Dual-Module Architecture for Robust Image Forgery Segmentation and Classification Toward Cyber Fraud Investigation
Abstract
1. Introduction
2. Materials and Methods
2.1. Dataset and Experimental Environment
- GPU: NVIDIA GeForce RTX 3090 (24 GB VRAM)
- CPU: Intel(R) Core(TM) i9-10980XE @ 3.00 GHz
- RAM: Samsung DDR4 PC4-21300 32 GB x4 (total 128 GB)
- Operating System: Ubuntu 22.04
2.2. Proposed Architecture
2.2.1. Architecture Overview
2.2.2. Forgery Segmentation
2.2.3. Forgery Classification
3. Experimental Results
3.1. Results of Forgery Segmentation Module
3.2. Results of Forgery Classification Module
3.3. Overall Architecture
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gill, N.K.; Garg, R.; Doegar, E.A. A review paper on digital image forgery detection techniques. In Proceedings of the 2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Delhi, India, 3–5 July 2017; pp. 1–7. [Google Scholar]
- Kim, H. Novel Deep Learning-Based Facial Forgery Detection for Effective Biometric Recognition. Appl. Sci. 2025, 15, 3613. [Google Scholar] [CrossRef]
- Deb, P.; Deb, S.; Das, A.; Kar, N. Image forgery detection techniques: Latest trends and key challenges. IEEE Access 2024, 12, 169452–169466. [Google Scholar] [CrossRef]
- Abd Warif, N.B.; Wahab, A.W.A.; Idris, M.Y.I.; Ramli, R.; Salleh, R.; Shamshirband, S.; Choo, K.-K.R. Copy-move forgery detection: Survey, challenges and future directions. J. Netw. Comput. Appl. 2016, 75, 259–278. [Google Scholar] [CrossRef]
- Mehrjardi, F.Z.; Latif, A.M.; Zarchi, M.S.; Sheikhpour, R. A survey on deep learning-based image forgery detection. Pattern Recognit. 2023, 144, 109778. [Google Scholar] [CrossRef]
- Bertalmio, M.; Sapiro, G.; Caselles, V.; Ballester, C. Image inpainting. In Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, New Orleans, LA, USA, 23–28 July 2000; pp. 417–424. [Google Scholar]
- Popescu, A.C.; Farid, H. Exposing Digital Forgeries by Detecting Duplicated Image Regions; University of Califomia: Berkeley, CA, USA, 2004. [Google Scholar]
- Popescu, A.C.; Farid, H. Exposing digital forgeries by detecting traces of resampling. IEEE Trans. Signal Process. 2005, 53, 758–767. [Google Scholar] [CrossRef]
- Lukas, J.; Fridrich, J.; Goljan, M. Digital camera identification from sensor pattern noise. IEEE Trans. Inf. Forensics Secur. 2006, 1, 205–214. [Google Scholar] [CrossRef]
- Zhuang, P.; Li, H.; Tan, S.; Li, B.; Huang, J. Image tampering localization using a dense fully convolutional network. IEEE Trans. Inf. Forensics Secur. 2021, 16, 2986–2999. [Google Scholar] [CrossRef]
- Wu, Y.; AbdAlmageed, W.; Natarajan, P. Mantra-net: Manipulation tracing network for detection and localization of image forgeries with anomalous features. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 18–20 June 2019; pp. 9543–9552. [Google Scholar]
- Zeng, Y.; Zhao, B.; Qiu, S.; Dai, T.; Xia, S.-T. Toward effective image manipulation detection with proposal contrastive learning. IEEE Trans. Circuits Syst. Video Technol. 2023, 33, 4703–4714. [Google Scholar] [CrossRef]
- Wu, Y.; Abd-Almageed, W.; Natarajan, P. Busternet: Detecting copy-move image forgery with source/target localization. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 168–184. [Google Scholar]
- Khalil, A.H.; Ghalwash, A.Z.; Elsayed, H.A.-G.; Salama, G.I.; Ghalwash, H.A. Enhancing digital image forgery detection using transfer learning. IEEE Access 2023, 11, 91583–91594. [Google Scholar] [CrossRef]
- Zhou, P.; Han, X.; Morariu, V.I.; Davis, L.S. Learning rich features for image manipulation detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 1053–1061. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed]
- Mahfoudi, G.; Tajini, B.; Retraint, F.; Morain-Nicolier, F.; Dugelay, J.L.; Pic, M. Defacto: Image and face manipulation dataset. In Proceedings of the 2019 27th European Signal Processing Conference (EUSIPCO), A Coruña, Spain, 2–6 September 2019; pp. 1–5. [Google Scholar]
- He, K.; Rhemann, C.; Rother, C.; Tang, X.; Sun, J. A global sampling method for alpha matting. In Proceedings of the CVPR 2011, Colorado Springs, CO, USA, 20–25 June 2011; pp. 2049–2056. [Google Scholar]
- Tralic, D.; Zupancic, I.; Grgic, S.; Grgic, M. CoMoFoD—New database for copy-move forgery detection. In Proceedings of the ELMAR-2013, Zadar, Croatia, 25–27 September 2013; pp. 49–54. [Google Scholar]
- Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco: Common objects in context. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 740–755. [Google Scholar]
- Bi, X.; Liang, J. GreatSplicing: A Semantically Rich Splicing Dataset. arXiv 2023, arXiv:2310.10070. [Google Scholar] [CrossRef]
- Bas, P.; Filler, T.; Pevný, T. “Break our steganographic system”: The ins and outs of organizing BOSS. In Proceedings of the International Workshop on Information Hiding, Prague, Czech Republic, 18–20 May 2011; pp. 59–70. [Google Scholar]
- Daisy, M.; Buyssens, P.; Tschumperlé, D.; Lézoray, O. A smarter exemplar-based inpainting algorithm using local and global heuristics for more geometric coherence. In Proceedings of the 2014 IEEE International Conference on Image Processing (ICIP), Paris, France, 27–30 October 2014; pp. 4622–4626. [Google Scholar]
- Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114. [Google Scholar]
- Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami Beach, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Fridrich, J.; Kodovsky, J. Rich models for steganalysis of digital images. IEEE Trans. Inf. Forensics Secur. 2012, 7, 868–882. [Google Scholar] [CrossRef]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]











| Forgery Method | Copy-Move | Splicing | Inpainting | Total |
|---|---|---|---|---|
| Number of images | 5425 | 3750 | 4158 | 13,333 |
| Image type | jpg | jpg | jpg | jpg |
| Resolution | 640 × 480, 480 × 640 etc. | 640 × 480, 480 × 640 etc. | 640 × 480, 480 × 640 etc. | 640 × 480, 480 × 640 etc. |
| Metric | Value |
|---|---|
| Precision | 0.823 |
| Recall | 0.934 |
| F1-Score | 0.875 |
| IoU | 0.780 |
| Forgery Method | Precision | Recall | F1-Score |
|---|---|---|---|
| Copy-move | 0.9254 | 0.9365 | 0.9310 |
| Splicing | 0.9271 | 0.9271 | 0.9271 |
| Inpainting | 0.9694 | 0.9540 | 0.9617 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.; Kim, H. Dual-Module Architecture for Robust Image Forgery Segmentation and Classification Toward Cyber Fraud Investigation. Appl. Sci. 2025, 15, 11817. https://doi.org/10.3390/app152111817
Kim D, Kim H. Dual-Module Architecture for Robust Image Forgery Segmentation and Classification Toward Cyber Fraud Investigation. Applied Sciences. 2025; 15(21):11817. https://doi.org/10.3390/app152111817
Chicago/Turabian StyleKim, Donghwan, and Hansoo Kim. 2025. "Dual-Module Architecture for Robust Image Forgery Segmentation and Classification Toward Cyber Fraud Investigation" Applied Sciences 15, no. 21: 11817. https://doi.org/10.3390/app152111817
APA StyleKim, D., & Kim, H. (2025). Dual-Module Architecture for Robust Image Forgery Segmentation and Classification Toward Cyber Fraud Investigation. Applied Sciences, 15(21), 11817. https://doi.org/10.3390/app152111817

