Application of the CPO-CNN-BILSTM Hybrid Model for Evaluation of Water Abundance of the Roof Aquifer—A Case Study of WoBei Mine in Huaibei Coalfield, China
Abstract
1. Introduction
2. Study Area Profile
3. Data and Methodology
3.1. Analysis of the Main Evaluation Factors of Water Abundance
3.1.1. Aquifer Thickness
3.1.2. Gradation Coefficients
3.1.3. Marlstone Thickness
3.1.4. Permeability
3.1.5. Grouting Quantity
3.1.6. Grouting Termination Pressure
3.2. Justification of the Chosen Evaluation Factors
3.3. Evaluation Methodology
3.3.1. Crowned Porcupine Optimization Algorithm (CPO)
- (1)
- Stock initialization
- (2)
- Exploratory Behavior Stage
- (3)
- Developmental behavior stage
3.3.2. Bidirectional Long Short-Term Memory (BiLSTM)
3.3.3. Principles of CPO-CNN-BiLSTM Modeling
4. Results and Discussion
4.1. Model Regulation and Running
4.2. Water Abundance Prediction Zoning
4.3. Model Comparison Validation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, W.; Sun, W.; Liu, Y. Method and Prospect of Prediction and Evaluation of Mine Water Disaster in China. Coal Technol. 2019, 38, 115–117. [Google Scholar] [CrossRef]
- Noraishah Ismail, S.; Ramli, A.; Abdul Aziz, H. Research Trends in Mining Accidents Study: A Systematic Literature Review. Saf. Sci. 2021, 143, 105438. [Google Scholar] [CrossRef]
- Shao, Y.; Wu, Y.; Kang, F.; Zhu, S. Study on Seepage and Failure Characteristics of Soil at the Bottom of Thick Loose Layer in Thin Bedrock Area. Saf. Coal Mines 2025, 56, 203–211. [Google Scholar] [CrossRef]
- Chen, K.K.; Wang, X.Y. Analysis of the Factors Causing Roof Water Inrush in Coal Seam Mining with Thin Bedrock. Chem. Eng. Trans. 2015, 46, 679–684. [Google Scholar] [CrossRef]
- Sun, W.; Li, W.; Ren, L.; Li, K. Spatial and Temporal Characterization of Mine Water Inrush Accidents in China, 2014–2022. Water 2024, 16, 656. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, Y.; Kang, F.; Zhu, S. Evaluation of Water Abundance of Loose Bed Bottom Aquifer. Saf. Coal Mines 2014, 45, 127–130. [Google Scholar] [CrossRef]
- Qiu, M.; Shao, Z.; Zhang, W.; Zheng, Y.; Yin, X.; Gai, G.; Han, Z.; Zhao, J. Water-Richness Evaluation Method and Application of Clastic Rock Aquifer in Mining Seam Roof. Sci. Rep. 2024, 14, 6465. [Google Scholar] [CrossRef]
- Miao, W.; Xu, Y.; Guo, Y.; Zhang, E.; Zhuo, Y.; Huang, L.; Ma, Z.; Liang, S. The Hydrogeological Characteristics of Thick Alluvium with High Water Level and the Influence on Zhaogu Mining Area, Henan Province, China. Geofluids 2022, 2022, 9447145. [Google Scholar] [CrossRef]
- Yang, W.; Hu, D. The Technology and It’S Application of Comprehensive Survey for Water-Bearing Condition of Fault. Coal Geol. Explor. 2002, 30, 51–53. [Google Scholar]
- Yan, S.; Wang, L.; Dong, F.; Liu, X.; Lu, X. Prediction of Burnt Rock Areas and Water Abundance Based on the Electrical-Magnetic Method. Coal Geol. Explor. 2022, 50, 132–139. [Google Scholar] [CrossRef]
- Cheng, J.; Zhao, J.; Dong, Y.; Dong, Q. Quantitative Prediction of Water Abundance in Rock Mass by Transient Electro-Magnetic Method with LBA-BP Neural Network. J. China Coal Soc. 2020, 45, 330–337. [Google Scholar] [CrossRef]
- Zhou, K. Water Richness Zoning and Evaluation of the Coal Seam Roof Aquifer Based on AHP and Multisource Geological Information Fusion. Geofluids 2021, 2021, 1097600. [Google Scholar] [CrossRef]
- Al-Abadi, A.M.; Pourghasemi, H.R.; Shahid, S.; Ghalib, H.B. Spatial Mapping of Groundwater Potential Using Entropy Weighted Linear Aggregate Novel Approach and GIS. Arab. J. Sci. Eng. 2017, 42, 1185–1199. [Google Scholar] [CrossRef]
- Li, Q.; Sui, W.; Sun, B.; Li, D.; Yu, S. Application of TOPSIS Water Abundance Comprehensive Evaluation Method for Karst Aquifers in a Lead Zinc Mine, China. Earth Sci. Inf. 2022, 15, 397–411. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, Y.; Li, W.; Wang, Q.; Ma, Z.; Li, X. Spatial Distribution Characteristics in Water Yield Property of Middle Jurassic Sandstone Aquifers Using Nonlinear Combination Method. Earth Sci. Inf. 2025, 18, 142. [Google Scholar] [CrossRef]
- Wu, Q.; Xu, K.; Zhang, W. Further Research on “Three Maps-Two Predictions” Method for Prediction on Coal Seam Roof Water Bursting Risk. J. China Coal Soc. 2016, 41, 1341–1347. [Google Scholar] [CrossRef]
- Wu, Q.; Fan, Z.; Liu, S.; Zhang, Y.; Sun, W. Water-Richness Evaluation Method of Water-Filled Aquifer Based on The Principle of Information Fusion with GIS: Water-Richness Index Method. J. China Coal Soc. 2011, 36, 1124–1128. [Google Scholar] [CrossRef]
- Hou, E.; Ji, Z.; Che, X.; Wang, J.; Gao, L.; Tian, S.; Yang, F. Water Abundance Prediction Method of Weathered Bedrock Based on Improved AHP and The Entropy Weight Method. J. China Coal Soc. 2019, 44, 3164–3173. [Google Scholar] [CrossRef]
- Ahmad, I.; Hasan, H.; Jilani, M.M.; Ahmed, S.I. Mapping Potential Groundwater Accumulation Zones for Karachi City Using GIS and AHP Techniques. Environ. Monit. Assess. 2023, 195, 381. [Google Scholar] [CrossRef]
- Yin, H.; Shi, Y.; Niu, H.; Xie, D.; Wei, J.; Lefticariu, L.; Xu, S. A GIS-Based Model of Potential Groundwater Yield Zonation for a Sandstone Aquifer in the Juye Coalfield, Shangdong, China. J. Hydrol. 2018, 557, 434–447. [Google Scholar] [CrossRef]
- Qu, X.; Han, J.; Shi, L.; Qu, X.; Bilal, A.; Qiu, M.; Gao, W. An Extended ITL-VIKOR Model Using Triangular Fuzzy Numbers for Applications to Water-Richness Evaluation. Expert Syst. Appl. 2023, 222, 119793. [Google Scholar] [CrossRef]
- Liang, K.; Li, Y.; Bai, Y.; Zhang, W.; Han, C.; Xie, D.; Liang, S.; Xi, B. Water-Richness Evaluation of Sandstone Aquifer Based on Set Pair Analysis Variable Fuzzy Set Coupling Method: A Case Study on Bayangaole Mine, China. Water 2025, 17, 1826. [Google Scholar] [CrossRef]
- Hou, E.; Wu, J.; Yang, F.; Zhang, C. Evaluation of Water-richness of Weathered Bedrock Based on the WOA-SVM Discriminant Model: Take Zhangjiamao Coal Mine in Shenfu Coal Field as an Example. Sci. Technol. Eng. 2025, 25, 119–127. [Google Scholar]
- Gai, G.; Qiu, M.; Zhang, W.; Shi, L. Evaluation of Water Richness in Coal Seam Roof Aquifer Based on Factor Optimization and Random Forest Method. Sci. Rep. 2024, 14, 24421. [Google Scholar] [CrossRef] [PubMed]
- Xing, M.; Wang, Q.; Xu, J.; Li, W. Application of NIPOS-SVM Model for Evaluation of Water Richness of Coal Seam Roof Aquifer—A Case Study of the Xinhu Coal Mine in Huaibei, China. Water 2024, 16, 3670. [Google Scholar] [CrossRef]
- Guo, B.; Zhang, S.; Liu, K.; Yang, P.; Xing, H.; Feng, Q.; Zhu, W.; Zhang, Y.; Jia, W. Prediction of Groundwater Level under the Influence of Groundwater Exploitation Using a Data-Driven Method with the Combination of Time Series Analysis and Long Short-Term Memory: A Case Study of a Coastal Aquifer in Rizhao City, Northern China. Front. Environ. Sci. 2023, 11, 1253949. [Google Scholar] [CrossRef]
- Panahi, M.; Sadhasivam, N.; Pourghasemi, H.R.; Rezaie, F.; Lee, S. Spatial Prediction of Groundwater Potential Mapping Based on Convolutional Neural Network (CNN) and Support Vector Regression (SVR). J. Hydrol. 2020, 588, 125033. [Google Scholar] [CrossRef]
- Qiao, L.; Xin, H.-C.; Xu, Z.-M.; Xiao, K. Gas Production Prediction Using AM-BiLSTM Model Optimized by Whale Optimization Algorithm. Appl. Geophys. 2023, 20, 499–506. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, H.; Peng, Y.; Ding, W.; Cao, J. Intelligent Prediction and Application Research on Soft Rock Tunnel Deformation Based on the CPO-LSTM Model. Buildings 2024, 14, 2244. [Google Scholar] [CrossRef]
- Lin, Z.; Ji, Y.; Sun, X. Landslide Displacement Prediction Based on CEEMDAN Method and CNN–BiLSTM Model. Sustainability 2023, 15, 10071. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Mohamed, R.; Abouhawwash, M. Crested Porcupine Optimizer: A New Nature-Inspired Metaheuristic. Knowl.-Based Syst. 2024, 284, 111257. [Google Scholar] [CrossRef]
- Cheng, J.; Wang, H.; Xu, Z.; Huang, Q.; Jiang, G. Research on Aquifer Water Abundance Evaluation by Borehole Transient Electromagnetic Method Based on FCNN. Coal Geol. Explor. 2023, 51, 289–297. [Google Scholar] [CrossRef]
- Shi, S.; Shi, G.; Liu, Z.; Li, L.; Yao, X.; Pei, X.; He, Y. Predicting The Water-Yield Properties of K2 Limestones Based on Multivariate LSTM Neural Network: A Case Study of The Poil Mining Area in Yangquan. Coal Geol. Explor. 2023, 51, 155–163. [Google Scholar]
- Sang, S.; Lu, L. A Stock Prediction Method Based on Heterogeneous Bidirectional LSTM. Appl. Sci. 2024, 14, 9158. [Google Scholar] [CrossRef]
- Chen, S.; Cao, J.; Wan, Y.; Huang, W.; Abdel-Aty, M. A Novel CPO-CNN-LSTM Based Deep Learning Approach for Multi-Time Scale Deflection Basin Area Prediction in Asphalt Pavement. Constr. Build. Mater. 2025, 458, 139540. [Google Scholar] [CrossRef]
- Ding, L.F.; Guo, Q.L.; Wang, C.H. Lugeon water pressure test and its hydraulic friction in an oil reserve library project. Hydrogeol. Eng. Geol. 2011, 38, 35–38, 61. [Google Scholar] [CrossRef]
- Wang, H.Q.; Sun, F.C.; Cai, Y.N.; Ding, L.G.; Chen, N. An Unbiased LSSVM Model for Classification and Regression. Soft Comput. 2010, 14, 171–180. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, X.; Wen, T.; Wang, L. Step-like Displacement Prediction of Reservoir Landslides Based on a Metaheuristic-Optimized KELM: A Comparative Study. Bull. Eng. Geol. Environ. 2024, 83, 322. [Google Scholar] [CrossRef]









| Particle Size Category | Marl | Fine Sand | Medium Sand | Clayey Gravel | Limestone Gravel | Sandstone Gravel |
|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 | 6 |
| Factors | Aquifer Thickness | Grading Coefficient | Marlstone Thickness | Termination Pressure | Grouting Quantity | Water Permeability |
|---|---|---|---|---|---|---|
| Aquifer thickness | 1.0 | |||||
| Grading Coefficient | 0.31 | 1.0 | ||||
| Marlstone Thickness | 0.047 | −0.26 | 1.0 | |||
| Termination Pressure | −0.27 | 0.30 | 0.54 | 1.0 | ||
| Grouting Quantity | −0.25 | −0.20 | 0.23 | 0.26 | 1.0 | |
| Water Permeability | 0.23 | 0.40 | 0.075 | 0.069 | 0.057 | 1.0 |
| Parameters | Data Volume | Source (of Information, etc.) | Unit/Range |
|---|---|---|---|
| Aquifer thickness | 200 | Borehole cataloging + Porosity testing | m (3.53–13.05) |
| Grading coefficient | 200 | Borehole cataloging + Lithological testing | Dimensionless (0.13–4.71) |
| Marlstone thickness | 200 | Borehole cataloguing | m (0.0–7.90) |
| Termination Pressure | 200 | Real-time borehole orifice pressure monitoring | Lu (0.24–8.14) |
| Grouting quantity | 200 | Borehole grouting quantity statistics | t (0–4757) |
| Water permeability | 200 | Lugeon test | MPa (0.016–10.19) |
| Prediction Model | MAPE (%) | RMSE | R2 |
|---|---|---|---|
| CPO-CNN-BiLSTM | 2.35 | 2.58 × 10−5 | 0.982 |
| CPO-BiLSTM | 3.42 | 3.58 × 10−5 | 0.967 |
| CPO-LSTM | 5.78 | 4.81 × 10−5 | 0.935 |
| CPO-KELM | 7.24 | 5.92 × 10−5 | 0.903 |
| CPO-LSSVM | 9.56 | 7.16 × 10−5 | 0.866 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Wang, Q.; Zhu, J.; Li, D.; Li, W. Application of the CPO-CNN-BILSTM Hybrid Model for Evaluation of Water Abundance of the Roof Aquifer—A Case Study of WoBei Mine in Huaibei Coalfield, China. Appl. Sci. 2025, 15, 11816. https://doi.org/10.3390/app152111816
Liu Y, Wang Q, Zhu J, Li D, Li W. Application of the CPO-CNN-BILSTM Hybrid Model for Evaluation of Water Abundance of the Roof Aquifer—A Case Study of WoBei Mine in Huaibei Coalfield, China. Applied Sciences. 2025; 15(21):11816. https://doi.org/10.3390/app152111816
Chicago/Turabian StyleLiu, Yuchu, Qiqing Wang, Jingzhong Zhu, Dongding Li, and Wenping Li. 2025. "Application of the CPO-CNN-BILSTM Hybrid Model for Evaluation of Water Abundance of the Roof Aquifer—A Case Study of WoBei Mine in Huaibei Coalfield, China" Applied Sciences 15, no. 21: 11816. https://doi.org/10.3390/app152111816
APA StyleLiu, Y., Wang, Q., Zhu, J., Li, D., & Li, W. (2025). Application of the CPO-CNN-BILSTM Hybrid Model for Evaluation of Water Abundance of the Roof Aquifer—A Case Study of WoBei Mine in Huaibei Coalfield, China. Applied Sciences, 15(21), 11816. https://doi.org/10.3390/app152111816

