. Analysis of Circumstances Where the FOV Is Filled
3.2.4. Edge Critical Point Analysis
4. Case Study
5. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ajukumar, V.N.; Gandhi, O.P. Evaluation of green maintenance initiatives in design and development of mechanical systems using an integrated approach. J. Clean. Prod. 2013, 51, 34–46. [Google Scholar] [CrossRef]
- Kamsu-Foguem, B.; Fondja Wandji, Y.; Tchuenté-Foguem, G.; Tchoffa, D. Experienced knowledge for the description of maintenance packages. J. Manuf. Syst. 2015, 37, 448–455. [Google Scholar] [CrossRef][Green Version]
- Kumar, S.; Khan, I.A.; Gandhi, O.P. A Theoretical Framework for Extraction and Quantification of Psychological Attributes in Design for Maintainability: A Team-Inspired Approach. Res. Eng. Des. 2015, 26, 289–308. [Google Scholar] [CrossRef]
- Waghmode, L.Y.; Sahasrabudhe, A.D. Modelling maintenance and repair costs using stochastic point processes for life cycle costing of repairable systems. Int. J. Comput. Integr. Manuf. 2012, 25, 353–367. [Google Scholar] [CrossRef]
- Luo, X.; Ge, Z.; Zhang, S.; Yang, Y. A Method for the Maintainability Evaluation at Design Stage Using Maintainability Design Attributes. Reliab. Eng. Syst. Saf. 2021, 210, 107535. [Google Scholar] [CrossRef]
- Geng, J.; Li, Y.; Wang, R.; Wang, Z.; Lv, C.; Zhou, D. A virtual maintenance-based approach for satellite assembling and troubleshooting assessment. Acta Astronaut. 2017, 138, 434–453. [Google Scholar] [CrossRef]
- Gomez-Cambronero, A.; Miralles, I.; Tonda, A.; Remolar, I. Immersive Virtual-Reality System for Aircraft Maintenance Education: A Case Study. Appl. Sci. 2023, 13, 5043. [Google Scholar] [CrossRef]
- Geng, J.; Gao, Z.; Li, Y.; He, Z.; Yu, D.; Wang, Z.; Lv, C. Proactive and visual approach for product maintainability design. Adv. Eng. Inform. 2023, 55, 101867. [Google Scholar] [CrossRef]
- Kim, K.W. The comparison of visibility measurement between image-based visual range, human eye-based visual range, and meteorological optical range. Atmos. Environ. 2018, 190, 74–86. [Google Scholar] [CrossRef]
- Akanmu, A.A.; Olayiwola, J.; Olatunji, O.A. Automated checking of building component accessibility for maintenance. Autom. Constr. 2020, 114, 103196. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, W.; Feng, W. The Research of Maintainability Analysis Based on Immersive Virtual Maintenance Technology. In Advances in Human Factors in Simulation and Modeling. AHFE 2017; Advances in Intelligent Systems and Computing; Cassenti, D., Ed.; Springer: Cham, Switzerland, 2018; Volume 591. [Google Scholar] [CrossRef]
- Zhu, D.; Li, H.; Wang, Y. Accessibility Simulation for Narrow Cabin Space. Mech. Electr. Equip. 2019, 36, 72–76+80. [Google Scholar] [CrossRef]
- Leat, S.J.; Lovie-Kitchin, J. Visual impairment and the useful field of vision. Ophthalmic Physiol. Opt. 2006, 26, 392–403. [Google Scholar] [CrossRef]
- Li, M.Y.; Mu, M.H.; Fang, Z.; He, C.H.; Yi, P.X. Improvement of Maintenance Visibility Analysis Method Based on the Cone of Human Visual Field. In Proceedings of the 12th International Conference on Graphics and Image Processing (ICGIP), Xi’an, China, 13–15 November 2020. [Google Scholar]
- Esterman, B. Functional scoring of the binocular field. Ophthalmology 1982, 89, 1226–1234. [Google Scholar] [CrossRef]
- Guo, Z.Y.; Zhou, D.; Chen, J.Y.; Geng, J.; Lv, C.; Zeng, S.K. Using virtual reality to support the product’s maintainability design: Immersive maintainability verification and evaluation system. Comput. Ind. 2018, 101, 41–50. [Google Scholar] [CrossRef]
- Peng, G.L.; Yu, H.Q.; Liu, X.H.; Yang, J.A.; He, X. A desktop virtual reality-based integrated system for complex product maintainability design and verification. Assem. Autom. 2010, 30, 333–344. [Google Scholar] [CrossRef]
- Zhou, D.; Zhou, Q.D.; Guo, Z.Y.; Xie, Y.S. A visual automatic analysis and evaluation method based on virtual reality in microgravity environment. Microsyst. Technol. 2019, 25, 2117–2133. [Google Scholar] [CrossRef]
- Gupta, P.; Selot, A.; Dwivedi, R.K.; Pradhan, M.K. Integration of Machine Learning in Virtual Workstations for Improved Efficiency and Productivity in Industry 4.0. In Industry 4.0 and Advanced Manufacturing, Volume 2. I-4AM 2024; Lecture Notes in Mechanical Engineering; Chakrabarti, A., Suwas, S., Arora, M., Eds.; Springer: Singapore, 2025. [Google Scholar] [CrossRef]
- Kang, K.; Chen, D.; Peng, C.; Koo, D.; Kang, T.; Kim, J. Development of an Automated Visibility Analysis Framework for Pavement Markings Based on the Deep Learning Approach. Remote Sens. 2020, 12, 3837. [Google Scholar] [CrossRef]
- Park, H.S.; Choi, C.W.; Kim, S.H.; Park, B.S.; Kim, K.H.; Kim, H.D. Deployment Analysis and Remote Accessibility Verification for a Maintenance Task in a PRIDE Digital Mock-Up. Ann. Nucl. Energy 2011, 38, 767–774. [Google Scholar] [CrossRef]
- Xu, D.; Wang, B.; Wu, X. Method Research of Equipment Maintenance Accessibility Evaluation. Manuf. Technol. Mach. Tool 2013, 6, 77–80. [Google Scholar]
- Guo, J.; Sun, Z.; He, J.; Jia, X.; Li, H.; Yan, X.; Chen, H.; Tang, H.; Wu, G. An Approach for Integrated Analysis of Human Factors in Remote Handling Maintenance. J. Mech. Eng. 2016, 65, 102–115. [Google Scholar] [CrossRef]
- Li, Y. Research on Maintenance Accessibility Analysis and Evaluation Technology. Master’s Thesis, Civil Aviation University of China, Tianjin, China, 2014. [Google Scholar]
- Zhou, D.; Wu, H.; Guo, Z.; Liu, Y.; Zhang, Q. Maintenance Accessibility Evaluation Method Based on D-H Model and Comfort in a Virtual Maintenance Environment. Int. J. Adv. Manuf. Technol. 2022, 121, 1429–1442. [Google Scholar] [CrossRef]
- Stéphane, G.; Vincent, W.; Killian, H. Verification and validation by extended reality simulations of Test Blanket Modules replacement operations in Air-Fed suits. Fusion. Eng. Des. 2023, 187, 113383. [Google Scholar] [CrossRef]
- Zhu, W.M.; Fan, X.M.; He, Q.C. An integrated operation feasibility analysis method for manual assembly and disassembly in restricted space. Int. J. Adv. Manuf. Technol. 2020, 106, 3721–3740. [Google Scholar] [CrossRef]
- Qiu, S.G.; Yang, Y.F.; Fan, X.M.; He, Q.C. Human factors automatic evaluation for entire maintenance processes in virtual environment. Assem. Autom. 2014, 34, 357–369. [Google Scholar] [CrossRef]
- Xu, H.-C.; Pan, Y.; Xiong, Y.-X.; He, J.-W. Comparative study on two civil engine thrust reversers for their maintainability analysis. In Proceedings of the 6th International Multi-Conference on Engineering and Technology Innovation (IMETI), Hualien, Taiwan, 17–31 October 2018. [Google Scholar]
- Di, P.; Chen, J.; Li, Y.; Guo, J.; Lv, C. An Application Method of Satellite Troubleshooting Evaluation System Based on Virtual Maintenance Analysis. In Proceedings of the 2014 Prognostics and System Health Management Conference (PHM-2014 Hunan), Zhangjiajie, China, 24–27 August 2014; pp. 569–572. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, W.M.; Hu, C.W.; Liu, Y.Q.; Mi, J. Design and Verification of Maintenance System for Space Station Manipulator End Effector. Chin. Space Sci. Technol. 2023, 43, 79–86. [Google Scholar] [CrossRef]
- Zhang, Y.M.; Lee, H.J. Infrared and Visible Image Fusion via Feature-Oriented Dual-Module Complementary. Appl. Sci. 2023, 13, 2907. [Google Scholar] [CrossRef]
- Zhao, Z.L.; Yang, S.M.; Zhao, D.W. A New Framework for Visual Classification of Multi-Channel Malware Based on Transfer Learning. Appl. Sci. 2023, 13, 2484. [Google Scholar] [CrossRef]
- Saravanan, C.; Society, I.C. Color Image to Grayscale Image Conversion. In Proceedings of the 2nd International Conference on Computer Engineering and Applications, Bali Island, Indonesia, 19–21 March 2010; pp. 196–199. [Google Scholar]
- Sezgin, M.; Sankur, B. Survey over image thresholding techniques and quan-titative performance evaluation. J. Electron. Imaging 2004, 13, 146–168. [Google Scholar]
- Suh, S.; Kim, J.; Lukowicz, P.; Lee, Y.O. Two-stage generative adversarial networks for binarization of color document images. Pattern Recognit. 2022, 130, 108810. [Google Scholar] [CrossRef]
- Feng, S. Effective document image binarization via a convex variational level set model. Appl. Math. Comput. 2022, 419, 126861. [Google Scholar] [CrossRef]







| Different Auxiliary Objects | ||||||||
| Item () | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |
| Radius | R = 0.5 | R = 1 | R = 1.5 | R = 2 | R = 2.5 | R = 3 | R = 3.5 | |
| Basic area | 0.79 | 3.14 | 7.07 | 12.57 | 19.63 | 28.27 | 38.48 | |
| Item () | Position | Projected area | ||||||
| 1 | 1000 mm | 5.71 | 22.67 | 51.02 | 90.37 | 141.41 | 203.18 | 277.06 |
| 2 | 2000 mm | 15.64 | 62.11 | 139.67 | 247.54 | 387.35 | 556.50 | 758.97 |
| 3 | 3000 mm | 30.11 | 119.60 | 269.03 | 476.73 | 745.67 | 1071.71 | 1461.33 |
| 4 | 4000 mm | 49.24 | 195.40 | 440.00 | 780.83 | 1219.72 | 1752.22 | 2389.42 |
| 5 | 5000 mm | 72.89 | 293.64 | 660.61 | 1170.72 | 1831.07 | 2630.05 | 3586.60 |
| 6 | 6000 mm | 103.53 | 410.60 | 924.06 | 1637.86 | 2561.45 | 3679.87 | 5017.67 |
| 7 | 7000 mm | 138.07 | 547.67 | 1232.46 | 2168.23 | 3417.54 | 4909.13 | 6701.43 |
| 8 | 8000 mm | 174.42 | 692.80 | 1558.96 | 2761.30 | 4320.78 | 6207.92 | 8465.41 |
| 9 | 9000 mm | 209.85 | 837.62 | 1889.26 | 3352.41 | 5244.91 | 7539.67 | 10,273.95 |
| 10 | 10,000 mm | 254.98 | 1020.78 | 2291.76 | 4066.97 | 6412.68 | 9155.70 | 12,470.75 |
| 11 | 11,000 mm | 305.26 | 1228.80 | 2755.07 | 4893.58 | 7665.18 | 11,010.87 | 14,995.68 |
| 12 | 12,000 mm | 360.33 | 1445.75 | 3246.36 | 5763.12 | 9026.39 | 12,967.52 | 17,656.13 |
| 13 | 13,000 mm | 417.46 | 1682.25 | 3781.56 | 6690.85 | 10,485.93 | 15,067.69 | 20,515.65 |
| 14 | 14,000 mm | 491.15 | 1946.96 | 4402.09 | 7797.10 | 12,184.62 | 17,517.44 | 23,872.34 |
| 15 | 15,000 mm | 558.81 | 2220.68 | 5014.02 | 8905.07 | 13,911.32 | 19,999.86 | 27,255.32 |
| 16 | 16,000 mm | 637.64 | 2544.57 | 5756.53 | 10,192.89 | 15,922.04 | 22,890.61 | 31,194.77 |
| 17 | 17,000 mm | 714.91 | 2847.54 | 6409.38 | 11,360.44 | 17,743.18 | 25,508.80 | 34,762.78 |
| 18 | 18,000 mm | 784.28 | 3134.72 | 7061.41 | 12,527.28 | 19,566.66 | 28,130.36 | 38,335.38 |
| 19 | 19,000 mm | 868.09 | 3473.67 | 7865.76 | 13,873.88 | 21,676.44 | 31,163.52 | 42,461.71 |
| 20 | 20,000 mm | 985.20 | 3916.52 | 8805.45 | 15,623.03 | 24,409.30 | 35,092.47 | 47,823.17 |
| Item | Position | Ratio | Mean | Coefficient | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| R = 0.5 | R = 1 | R = 1.5 | R = 2 | R = 2.5 | R = 3 | R = 3.5 | ||||
| 1 | 1000 mm | 7.27 | 7.22 | 7.22 | 7.19 | 7.20 | 7.19 | 7.20 | 7.21 | 0.003898 |
| 2 | 2000 mm | 19.91 | 19.77 | 19.76 | 19.70 | 19.73 | 19.68 | 19.72 | 19.75 | 0.003852 |
| 3 | 3000 mm | 38.34 | 38.07 | 38.06 | 37.94 | 37.98 | 37.90 | 37.97 | 38.04 | 0.003860 |
| 4 | 4000 mm | 62.69 | 62.20 | 62.25 | 62.14 | 62.12 | 61.97 | 62.09 | 62.21 | 0.003695 |
| 5 | 5000 mm | 92.81 | 93.47 | 93.46 | 93.16 | 93.26 | 93.02 | 93.20 | 93.20 | 0.002517 |
| 6 | 6000 mm | 131.82 | 130.70 | 130.73 | 130.34 | 130.45 | 130.15 | 130.38 | 130.65 | 0.004235 |
| 7 | 7000 mm | 175.79 | 174.33 | 174.36 | 172.54 | 174.05 | 173.63 | 174.13 | 174.12 | 0.005153 |
| 8 | 8000 mm | 222.08 | 220.52 | 220.55 | 219.74 | 220.06 | 219.56 | 219.97 | 220.35 | 0.003836 |
| 9 | 9000 mm | 267.19 | 266.62 | 267.28 | 266.78 | 267.12 | 266.66 | 266.96 | 266.94 | 0.000912 |
| 10 | 10,000 mm | 324.65 | 324.92 | 324.22 | 323.64 | 326.60 | 323.82 | 324.05 | 324.56 | 0.003099 |
| 11 | 11,000 mm | 388.67 | 391.14 | 389.76 | 389.42 | 390.38 | 389.43 | 389.66 | 389.78 | 0.002017 |
| 12 | 12,000 mm | 458.79 | 460.20 | 459.27 | 458.61 | 459.71 | 458.63 | 458.79 | 459.14 | 0.001334 |
| 13 | 13,000 mm | 531.53 | 535.48 | 534.98 | 532.44 | 534.04 | 532.91 | 533.09 | 533.50 | 0.002642 |
| 14 | 14,000 mm | 625.36 | 619.74 | 622.77 | 620.47 | 620.56 | 619.55 | 620.31 | 621.25 | 0.003373 |
| 15 | 15,000 mm | 711.50 | 706.87 | 709.34 | 708.64 | 708.50 | 707.35 | 708.22 | 708.63 | 0.002129 |
| 16 | 16,000 mm | 811.87 | 809.96 | 814.38 | 811.13 | 810.90 | 809.59 | 810.58 | 811.20 | 0.00196 |
| 17 | 17,000 mm | 910.25 | 906.40 | 906.74 | 904.04 | 903.65 | 902.19 | 903.29 | 905.22 | 0.003051 |
| 18 | 18,000 mm | 998.58 | 997.81 | 998.99 | 996.89 | 996.52 | 994.91 | 996.13 | 997.12 | 0.001441 |
| 19 | 19,000 mm | 1105.28 | 1105.71 | 1112.78 | 1104.05 | 1103.97 | 1102.19 | 1103.35 | 1105.33 | 0.003154 |
| 20 | 20,000 mm | 1254.40 | 1246.67 | 1245.72 | 1243.24 | 1243.16 | 1241.14 | 1242.66 | 1245.28 | 0.003561 |
| Item | Position | Ratio | Mean | Coefficient | |||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| R = 0.5 | R = 1 | R = 1.5 | R = 2 | R = 2.5 | R = 3 | R = 3.5 | |||||
| 1 | 1000 mm | 5% | 7.19 | 7.25 | 7.23 | 7.22 | 7.21 | 7.18 | 7.26 | 7.22 | 0.004077 |
| 2 | 50% | 7.27 | 7.22 | 7.22 | 7.19 | 7.2 | 7.19 | 7.2 | 7.21 | 0.003898 | |
| 3 | 95% | 7.27 | 7.23 | 7.2 | 7.2 | 7.21 | 7.22 | 7.18 | 7.22 | 0.003989 | |
| 4 | 5000 mm | 5% | 92.92 | 93.29 | 93.37 | 93.37 | 93.34 | 92.89 | 93.25 | 93.20 | 0.002244 |
| 5 | 50% | 92.81 | 93.47 | 93.46 | 93.16 | 93.26 | 93.02 | 93.2 | 93.20 | 0.002517 | |
| 6 | 95% | 92.99 | 92.95 | 93.23 | 93.32 | 93.69 | 93.12 | 93.55 | 93.26 | 0.002975 | |
| 7 | 10,000 mm | 5% | 324.57 | 324.89 | 324.23 | 324.04 | 326.41 | 323.67 | 323.98 | 324.54 | 0.002823 |
| 8 | 50% | 324.65 | 324.92 | 324.22 | 323.64 | 326.6 | 323.82 | 324.05 | 324.56 | 0.003099 | |
| 9 | 95% | 324.67 | 324.89 | 324.17 | 323.61 | 326.59 | 323.75 | 324.13 | 324.54 | 0.003116 | |
| 10 | 15,000 mm | 5% | 711.56 | 706.76 | 709.45 | 708.34 | 708.74 | 707.39 | 709.29 | 708.79 | 0.002204 |
| 11 | 50% | 711.5 | 706.87 | 709.34 | 708.64 | 708.5 | 707.35 | 708.22 | 708.63 | 0.002129 | |
| 12 | 95% | 710.68 | 707.42 | 709.87 | 709.98 | 708.04 | 707.12 | 707.25 | 708.62 | 0.002121 | |
| 13 | 20,000 mm | 5% | 1251.95 | 1248.63 | 1249.23 | 1241.04 | 1243.57 | 1242.23 | 1240.95 | 1245.37 | 0.003594 |
| 14 | 50% | 1254.4 | 1246.67 | 1245.72 | 1243.24 | 1243.16 | 1241.14 | 1242.66 | 1245.28 | 0.003561 | |
| 15 | 95% | 1253.68 | 1246.51 | 1243.28 | 1247.02 | 1242.56 | 1243.27 | 1243.75 | 1246.13 | 0.003298 | |
| Position | Circle Radius | Basic Area | Projected Area | Ratio | Fitting Result | Judgment | |
|---|---|---|---|---|---|---|---|
| Case 1 | 9000 mm | 1 | 3.14 | 1766.15 | 562.47 | 268.85 | in |
| Case 2 | 9000 mm | 1 | 3.14 | 373.20 | 118.85 | 268.85 | out |
| Case 3 | 2500 mm | 1 | 3.14 | 39.38 | 12.54 | 29.19 | out |
| Position | Time Required for Visibility Assessment (s) | Time Required for Accessibility Assessment (s) | Time Consumption of the Proposed Method (s) | Percentage of Time Saved | |
|---|---|---|---|---|---|
| Case 1 | 9000 mm | 2.28 | 3.06 | 2.10 | 60.67% |
| Case 2 | 9000 mm | 3.23 | 3.51 | 3.27 | 51.48% |
| Case 3 | 2500 mm | 4.13 | 2.11 | 3.41 | 45.35% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geng, J.; Liu, S.; Liu, B.; Gao, Z.; Guo, Z.; Li, Y. Judgment Method for Maintenance Accessibility Based on Human Visual Range in Virtual Environment. Appl. Sci. 2025, 15, 11861. https://doi.org/10.3390/app152211861
Geng J, Liu S, Liu B, Gao Z, Guo Z, Li Y. Judgment Method for Maintenance Accessibility Based on Human Visual Range in Virtual Environment. Applied Sciences. 2025; 15(22):11861. https://doi.org/10.3390/app152211861
Chicago/Turabian StyleGeng, Jie, Shuyi Liu, Bingyi Liu, Zhuoying Gao, Ziyue Guo, and Ying Li. 2025. "Judgment Method for Maintenance Accessibility Based on Human Visual Range in Virtual Environment" Applied Sciences 15, no. 22: 11861. https://doi.org/10.3390/app152211861
APA StyleGeng, J., Liu, S., Liu, B., Gao, Z., Guo, Z., & Li, Y. (2025). Judgment Method for Maintenance Accessibility Based on Human Visual Range in Virtual Environment. Applied Sciences, 15(22), 11861. https://doi.org/10.3390/app152211861

