Unlocking the Potential of Agri-Food Waste for Innovative Applications and Bio-Based Materials
Abstract
1. Introduction
Agri-Food Waste as a Strategic Resource
- −
- Thermochemical processes, such as pyrolysis, which can convert biomass into biochar, syngas, and bio-oils with high energy potential [9].
- −
- Biotechnological routes, including fermentation and enzymatic treatments, that enable the extraction or synthesis of biopolymers and bioactive compounds [10].
- −
- Material science approaches, in which natural fibers and biopolymers are integrated into composites or packaging materials to replace petroleum-derived plastics [11].
- −
- Nutraceutical and pharmaceutical valorization, where secondary metabolites from agri-food waste provide bioactive compounds with antimicrobial, antioxidant, or therapeutic functions [12].
2. Contributions in This Special Issue
2.1. Residues from Oil-Pressing Processes as Biochar for Alternative Fuels
2.2. Chestnut Burrs as a Source of Antimicrobial Bioactive Compounds
2.3. The Role of Natural Plant and Animal Fibers in PLA Composites
2.4. Harnessing Agri-Food Waste as a Source of Biopolymers for Agriculture
3. Challenges and Future Perspectives
4. Conclusions
Author Contributions
Conflicts of Interest
References
- FAO. The State of Food and Agriculture 2023; Food and Agriculture Organization of the United Nations: Rome, Italy, 2023.
- Gustavsson, J.; Cederberg, C.; Sonesson, U. Global Food Losses and Food Waste; FAO Report: Rome, Italy, 2011. [Google Scholar]
- Abass, A.; Gazal, S.; Bonnet, S. Circular Economy Strategies for Agri-Food Production. Circ. Econ. Sust. 2025, 5, 2467–2493. [Google Scholar] [CrossRef]
- Wagh, M.S.; Sowjanya, S.; Nath, P.C.; Chakraborty, A.; Amrit, R.; Mishra, B.; Mishra, A.K.; Mohanta, Y.K. Valorisation of Agro-Industrial Wastes: Circular Bioeconomy and Biorefinery Process—A Sustainable Symphony. Process Saf. Environ. Prot. 2024, 183, 708–725. [Google Scholar] [CrossRef]
- Shaba, E.Y.; Kapoor, R.T.; Sillanpää, M.; Zdarta, J.; Rafatullah, M. Biomass Valorisation: A Sustainable Approach Towards Carbon Neutrality and Circular Economy. In Biomass Valorization; Springer: Singapore, 2024. [Google Scholar] [CrossRef]
- United Nations. Sustainable Development Goals (SDG 12, SDG 13). Available online: https://sdgs.un.org/goals (accessed on 22 October 2025).
- Li, Y.; Gupta, R.; Zhang, Q.; You, S. Review of Biochar Production via Crop Residue Pyrolysis: Development and Perspectives. Bioresour. Technol. 2023, 369, 128423. [Google Scholar] [CrossRef] [PubMed]
- Cusenza, M.A.; Longo, S.; Cellura, M.; Guarino, F.; Messineo, A.; Mistretta, M.; Volpe, M. Environmental Assessment of a Waste-to-Energy Practice: The Pyrolysis of Agro-Industrial Biomass Residues. Sustain. Prod. Consum. 2021, 28, 866–876. [Google Scholar] [CrossRef]
- Varkolu, M.; Gundekari, S.; Omvesh; Palla, V.C.S.; Kumar, P.; Bhattacharjee, S.; Vinodkumar, T. Recent Advances in Biochar Production, Characterization, and Environmental Applications. Catalysts 2025, 15, 243. [Google Scholar] [CrossRef]
- Ezeorba, T.P.C.; Okeke, E.S.; Mayel, M.H.; Nwuche, C.O.; Ezike, T.C. Recent Advances in Biotechnological Valorization of Agro-Food Wastes (AFW): Optimizing Integrated Approaches for Sustainable Biorefinery and Circular Bioeconomy. Bioresour. Technol. Rep. 2024, 26, 101823. [Google Scholar] [CrossRef]
- Mishra, R.; Wiener, J.; Militky, J.; Michal, P.; Blanka, T.; Jana, N. Bio-Composites Reinforced with Natural Fibers: Comparative Analysis of Thermal, Static and Dynamic-Mechanical Properties. Fibers Polym. 2020, 21, 619–627. [Google Scholar] [CrossRef]
- Bekavac, N.; Krog, K.; Stanić, A.; Šamec, D.; Šalić, A.; Benković, M.; Jurina, T.; Gajdoš Kljusurić, J.; Valinger, D.; Jurinjak Tušek, A. Valorization of Food Waste: Extracting Bioactive Compounds for Sustainable Health and Environmental Solutions. Antioxidants 2025, 14, 714. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.H.; Wang, X.; Utomo, D.; Gage, E.; Xu, B. Circular Bioeconomy and Sustainable Food Systems: What Are the Possible Mechanisms? Clean. Circ. Bioecon. 2025, 11, 100145. [Google Scholar] [CrossRef]
- Saletnik, B.; Czarnota, R.; Maczuga, M.; Saletnik, A.; Bajcar, M.; Zaguła, G.; Puchalski, C. Residues from the Oil Pressing Process as a Substrate for the Production of Alternative Biochar Materials. Appl. Sci. 2024, 14, 8028. [Google Scholar] [CrossRef]
- Trezza, A.; Barletta, R.; Geminiani, M.; Frusciante, L.; Olmastroni, T.; Sannio, F.; Docquier, J.-D.; Santucci, A. Chestnut Burrs as Natural Source of Antimicrobial Bioactive Compounds: A Valorization of Agri-Food Waste. Appl. Sci. 2024, 14, 6552. [Google Scholar] [CrossRef]
- Szczepanik, E.; Szatkowski, P.; Molik, E.; Pielichowska, K. The Effect of Natural Plant and Animal Fibres on PLA Composites Degradation Process. Appl. Sci. 2024, 14, 5600. [Google Scholar] [CrossRef]
- Valle, C.; Voss, M.; Calcio Gaudino, E.; Forte, C.; Cravotto, G.; Tabasso, S. Harnessing Agri-Food Waste as a Source of Biopolymers for Agriculture. Appl. Sci. 2024, 14, 4089. [Google Scholar] [CrossRef]
- Khanna, M.; Zilberman, D.; Hochman, G.; Basso, B. An Economic Perspective of the Circular Bioeconomy in the Food and Agricultural Sector. Commun. Earth Environ. 2024, 5, 507. [Google Scholar] [CrossRef]
- European Commission. Food Safety and Waste Valorization Regulations; European Union: Brussels, Belgium, 2024.
- Romero-Perdomo, F.; González-Curbelo, M.Á. Integrating Multi-Criteria Techniques in Life-Cycle Tools for the Circular Bioeconomy Transition of Agri-Food Waste Biomass: A Systematic Review. Sustainability 2023, 15, 5026. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calcio Gaudino, E.; Tabasso, S. Unlocking the Potential of Agri-Food Waste for Innovative Applications and Bio-Based Materials. Appl. Sci. 2025, 15, 11692. https://doi.org/10.3390/app152111692
Calcio Gaudino E, Tabasso S. Unlocking the Potential of Agri-Food Waste for Innovative Applications and Bio-Based Materials. Applied Sciences. 2025; 15(21):11692. https://doi.org/10.3390/app152111692
Chicago/Turabian StyleCalcio Gaudino, Emanuela, and Silvia Tabasso. 2025. "Unlocking the Potential of Agri-Food Waste for Innovative Applications and Bio-Based Materials" Applied Sciences 15, no. 21: 11692. https://doi.org/10.3390/app152111692
APA StyleCalcio Gaudino, E., & Tabasso, S. (2025). Unlocking the Potential of Agri-Food Waste for Innovative Applications and Bio-Based Materials. Applied Sciences, 15(21), 11692. https://doi.org/10.3390/app152111692
