Design of the Front Contact Metallization Patterns for Solar Cells Using Variable-Width Bezier Curves
Abstract
1. Introduction
2. Equivalent Circuit and Finite Element Model of Solar Cells
2.1. Equivalent Circuit
2.2. Finite Element Model
3. Formulations for Geometry Optimization
3.1. Geometry Description of the Front Contact Metallization Pattern
3.2. Optimization Problem
3.3. Sensitivity Analysis
3.4. Optimization Algorithm
| Algorithm 1: Geometry optimization pseudocode of front contact metallization pattern. | 
| Input: | 
| Solar cell geometry, material properties | 
| Current density-voltage relationship parameters | 
| Optimization parameters: Maximum iteration, tolerance | 
| Initial design variable vector (control points and radii) | 
| Boundary conditions | 
| Begin | 
| 1: iteration counter k→0 | 
| 2: (k < Maximum iteration) | 
| 3: | 
| 4: n = 1 N ( Loop over all Bezier components) | 
| 5: Calculate for component n using Equations (11)–(14) | 
| 6: | 
| 7: Calculate the global GDF (using Equation (9)) | 
| 8: | 
| 9: Assemble global conductivity matrix C based on Equations (17) and (18) | 
| 10: Solve the nonlinear system (Equation (6)) for | 
| nodal voltages using the Newton-Raphson method | 
| 11: Compute output power and objective function | 
| 12: | 
| 13: (1) | 
| 14: f (k) − f (k − 1) f (k) | < tolerance) | 
| 15: converged==True | 
| 16: | 
| 17: | 
| 18: | 
| 19: (converged==False) | 
| 20: Compute sensitivity d for each design variable a using adjoint sensitivity | 
| method (Equation (19)) | 
| 21: Update design variables using the Method of Moving Asymptotes (MMA) | 
| 22: | 
| 23: | 
| 24: | 
| 25: | 
| 26: = | 
| 27: Generate optimized front contact metallization pattern from | 
| 28: Output , , and performance metrics of solar cells | 
| End | 
4. Examples and Discussions
4.1. Simple Geometry Solar Cell
4.1.1. Effect of the Number of Control Points
4.1.2. Effect of the Number of Wide Bezier Curves
4.1.3. Effect of Solar Cell Size
4.2. Preliminary Comparison with the H-Pattern Solar Cell
4.3. Unconventional Geometry Solar Cell
4.3.1. Hexagonal Solar Cell
4.3.2. Circular Solar Cell
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, S.; Li, Q.; Sun, Y.; Wang, D.; Song, Q.; Zhou, S.; Li, J.; Li, Y. Application of multi-objective optimization based on Sobol sensitivity analysis in solar single-double-effect LiBr-H2O absorption refrigeration. Front. Energy 2025, 19, 69–87. [Google Scholar] [CrossRef]
 - Procel-Moya, P.; Zhao, Y.; Isabella, O. Unlocking the potential of carrier-selective contacts: Key insights for designing c-Si solar cells with efficiency beyond 28%. Sol. Energy Mater. Sol. Cells 2025, 285, 113504. [Google Scholar] [CrossRef]
 - Green, M.A.; Dunlop, E.D.; Yoshita, M.; Kopidakis, N.; Bothe, K.; Siefer, G.; Hao, X.; Jiang, J. Solar cell efficiency tables (version 65). Prog. Photovoltaics: Res. Appl. 2025, 33, 3–15. [Google Scholar] [CrossRef]
 - Su, Q.; Lin, H.; Wang, G.; Tang, H.; Xue, C.; Li, Z.; Xu, X.; Gao, P. Theoretical limiting-efficiency assessment on advanced crystalline silicon solar cells with Auger ideality factor and wafer thickness modifications. Prog. Photovoltaics Res. Appl. 2024, 32, 587–598. [Google Scholar] [CrossRef]
 - van Deelen, J.; Klerk, L.A.; Barink, M.; Rendering, H.; Voorthuijzen, P.; Hovestad, A. Improvement of transparent conducting materials by metallic grids on transparent conductive oxides. Thin Solid Film. 2014, 555, 159–162. [Google Scholar] [CrossRef]
 - Munoz-Garcia, C.; Torres, I.; Canteli, D.; Molla, J.M.; Fernández, S.; Gandía, J.J.; Molpeceres, C. LIFT metallization as an alternative to screen-printing for silicon heterojunction solar cells. Opt. Laser Technol. 2024, 175, 110838. [Google Scholar] [CrossRef]
 - Pordan, S.; Mosig, M.; Heitmann, F.; Palme, M.; Heuser, N.; Weil, M.; Steffens, R.; Zuaiter, O.; Kuchler, M.; Pospischil, M. Optimizing solar cell metallization by parallel dispensing. Sol. Energy Mater. Sol. Cells 2024, 266, 112685. [Google Scholar] [CrossRef]
 - Lee, Y.; Kim, C.U.; Woo, Y.; Kim, W.M.; Jeong, J.h.; Kim, D.h.; Lee, D.K.; Choi, K.J.; Kim, I. Lithography-free fabrication of a local contact interlayer for Si-based tandem solar cells. Prog. Photovolt. Res. Appl. 2024, 32, 406–416. [Google Scholar] [CrossRef]
 - Shan, Y.; Zhang, X.; Chen, G.; Li, K. Laser induced forward transfer of high viscosity silver paste on double groove structure. Opt. Laser Technol. 2022, 148, 107795. [Google Scholar] [CrossRef]
 - Alanazi, T.I.; Shaker, A.; Zein, W. Design and simulation of 2D Ruddlesden–Popper perovskite solar cells under LED illumination: Role of ETL and front contact band alignment. Sol. Energy Mater. Sol. Cells 2024, 274, 112992. [Google Scholar] [CrossRef]
 - Zhang, D.; Li, B.; Hang, P.; Xie, J.; Yao, Y.; Kan, C.; Yu, X.; Zhang, Y.; Yang, D. Mitigated front contact energy barrier for efficient and stable perovskite solar cells. Energy Environ. Sci. 2024, 17, 3848–3854. [Google Scholar] [CrossRef]
 - da Silva Filho, J.M.C.; Gonçalves, A.D.; Marques, F.C.; de Freitas, J.N. A Review on the Development of Metal Grids for the Upscaling of Perovskite Solar Cells and Modules. Sol. RRL 2022, 6, 2100865. [Google Scholar] [CrossRef]
 - Liu, Y.; Li, K.; Zhou, B.; Li, X.; Li, P. Optimal design of solar cells grid electrodes based on quadratic curves. Results Eng. 2025, 27, 106322. [Google Scholar] [CrossRef]
 - Liu, Y.; Li, K.; Li, X.; Li, P. Optimization design of electrode grid lines for busbar-less solar cells. AIP Adv. 2025, 15, 105125. [Google Scholar] [CrossRef]
 - Nakano-Baker, O.; Boyd, C.; Cramer, C.; Brush, L.; MacKenzie, J.D. Isotropic Grids Revisited: A Numerical Study of Solar Cell Electrode Geometries. IEEE Trans. Electron Devices 2022, 69, 3783–3790. [Google Scholar] [CrossRef]
 - Flat, A.; Milnes, A.G. Optimization of multi-layer front-contact grid patterns for solar cells. Sol. Energy 1979, 23, 289–299. [Google Scholar] [CrossRef]
 - Green, M.A. Solar Cells: Operating Principles, Technology, and System Applications; Prentice-Hall, Inc.: Englewood Cliffs, NJ, USA, 1982. [Google Scholar]
 - Djeffal, F.; Bendib, T.; Arar, D.; Dibi, Z. An optimized metal grid design to improve the solar cell performance under solar concentration using multiobjective computation. Mater. Sci. Eng. B 2013, 178, 574–579. [Google Scholar] [CrossRef]
 - Liu, W.; Li, Y.; Chen, J.; Chen, Y.; Wang, X.; Yang, F. Optimization of grid design for solar cells. J. Semicond. 2010, 31, 014006. [Google Scholar] [CrossRef]
 - Malm, U.; Edoff, M. Influence from front contact sheet resistance on extracted diode parameters in CIGS solar cells. Prog. Photovolt. Res. Appl. 2008, 16, 113–121. [Google Scholar] [CrossRef]
 - Li, B.; Xuan, C.; Liu, G.; Hong, J. Generating Constructal Networks for Area-to-Point Conduction Problems Via Moving Morphable Components Approach. J. Mech. Des. 2019, 141, 051401. [Google Scholar] [CrossRef]
 - Gupta, D.K.; Barink, M.; Langelaar, M. CPV solar cell modeling and metallization optimization. Sol. Energy 2018, 159, 868–881. [Google Scholar] [CrossRef]
 - Li, K.; Yang, Z.; Zhang, X. Size optimization of the front electrode and solar cell using a combined finite-element-genetic algorithm method. J. Photonics Energy 2021, 11, 034502. [Google Scholar] [CrossRef]
 - van Deelen, J.; Barink, M.; Klerk, L.; Voorthuijzen, P.; Hovestad, A. Efficiency loss prevention in monolithically integrated thin film solar cells by improved front contact. Prog. Photovoltaics: Res. Appl. 2015, 23, 498–506. [Google Scholar] [CrossRef]
 - van Deelen, J.; Frijters, C. CIGS cells with metallized front contact: Longer cells and higher efficiency. Sol. Energy 2017, 143, 93–99. [Google Scholar] [CrossRef]
 - Li, K.; Liu, Y.; Li, P. Design of the Front Electrode Patterns of Solar Cells Using Geometry-Driven Optimization Method Based on Wide Quadratic Curves. Appl. Sci. 2025, 15, 11154. [Google Scholar] [CrossRef]
 - Gupta, D.K.; Barink, M.; Galagan, Y.; Langelaar, M. Integrated Front-Rear-Grid Optimization of Free-Form Solar Cells. IEEE J. Photovolt. 2017, 7, 294–302. [Google Scholar] [CrossRef]
 - Liang, J.; Zhang, X.; Zhu, B.; Zhang, H.; Wang, R. Topology Optimization Method for Designing Compliant Mechanism with Given Constant Force Range. J. Mech. Robot.-Trans. ASME 2023, 15, 1942–4302. [Google Scholar] [CrossRef]
 - Wang, R.; Zhang, X.; Zhu, B.; Li, H.; Zhong, X.; Xu, N. A Topology-Optimized Compliant Microgripper with Replaceable Modular Tools for Cross-Scale Microassembly. IEEE-ASME Trans. Mechatron. 2024, 29, 2067–2078. [Google Scholar] [CrossRef]
 - Zhang, X.; Zhu, B. Topology Optimization of Compliant Mechanisms, 1st ed.; Springer: Singapore, 2018; p. 192. [Google Scholar]
 - Gupta, D.K.; Langelaar, M.; Barink, M.; van Keulen, F. Topology optimization of front metallization patterns for solar cells. Struct. Multidiscip. Optim. 2015, 51, 941–955. [Google Scholar] [CrossRef]
 - Sigmund, O.; Petersson, J. Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct. Optim. 1998, 16, 68–75. [Google Scholar] [CrossRef]
 - Rozvany, G.I.N. A critical review of established methods of structural topology optimization. Struct. Multidiscip. Optim. 2009, 37, 217–237. [Google Scholar] [CrossRef]
 - Liang, J.; Zhang, X.; Zhu, B. Nonlinear topology optimization of parallel-grasping microgripper. Precis. Eng. 2019, 60, 152–159. [Google Scholar] [CrossRef]
 - Xia, L.; Xia, Q.; Huang, X.; Xie, Y.M. Bi-directional Evolutionary Structural Optimization on Advanced Structures and Materials: A Comprehensive Review. Arch. Comput. Methods Eng. 2018, 25, 437–478. [Google Scholar] [CrossRef]
 - Zhang, W.; Zhang, S.; Youn, S.K.; Guo, X. Non-parametric geometry patching technique for MMC topology optimization. Struct. Multidiscip. Optim. 2024, 67, 77. [Google Scholar] [CrossRef]
 - Zhang, W.; Tian, H.; Zhu, B.; Guo, X.; Youn, S.K. Multi-Set MMV Topology Optimization Approach for Sliding Surface Texture Design. Int. J. Numer. Methods Eng. 2025, 126, e7612. [Google Scholar] [CrossRef]
 - Wang, R.; Zhang, X.; Zhu, B. A projective transformation-based topology optimization using moving morphable components. Comput. Methods Appl. Mech. Eng. 2021, 376, 113646. [Google Scholar] [CrossRef]
 - Li, K.; Wang, R.; Zhang, X.; Zhu, B.; Liang, J.; Yang, Z. Topology optimization of the front electrode patterns of solar cells based on moving wide Bezier curves with constrained end. Struct. Multidiscip. Optim. 2022, 65, 57. [Google Scholar] [CrossRef]
 - Rounis, E.D.; Athienitis, A.K.; Stathopoulos, T. BIPV/T curtain wall systems: Design, development and testing. J. Build. Eng. 2021, 42, 103019. [Google Scholar] [CrossRef]
 - Gholami, H.; Røstvik, H.N. Economic analysis of BIPV systems as a building envelope material for building skins in Europe. Energy 2020, 204, 117931. [Google Scholar] [CrossRef]
 - Gupta, D.K.; Langelaar, M.; Barink, M.; van Keulen, F. Optimizing front metallization patterns: Efficiency with aesthetics in free-form solar cells. Renew. Energy 2016, 86, 1332–1339. [Google Scholar] [CrossRef]
 - Macabebe, E.Q.B.; Sheppard, C.J.; van Dyk, E.E. Parameter extraction from I–V characteristics of PV devices. Sol. Energy 2011, 85, 12–18. [Google Scholar] [CrossRef]
 - Huang, G.; Liang, Y.; Sun, X.; Xu, C.; Yu, F. Analyzing S-Shaped I–V characteristics of solar cells by solving three-diode lumped-parameter equivalent circuit model explicitly. Energy 2020, 212, 118702. [Google Scholar] [CrossRef]
 - Li, K.; Zhang, X.; Yang, Z. Finite element method description and intrinsic parameters extraction of solar cells with different sizes and metallization patterns. Sol. Energy 2022, 247, 261–268. [Google Scholar] [CrossRef]
 - Guo, X.; Zhang, W.; Zhong, W. Doing Topology Optimization Explicitly and Geometrically—A New Moving Morphable Components Based Framework. J. Appl. Mech.-Trans. ASME 2014, 81, 081009. [Google Scholar] [CrossRef]
 - Zhu, B.; Wang, R.; Wang, N.; Li, H.; Zhang, X.; Nishiwaki, S. Explicit structural topology optimization using moving wide Bezier components with constrained ends. Struct. Multidiscip. Optim. 2021, 64, 53–70. [Google Scholar] [CrossRef]
 - van Keulen, F.; Haftka, R.T.; Kim, N.H. Review of options for structural design sensitivity analysis. Part 1: Linear systems. Comput. Methods Appl. Mech. Eng. 2005, 194, 3213–3243. [Google Scholar] [CrossRef]
 - Svanberg, K. The method of moving asymptotes—a new method for structural optimization. Int. J. Numer. Methods Eng. 1987, 24, 359–373. [Google Scholar] [CrossRef]
 - Zhu, B.; Wang, R.; Liang, J.; Lai, J.; Zhang, H.; Li, H.; Li, H.; Nishiwaki, S.; Zhang, X. Design of compliant mechanisms: An explicit topology optimization method using end-constrained spline curves with variable width. Mech. Mach. Theory 2022, 171, 104713. [Google Scholar] [CrossRef]
 













| Parameter Category | Parameter Description | Symbol | Value | Unit | 
|---|---|---|---|---|
| Electrical properties | Conductivity of front contact electrode Conductivity of TCO layer  | |||
| Geometrical properties | Thickness of front contact electrode Thickness of TCO layer  | 10 200  | μm nm  | |
| Operating condition | Input power density Temperature  | T  | 1000 298  | K  | 
| Optimized Geometry | (V) | (s) | (V) [39] | (%) [39] | ||
|---|---|---|---|---|---|---|
| 3 | ![]()  | 0.507 | 13.637 | 1.121 | 0.506 | 13.584 | 
| 4 | ![]()  | 0.509 | 13.697 | 1.210 | 0.507 | 13.648 | 
| 6 | ![]()  | 0.509 | 13.730 | 1.435 | 0.508 | 13.694 | 
| 8 | ![]()  | 0.509 | 13.733 | 1.834 | 0.508 | 13.689 | 
| 12 | ![]()  | 0.509 | 13.727 | 2.680 | 0.508 | 13.681 | 
| Initial Geometry  | Optimized Geometry | (V) | (s) | (V) [39] | (%) [39] | ||
|---|---|---|---|---|---|---|---|
| 4 | ![]()  | ![]()  | 0.504 | 13.550 | 1.479 | 0.503 | 13.508 | 
| 6 | ![]()  | ![]()  | 0.509 | 13.730 | 1.473 | 0.508 | 13.694 | 
| 8 | ![]()  | ![]()  | 0.511 | 13.757 | 1.557 | 0.510 | 13.725 | 
| 10 | ![]()  | ![]()  | 0.511 | 13.764 | 1.608 | 0.511 | 13.744 | 
| Solar Cell Size | 1.5 cm × 1.5 cm | 3.0 cm × 3.0 cm | 6.0 cm × 6.0 cm | 9.0 cm × 9.0 cm | 
|---|---|---|---|---|
| Optimized geometry | ![]()  | ![]()  | ![]()  | ![]()  | 
| (proposed method) | 13.898 | 13.605 | 12.663 | 11.643 | 
| [39] | 13.886 | 13.282 | 12.468 | 11.426 | 
| [31] | 12.84 | 12.36 | 11.54 | 10.07 | 
| Absolute improvement in (compared to in [39]) | 0.012 | 0.323 | 0.195 | 0.217 | 
| (V) (proposed method) | 0.512 | 0.509 | 0.491 | 0.471 | 
| (V) [39] | 0.511 | 0.504 | 0.488 | 0.467 | 
| (V) [31] | 0.505 | 0.495 | 0.481 | 0.466 | 
| CR (%) (proposed method) | 3.419 | 5.535 | 7.128 | 9.401 | 
| CR (%) [39] | 3.144 | 6.172 | 7.817 | 10.305 | 
| Absolute reduction in CR (%) (compared to CR in [39]) | -0.275 | 0.637 | 0.689 | 0.904 | 
| (s) | 1.736 | 6.395 | 31.935 | 79.040 | 
| Solar Cell Size | 1.5 cm × 1.5 cm | 2.0 cm × 2.0 cm | 2.5 cm × 2.5 cm | 3.5 cm × 3.5 cm | 
|---|---|---|---|---|
| Optimized geometry | ![]()  | ![]()  | ![]()  | ![]()  | 
| (Curve-shaped) | 13.722 | 13.497 | 13.300 | 12.837 | 
| (H-pattern) | 13.489 | 13.225 | 12.961 | 12.422 | 
| Absolute improvement in | 0.233 | 0.272 | 0.339 | 0.415 | 
| Relative improvement in | 1.727 | 2.507 | 2.616 | 3.341 | 
| (V) (Curve-shaped) | 0.6598 | 0.6592 | 0.6590 | 0.6580 | 
| (V) (H-pattern) | 0.6592 | 0.6586 | 0.6580 | 0.6569 | 
| Improvement in (%) | 0.0006 | 0.0006 | 0.0010 | 0.0011 | 
| (A·m−2) (Curve-shaped) | 300.915 | 298.347 | 297.961 | 294.734 | 
| (A·m−2) (H-pattern) | 298.085 | 295.600 | 293.326 | 289.643 | 
| Improvement in (%) | 2.830 | 2.747 | 4.635 | 5.091 | 
| (%) (Curve-shaped) | 69.113 | 68.628 | 67.734 | 66.192 | 
| (%) (H-pattern) | 68.649 | 67.929 | 67.153 | 65.288 | 
| Improvement in (%) | 0.464 | 0.699 | 0.581 | 0.904 | 
| CR (%) (Curve-shaped) | 4.098 | 5.088 | 5.016 | 5.797 | 
| CR (%) (H-pattern) | 4.833 | 5.556 | 6.341 | 7.771 | 
| Absolute reduction in CR (%) | 0.735 | 0.468 | 1.325 | 1.974 | 
| Relative reduction in CR (%) | 15.208 | 8.423 | 20.896 | 25.402 | 
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.  | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, K.; Liu, Y.; Li, P. Design of the Front Contact Metallization Patterns for Solar Cells Using Variable-Width Bezier Curves. Appl. Sci. 2025, 15, 11707. https://doi.org/10.3390/app152111707
Li K, Liu Y, Li P. Design of the Front Contact Metallization Patterns for Solar Cells Using Variable-Width Bezier Curves. Applied Sciences. 2025; 15(21):11707. https://doi.org/10.3390/app152111707
Chicago/Turabian StyleLi, Kai, Yongjiang Liu, and Peizheng Li. 2025. "Design of the Front Contact Metallization Patterns for Solar Cells Using Variable-Width Bezier Curves" Applied Sciences 15, no. 21: 11707. https://doi.org/10.3390/app152111707
APA StyleLi, K., Liu, Y., & Li, P. (2025). Design of the Front Contact Metallization Patterns for Solar Cells Using Variable-Width Bezier Curves. Applied Sciences, 15(21), 11707. https://doi.org/10.3390/app152111707
        

       



















