Comparative Evaluation of Machine Learning Models for Discriminating Honey Geographic Origin Based on Altitude-Dependent Mineral Profiles †
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection and Study Area
2.2. Mineral Content Analysis by ICP-MS
- Plasma Power: 1550 W
- Plasma Mode: Normal
- Plasma Gas Flow Rate: 15.0 L/min
- Auxiliary Gas Flow Rate: 1.0 L/min
- Carrier Gas Flow Rate: 0.89 L/min
- Dilution Gas Flow Rate: 0.15 L/min
- Sample Depth: 8.0 mm
- Spray Chamber Temperature: 2 °C
- Kinetic Energy Discrimination: 3 V
- Helium Gas Flow Rate: 4.5 mL/min
2.3. Data Analysis and Machine Learning
3. Results
3.1. Mineral Composition of Honey
3.1.1. Macro Elements
3.1.2. Trace Elements
3.1.3. Heavy Metals
3.2. Relationship Between Altitude and Mineral Level
3.3. Geographical Discrimination of Honey
3.3.1. Principal Component Analysis (PCA)
3.3.2. Supervised Machine Learning Classification Methods
3.3.3. Identification of Key Discriminatory Minerals
3.3.4. Interpretation of Model Performance Differences
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Soares, S.; Amaral, J.S.; Oliveira, M.B.P.P.; Mafra, I. A Comprehensive Review on the Main Honey Authentication Issues: Production and Origin. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1072–1100. [Google Scholar] [CrossRef] [PubMed]
- Grassi, G.; Capasso, G.; Cillo, A.; Miedico, O.; Pompa, C.; Nardelli, V.; Perna, A.M. Effect of Altitude on Polyphenol Content, Antioxidant Activity and Multi-Element Composition of Wildflower Honey. Appl. Sci. 2025, 15, 3255. [Google Scholar] [CrossRef]
- Barreiros, J.; Cepeda, A.; Franco, C.; Nebot, C.; Vázquez, B. Analysis of minerals in honey and their nutritional implications. J. Food Compos. Anal. 2024, 136, 106733. [Google Scholar] [CrossRef]
- Bogdanov, S.; Haldimann, M.; Luginbühl, W.; Gallmann, P. Minerals in honey: Environmental, geographical and botanical aspects. J. Apic. Res. 2007, 46, 269–275. [Google Scholar] [CrossRef]
- Baroni, M.V.; Podio, N.S.; Badini, R.G.; Inga, M.; Ostera, H.A.; Cagnoni, M.; Gautier, E.A.; García, P.P.; Hoogewerff, J.; Wunderlin, D.A. Linking soil, water, and honey composition to assess the geographical origin of Argentinean honey by multielemental and isotopic analyses. J. Agric. Food Chem. 2015, 63, 4638–4645. [Google Scholar] [CrossRef]
- Rivera-Mondragón, A.; Marrone, M.; Bruner-Montero, G.; Gaitán, K.; de Núñez, L.; Otero-Palacio, R.; Añino, Y.; Wcislo, W.T.; Martínez-Luis, S.; Fernández-Marín, H. Assessment of the Quality, Chemometric and Pollen Diversity of Apis mellifera Honey from Different Seasonal Harvests. Foods 2023, 12, 3656. [Google Scholar] [CrossRef]
- Tlak Gajger, I.; Pavliček, D.; Oreščanin, V.; Varenina, I.; Sedak, M.; Bilandžić, N. Mineral Concentrations in Different Types of Honey Originating from Three Regions of Continental Croatia. Foods 2024, 13, 2754. [Google Scholar] [CrossRef]
- Silva, B.; Gonzaga, L.V.; Maltez, H.F.; Samochvalov, K.B.; Fett, R.; Costa, A.C.O. Exploring the impact of harvest year on the mineral composition of Mimosa scabrella Bentham honeydew honey from Santa Catarina (Brazil) using ICP-MS and chemometric tools. Int. J. Food Sci. Technol. 2024, 59, 5420–5429. [Google Scholar] [CrossRef]
- Drivelos, S.A.; Danezis, G.P.; Halagarda, M.; Popek, S.; Georgiou, C.A. Geographical origin and botanical type honey authentication through elemental metabolomics via chemometrics. Food Chem. 2021, 338, 127936. [Google Scholar] [CrossRef]
- Maione, C.; Barbosa, F., Jr.; Barbosa, R.M. Predicting the botanical and geographical origin of honey with multivariate data analysis and machine learning techniques: A review. Comput. Electron. Agric. 2019, 157, 436–446. [Google Scholar] [CrossRef]
- Cosmina, M.; Gallenti, G.; Marangon, F.; Troiano, S. Reprint of “Attitudes towards honey among Italian consumers: A choice experiment approach”. Appetite 2016, 106, 110–116. [Google Scholar] [CrossRef]
- Danezis, G.P.; Tsagkaris, A.S.; Brusic, V.; Georgiou, C.A. Food authentication: State of the art and prospects. Curr. Opin. Food Sci. 2016, 10, 22–31. [Google Scholar] [CrossRef]
- Everstine, K.D.; Chin, H.B.; Lopes, F.A.; Moore, J.C. Database of Food Fraud Records: Summary of Data from 1980 to 2022. J. Food Prot. 2024, 87, 100227. [Google Scholar] [CrossRef] [PubMed]
- Geana, E.I.; Ciucure, C.T. Establishing authenticity of honey via comprehensive Romanian honey analysis. Food Chem. 2020, 306, 125595. [Google Scholar] [CrossRef] [PubMed]
- Ligor, M.; Kowalkowski, T.; Buszewski, B. Comparative Study of the Potentially Toxic Elements and Essential Microelements in Honey Depending on the Geographic Origin. Molecules 2022, 27, 5474. [Google Scholar] [CrossRef] [PubMed]
- Terrab, A.; González, A.G.; Díez, M.J.; Heredia, F.J. Mineral content and electrical conductivity of the honeys produced in Northwest Morocco and their contribution to the characterisation of unifloral honeys. J. Sci. Food Agric. 2003, 83, 637–643. [Google Scholar] [CrossRef]
- Pohl, P. Determination of metal content in honey by atomic absorption and emission spectrometries. TrAC Trends Anal. Chem. 2009, 28, 117–128. [Google Scholar] [CrossRef]
- Batista, B.L.; da Silva, L.R.S.; Rocha, B.A.; Rodrigues, J.L.; Berretta-Silva, A.A.; Bonates, T.O.; Gomes, V.S.D.; Barbosa, R.M.; Barbosa, F. Multi-element determination in Brazilian honey samples by inductively coupled plasma mass spectrometry and estimation of geographic origin with data mining techniques. Food Res. Int. 2012, 49, 209–215. [Google Scholar] [CrossRef]
- Di Bella, G.; Lo Turco, V.; Potortì, A.G.; Bua, G.D.; Fede, M.R.; Dugo, G. Geographical discrimination of Italian honey by multi-element analysis with a chemometric approach. J. Food Compos. Anal. 2015, 44, 25–35. [Google Scholar] [CrossRef]
- Georgiou, C.A.; Danezis, G.P. Elemental and isotopic mass spectrometry. In Advanced Mass Spectrometry for Food Safety and Quality; Pico, Y., Ed.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 131–243. [Google Scholar] [CrossRef]
- Magdas, D.A.; Guyon, F.; Puscas, R.; Vigouroux, A.; Gaillard, L.; Dehelean, A.; Feher, I.; Cristea, G. Applications of emerging stable isotopes and elemental markers for geographical and varietal recognition of Romanian and French honeys. Food Chem. 2021, 334, 127599. [Google Scholar] [CrossRef]
- Mara, A.; Migliorini, M.; Ciulu, M.; Chignola, R.; Egido, C.; Núñez, O.; Sentellas, S.; Saurina, J.; Caredda, M.; Deroma, M.A.; et al. Elemental Fingerprinting Combined with Machine Learning Techniques as a Powerful Tool for Geographical Discrimination of Honeys from Nearby Regions. Foods 2024, 13, 243. [Google Scholar] [CrossRef] [PubMed]
- Hernández, O.M.; Fraga, J.M.G.; Jiménez, A.I.; Jiménez, F.; Arias, J.J. Characterization of honey from the Canary Islands: Determination of the mineral content by atomic absorption spectrophotometry. Food Chem. 2005, 93, 449–456. [Google Scholar] [CrossRef]
- Fechner, D.C.; Hidalgo, M.J.; Ruiz Díaz, J.D.; Gil, R.A.; Pellerano, R.G. Geographical origin authentication of honey produced in Argentina. Food Biosci. 2020, 33, 100483. [Google Scholar] [CrossRef]
- Zhou, X.; Taylor, M.P.; Salouros, H.; Prasad, S. Authenticity and geographic origin of global honeys determined using carbon isotope ratios and trace elements. Sci. Rep. 2018, 8, 14639. [Google Scholar] [CrossRef]
- Pellerano, R.G.; Uñates, M.A.; Cantarelli, M.A.; Camiña, J.M.; Marchevsky, E.J. Analysis of trace elements in multifloral Argentine honeys and their classification according to provenance. Food Chem. 2012, 134, 578–582. [Google Scholar] [CrossRef]
- Pavlin, A.; Kočar, D.; Imperl, J.; Kolar, M.; Marolt, G.; Petrova, P. Honey Origin Authentication via Mineral Profiling Combined with Chemometric Approaches. Foods 2023, 12, 2826. [Google Scholar] [CrossRef]
- Mateo, F.; Tarazona, A.; Mateo, E.M. Comparative Study of Several Machine Learning Algorithms for Classification of Unifloral Honeys. Foods 2021, 10, 1543. [Google Scholar] [CrossRef]
- Hategan, A.R.; Magdas, D.A.; Puscas, R.; Dehelean, A.; Cristea, G.; Simionescu, B. Machine Learning Algorithms in Corroboration with Isotope and Elemental Profile—An Efficient Tool for Honey Geographical Origin Assessment. Appl. Sci. 2022, 12, 10894. [Google Scholar] [CrossRef]
- Food and Agriculture Organisation of the United Nations. Crops and Livestock Products. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 21 March 2025).
- UNDP Türkiye. Organic Agriculture Cluster. Available online: https://www.undp.org/turkiye/projects/organic-agriculture-cluster (accessed on 16 August 2025).
- Republic of Türkiye Ministry of Agriculture and Forestry Apiculture Research Institute. Beekeeping Statistics by Province in Türkiye. 2024. Available online: https://arastirma.tarimorman.gov.tr/aricilik/Link/2/Aricilik-Istatistikleri (accessed on 16 August 2025).
- Turkish Patent and Trademark Office. Official Statistics. Available online: https://ci.turkpatent.gov.tr/cografi-isaretler/detay/37928 (accessed on 16 August 2025).
- Turkish Patent and Trademark Office. Official Statistics. Available online: https://ci.turkpatent.gov.tr/cografi-isaretler/detay/8563 (accessed on 16 August 2025).
- Turkish State Meteorological Service. Statistics by Provinces and Districts—Siirt. Available online: https://mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?k=A&m=SIIRT (accessed on 30 October 2025).
- Turkish State Meteorological Service. Statistics by Provinces and Districts—Şırnak. Available online: https://mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?k=A&m=SIRNAK (accessed on 30 October 2025).
- Gürbüz, S.; Özenirler, Ç.; Mayda, N.; Gençay Çelemli, Ö.; Özkök, A. Pollen spectrum of some honey samples produced in Siirt-Turkey. Hacet. J. Biol. Chem. 2019, 47, 295–303. [Google Scholar] [CrossRef]
- Gürbüz, S.; Gençay Çelemli, Ö.; Özenirler, Ç.; Mayda, N.; Özkök, A.; Sorkun, K. Melissopalynological analysis of honey samples collected from Şırnak City. Uludag Bee J. 2019, 19, 126–135. [Google Scholar]
- Bora, F.D.; Andrecan, A.F.; Călugăr, A.; Bunea, C.I.; Popescu, M.; Petrescu-Mag, I.V.; Bunea, A. Comprehensive Elemental Profiling of Romanian Honey: Exploring Regional Variance, Honey Types, and Analyzed Metals for Sustainable Apicultural and Environmental Practices. Foods 2024, 13, 1253. [Google Scholar] [CrossRef]
- Ertop, U.; Şevik, H.; Hendek Ertop, M. Mineral composition and heavy metal contents of chestnut honey collected from Kastamonu region. J. Apitherapy Nat. 2023, 6, 73–87. [Google Scholar] [CrossRef]
- Çobanoğlu, D.N.; Temizer, İ.K.; Felek, İ.; Şimşek, A.; Dündar, O. Botanical origin of honey: Implications for mineral composition and potential toxic element safety. Chem. Biodivers. 2025, 22, e00318. [Google Scholar] [CrossRef] [PubMed]
- Yılmaz, H.; Yavuz, Ö. Content of some trace metals in honey from south-eastern Anatolia. Food Chem. 1999, 65, 475–476. [Google Scholar] [CrossRef]
- Yücel, Y.; Sultanoğlu, P. Characterization of Hatay honeys according to their multi-element analysis using ICP-OES combined with chemometrics. Food Chem. 2013, 140, 231–237. [Google Scholar] [CrossRef]
- Alqarni, A.S.; Owayss, A.A.; Mahmoud, A.A.; Hannan, M.A. Mineral content and physical properties of local and imported honeys in Saudi Arabia. J. Saudi Chem. Soc. 2014, 18, 618–625. [Google Scholar] [CrossRef]
- Terrab, A.; Recamales, A.F.; Hernanz, D.; Heredia, F.J. Characterisation of Spanish thyme honeys by their physicochemical characteristics and mineral contents. Food Chem. 2004, 88, 537–542. [Google Scholar] [CrossRef]
- Kılıç Altun, S.; Dinç, H.; Paksoy, N.; Temamoğulları, F.K.; Savrunlu, M. Analyses of mineral content and heavy metal of honey sample from South and East Region of Turkey by using ICP-MS. Int. J. Anal. Chem. 2017, 2017, 6391454. [Google Scholar] [CrossRef]
- Altundag, H.; Bina, E.; Altıntıg, E. The levels of trace elements in honey and molasses samples that were determined by ICP-OES after microwave digestion method. Biol. Trace Elem. Res. 2016, 170, 508–514. [Google Scholar] [CrossRef]
- Demir Kanbur, E.; Yuksek, T.; Atamov, V.; Özcelik, A.E. A comparison of the physicochemical properties of chestnut and highland honey: The case of Senoz Valley in the Rize province of Turkey. Food Chem. 2021, 345, 128864. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EU) 2023/915 of 25 April 2023 on Maximum Levels for Certain Contaminants in Food and Repealing Regulation (EC) No 1881/2006. Available online: https://eur-lex.europa.eu/eli/reg/2023/915/oj (accessed on 10 July 2025).
- Bilir, B.; Irmak, S.; Doğan, M. Determination of Some Properties and Nutrient Element Levels of Agricultural Soils in Silopi District, Şırnak Province. Yüzüncü Yıl Univ. J. Inst. Sci. 2023, 28, 1174–1186. [Google Scholar] [CrossRef]
- Schmidlová, S.; Javůrková, Z.; Tremlová, B.; Hernik, J.; Prus, B.; Marcinčák, S.; Marcinčáková, D.; Štarha, P.; Čížková, H.; Kružík, V.; et al. Exploring the Influence of Soil Types on the Mineral Profile of Honey: Implications for Geographical Origin Prediction. Foods 2024, 13, 2006. [Google Scholar] [CrossRef]
- Song, W.; Wang, H.; Maguire, P.; Nibouche, O. Spectral Data Classification Using Locally Weighted Partial Least Squares Classifier. In Data Science and Knowledge Engineering for Sensing Decision Support: Proceedings of the 13th International FLINS Conference (FLINS 2018), Belfast, Northern Ireland, UK, 21–24 August 2018; World Scientific: Singapore, 2018; pp. 700–707. [Google Scholar]

| Low Elevation Zone (Siirt-Merkez) | Mid Elevation Zone (Siirt-Pervari) | High Elevation Zone (Şırnak-Beytülşebap) | Test Statistic | p | ||||
|---|---|---|---|---|---|---|---|---|
| Mean ± sd | Median (Min.–Max.) | Mean ± sd | Median (Min.–Max.) | Mean ± sd | Median (Min.–Max.) | |||
| Al | 3.77 ± 3.26 | 2.78 (0.39–12.41) | 2.73 ± 1.79 | 2.52 (1.27–7.48) | 4.61 ± 4.19 | 3.56 (0.56–15.50) | 1.436 | 0.488 x |
| Ba | 0.17 ± 0.09 | 0.14 (0.06–0.33) a | 0.38 ± 0.22 | 0.39 (0.11–0.87) b | 0.22 ± 0.17 | 0.19 (0.06–0.63) ab | 6.901 | 0.032 x |
| Ca | 140.82 ± 81.10 b | 127.82 (23.90–298.79) | 187.96 ± 99.71 b | 176.72 (75.16–387.81) | 64.85 ± 39.27 a | 52.19 (10.38–134.30) | 9.986 | 0.002 y |
| Cd | 0.02 ± 0.02 | 0.02 (0.00–0.05) | 0.03 ± 0.01 | 0.04 (0.01–0.05) | 0.03 ± 0.01 | 0.02 (0.01–0.05) | 2.115 | 0.135 y |
| Co | 0.05 ± 0.05 | 0.03 (0.01–0.20) | 0.04 ± 0.04 | 0.03 (0.01–0.15) | 0.04 ± 0.07 | 0.02 (0.01–0.29) | 3.957 | 0.138 x |
| Cr | 0.36 ± 0.25 | 0.37 (0.09–0.68) | 0.25 ± 0.16 | 0.25 (0.09–0.59) | 0.42 ± 0.27 | 0.40 (0.02–0.99) | 2.868 | 0.238 x |
| Cu | 0.58 ± 0.36 | 0.46 (0.12–1.26)b | 0.41 ± 0.25 | 0.44 (0.09–0.75) ab | 0.27 ± 0.18 | 0.21 (0.08–0.65)a | 6.841 | 0.033 x |
| Fe | 2.79 ± 2.80 | 2.44 (0.12–7.22) | 2.96 ± 2.92 | 1.79 (0.14–7.96) | 5.40 ± 5.51 | 3.69 (0.10–21.70) | 2.266 | 0.322 x |
| K | 123.60 ± 58.76 | 118.79 (48.91–210.39) | 119.35 ± 60.25 | 113.82 (53.41–251.62) | 108.00 ± 51.12 | 123.51 (50.22–199.58) | 0.303 | 0.741 y |
| Mg | 34.17 ± 24.73 | 21.40 (9.56–71.03) | 43.98 ± 24.91 | 46.70 (12.54–81.24) | 37.81 ± 29.99 | 23.92 (8.15–89.31) | 0.719 | 0.698 x |
| Mn | 0.38 ± 0.20 | 0.42 (0.11–0.68) | 0.37 ± 0.14 | 0.35 (0.21–0.61) | 0.31 ± 0.18 | 0.25 (0.11–0.70) | 0.74 | 0.484 y |
| Na | 53.98 ± 34.36 | 54.18 (5.08–112.87) | 45.56 ± 28.87 | 44.23 (14.22–98.64) | 37.76 ± 25.48 | 35.82 (10.08–100.14) | 1.085 | 0.349 y |
| Ni | 0.30 ± 0.12 | 0.32 (0.11–0.52) | 0.33 ± 0.23 | 0.29 (0.10–0.85) | 0.34 ± 0.20 | 0.34 (0.11–0.75) | 0.197 | 0.822 y |
| Pb | 0.11 ± 0.04 | 0.10 (0.05–0.19) | 0.07 ± 0.05 | 0.07 (0.02–0.18) | 0.09 ± 0.06 | 0.09 (0.01–0.20) | 1.61 | 0.214 y |
| Sr | 0.33 ± 0.23 | 0.27 (0.05–0.75) | 0.36 ± 0.20 | 0.35 (0.10–0.64) | 0.21 ± 0.17 | 0.12 (0.05–0.61) | 4.802 | 0.091 x |
| Zn | 4.75 ± 2.84 | 3.84 (1.21–10.25) | 4.54 ± 1.92 | 5.05 (1.09–6.89) | 5.62 ± 4.91 | 3.84 (1.05–18.23) | 0.126 | 0.939 x |
| Models | Actual | Predicted | Total | Accuracy | Precision (PPV) | Recall (TPR) | False Positive Rate (FPR) | False Discovery Rate (FDR) | F1 Score | Matthews Correlation Coefficient (MCC) | Negative Predictive Value | True Negative Rate (TNR) | False Negative Rate (FNR) | AUC | ||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Low- Altitude Area | Mid- Altitude Area | High- Altitude Area | ||||||||||||||
| PLS-DA | Beytülşebap | 0 | 1 | 16 | 17 | 0.949 | 0.941 | 0.941 | 0.045 | 0.059 | 0.941 | 0.896 | 0.955 | 0.955 | 0.059 | 0.893 |
| Merkez | 11 | 0 | 1 | 12 | 0.974 | 1.000 | 0.917 | 0.000 | 0.000 | 0.957 | 0.940 | 0.964 | 1.000 | 0.083 | 0.960 | |
| Pervari | 0 | 10 | 0 | 10 | 0.974 | 0.909 | 1.000 | 0.034 | 0.091 | 0.952 | 0.937 | 1.000 | 0.966 | 0.000 | 0.924 | |
| Total | 11 | 11 | 17 | 39 | 0.949 | 0.950 | 0.953 | 0.027 | 0.050 | 0.950 | 0.924 | 0.973 | 0.973 | 0.047 | 0.926 | |
| Random Forest | Beytülşebap | 4 | 1 | 12 | 17 | 0.692 | 0.632 | 0.706 | 0.318 | 0.368 | 0.667 | 0.385 | 0.750 | 0.682 | 0.294 | 0.769 |
| Merkez | 2 | 3 | 7 | 12 | 0.513 | 0.182 | 0.167 | 0.333 | 0.818 | 0.174 | −0.171 | 0.643 | 0.667 | 0.833 | 0.446 | |
| Pervari | 5 | 5 | 0 | 10 | 0.769 | 0.556 | 0.500 | 0.138 | 0.444 | 0.526 | 0.375 | 0.833 | 0.862 | 0.500 | 0.643 | |
| Total | 11 | 9 | 19 | 39 | 0.487 | 0.456 | 0.458 | 0.263 | 0.544 | 0.456 | 0.196 | 0.742 | 0.737 | 0.542 | 0.619 | |
| SVM | Beytülşebap | 2 | 0 | 15 | 17 | 0.821 | 0.882 | 0.750 | 0.227 | 0.250 | 0.811 | 0.650 | 0.895 | 0.773 | 0.118 | 0.848 |
| Merkez | 7 | 2 | 3 | 12 | 0.718 | 0.583 | 0.538 | 0.222 | 0.462 | 0.560 | 0.354 | 0.808 | 0.778 | 0.417 | 0.707 | |
| Pervari | 4 | 4 | 2 | 10 | 0.795 | 0.400 | 0.667 | 0.069 | 0.333 | 0.500 | 0.401 | 0.818 | 0.931 | 0.600 | 0.752 | |
| Total | 13 | 6 | 20 | 39 | 0.667 | 0.622 | 0.652 | 0.173 | 0.348 | 0.624 | 0.468 | 0.840 | 0.827 | 0.378 | 0.769 | |
| XGBoost (Extreme Gradient Boosting) | Beytülşebap | 3 | 1 | 13 | 17 | 0.718 | 0.765 | 0.650 | 0.318 | 0.350 | 0.703 | 0.443 | 0.789 | 0.682 | 0.235 | 0.791 |
| Merkez | 5 | 2 | 5 | 12 | 0.692 | 0.417 | 0.500 | 0.185 | 0.500 | 0.455 | 0.245 | 0.759 | 0.815 | 0.583 | 0.571 | |
| Pervari | 2 | 6 | 2 | 10 | 0.821 | 0.600 | 0.667 | 0.103 | 0.333 | 0.632 | 0.515 | 0.867 | 0.897 | 0.400 | 0.697 | |
| Total | 10 | 9 | 20 | 39 | 0.615 | 0.594 | 0.606 | 0.202 | 0.394 | 0.596 | 0.401 | 0.805 | 0.798 | 0.406 | 0.686 | |
| YSA | Beytülşebap | 2 | 1 | 14 | 17 | 0.846 | 0.824 | 0.824 | 0.136 | 0.176 | 0.824 | 0.687 | 0.864 | 0.864 | 0.176 | 0.880 |
| Merkez | 8 | 2 | 2 | 12 | 0.744 | 0.667 | 0.571 | 0.222 | 0.429 | 0.615 | 0.428 | 0.840 | 0.778 | 0.333 | 0.779 | |
| Pervari | 4 | 5 | 1 | 10 | 0.795 | 0.500 | 0.625 | 0.103 | 0.375 | 0.556 | 0.429 | 0.839 | 0.897 | 0.500 | 0.800 | |
| Total | 14 | 8 | 17 | 39 | 0.692 | 0.663 | 0.673 | 0.154 | 0.327 | 0.665 | 0.515 | 0.847 | 0.846 | 0.337 | 0.820 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gürbüz, S.; Kıvrak, Ş. Comparative Evaluation of Machine Learning Models for Discriminating Honey Geographic Origin Based on Altitude-Dependent Mineral Profiles. Appl. Sci. 2025, 15, 11859. https://doi.org/10.3390/app152211859
Gürbüz S, Kıvrak Ş. Comparative Evaluation of Machine Learning Models for Discriminating Honey Geographic Origin Based on Altitude-Dependent Mineral Profiles. Applied Sciences. 2025; 15(22):11859. https://doi.org/10.3390/app152211859
Chicago/Turabian StyleGürbüz, Semra, and Şeyda Kıvrak. 2025. "Comparative Evaluation of Machine Learning Models for Discriminating Honey Geographic Origin Based on Altitude-Dependent Mineral Profiles" Applied Sciences 15, no. 22: 11859. https://doi.org/10.3390/app152211859
APA StyleGürbüz, S., & Kıvrak, Ş. (2025). Comparative Evaluation of Machine Learning Models for Discriminating Honey Geographic Origin Based on Altitude-Dependent Mineral Profiles. Applied Sciences, 15(22), 11859. https://doi.org/10.3390/app152211859

