Quantum Optics: Theory, Methods, and Applications
1. Introduction
2. An Overview of Published Articles
2.1. Representation and Characterization of Quantum Light States
2.2. Quantum Light States Sources
2.3. Applications with Quantum Light States
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Loudon, R. The Quantum Theory of Light, 2nd ed.; Clarendon Press: Oxford, UK, 1983. [Google Scholar]
- Mandel, L.; Wolf, E. Optical Coherence and Quantum Optics, 1st ed.; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Schleich, W.P. Quantum Optics in Phase Space; Wiley-VCH: Berlin, Germany, 2001. [Google Scholar]
- Meyer-Scott, E.; Silberhorn, C.; Migdall, A. Single-photon sources: Approaching the ideal through multiplexing. Rev. Sci. Instrum. 2020, 91, 041101. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Huang, Y.F.; Liu, B.H.; Li, C.F.; Guo, G.C. Spontaneous Parametric Down-Conversion Sources for Multiphoton Experiments. Adv. Quantum Technol. 2021, 4, 2000132. [Google Scholar] [CrossRef]
- Pirandola, S.; Eisert, J.; Weedbrook, C.; Furusawa, A.; Braunstein, S.L. Advances in quantum teleportation. Nat. Photonics 2015, 9, 641–652. [Google Scholar] [CrossRef]
- Heshami, K.; England, D.; Humphreys, P.; Bustard, P.; Acosta, V.; Nunn, J.; Sussman, B. Quantum memories: Emerging applications and recent advances. J. Mod. Opt. 2016, 63, 2005–2028. [Google Scholar] [CrossRef]
- Scarani, V.; Bechmann-Pasquinucci, H.; Cerf, N.J.; Dušek, M.; Lütkenhaus, N.; Peev, M. The security of practical quantum key distribution. Rev. Mod. Phys. 2009, 81, 1301–1350. [Google Scholar] [CrossRef]
- Gisin, N.; Ribordy, G.; Tittel, W.; Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 2002, 74, 145–195. [Google Scholar] [CrossRef]
- Pirandola, S.; Andersen, U.L.; Banchi, L.; Berta, M.; Bunandar, D.; Colbeck, R.; Englund, D.; Gehring, T.; Lupo, C.; Ottaviani, C.; et al. Advances in quantum cryptography. Adv. Opt. Photonics 2020, 12, 1012–1236. [Google Scholar] [CrossRef]
- Bennett, C.H.; Brassard, G. Quantum cryptography: Public key distribution and coin tossing. Theor. Comput. Sci. 2014, 560, 7–11. [Google Scholar] [CrossRef]
- Lo, H.K.; Curty, M.; Qi, B. Measurement-Device-Independent Quantum Key Distribution. Phys. Rev. Lett. 2012, 108, 130503. [Google Scholar] [CrossRef]
- Bennett, C.H.; Brassard, G.; Mermin, N.D. Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 1992, 68, 557–559. [Google Scholar] [CrossRef]
- Namiki, R.; Hirano, T. Security of quantum cryptography using balanced homodyne detection. Phys. Rev. A 2003, 67, 022308. [Google Scholar] [CrossRef]
- Cerf, N.J.; Lévy, M.; Assche, G.V. Quantum distribution of Gaussian keys using squeezed states. Phys. Rev. A 2001, 63, 052311. [Google Scholar] [CrossRef]
- Fletcher, A.I.; Harney, C.; Ghalaii, M.; Papanastasiou, P.; Mountogiannakis, A.; Spedalieri, G.; Hajomer, A.A.E.; Gehring, T.; Pirandola, S. An overview of CV-MDI-QKD. Rep. Prog. Phys. 2025, 88, 084001. [Google Scholar] [CrossRef] [PubMed]
- Knill, E.; Laflamme, R.; Milburn, G.J. A scheme for efficient quantum computation with linear optics. Nature 2001, 409, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Weedbrook, C.; Pirandola, S.; García-Patrón, R.; Cerf, N.J.; Ralph, T.C.; Shapiro, J.H.; Lloyd, S. Gaussian quantum information. Rev. Mod. Phys. 2012, 84, 621–669. [Google Scholar] [CrossRef]
- Mannalatha, V.; Mishra, S.; Pathak, A. A comprehensive review of quantum random number generators: Concepts, classification and the origin of randomness. Quantum Inf. Process. 2023, 22, 439. [Google Scholar] [CrossRef]
- Bian, Z.H.; Li, J.; Zhan, X.; Twamley, J.; Xue, P. Experimental implementation of a quantum walk on a circle with single photons. Phys. Rev. A 2017, 95, 052338. [Google Scholar] [CrossRef]
- Ma, X.S.; Dakić, B.; Kropatschek, S.; Naylor, W.; Chan, Y.H.; Gong, Z.X.; Duan, L.M.; Zeilinger, A.; Walther, P. Towards photonic quantum simulation of ground states of frustrated Heisenberg spin systems. Sci. Rep. 2014, 4, 3583. [Google Scholar] [CrossRef]
- Hartmann, M.J. Quantum simulation with interacting photons. J. Opt. 2016, 18, 104005. [Google Scholar] [CrossRef]
- Ware, M.; Migdall, A. Single-photon detector characterization using correlated photons: The march from feasibility to metrology. J. Mod. Opt. 2004, 51, 1549–1557. [Google Scholar] [CrossRef]
- Zwierz, M.; Pérez-Delgado, C.A.; Kok, P. Ultimate limits to quantum metrology and the meaning of the Heisenberg limit. Phys. Rev. A 2012, 85, 042112. [Google Scholar] [CrossRef]
- Pe’er, A.; Dayan, B.; Vucelja, M.; Silberberg, Y.; Friesem, A.A. Quantum lithography by coherent control of classical light pulses. Opt. Express 2004, 12, 6600–6605. [Google Scholar] [CrossRef]
- Ryan, D.P.; Werner, J.H. A review of quantum imaging methods and enabling technologies. Mater. Today Quantum 2025, 6, 100044. [Google Scholar] [CrossRef]
- Teich, M.C.; Saleh, B.E.A.; Wong, F.N.C.; Shapiro, J.H. Variations on the theme of quantum optical coherence tomography: A review. Quantum Inf. Process. 2012, 11, 903–923. [Google Scholar] [CrossRef]
- Zurek, W.H. Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 2003, 75, 715–775. [Google Scholar] [CrossRef]
- Goh, B.; Tong, E.; Pusparajah, P. Quantum Biology: Does quantum physics hold the key to revolutionizing medicine? Prog. Drug Discov. Biomed. Sci. 2020, 3, 1–22. [Google Scholar] [CrossRef]
- Tarlaci, S.; Pregnolato, M. Quantum neurophysics: From non-living matter to quantum neurobiology and psychopathology. Int. J. Psychophysiol. 2016, 103, 161–173. [Google Scholar] [CrossRef]
- Klusch, M.; Lässig, J.; Müssig, D.; Macaluso, A.; Wilhelm, F.K. Quantum Artificial Intelligence: A Brief Survey. KI—Künstliche Intell. 2024, 38, 257–276. [Google Scholar] [CrossRef]
- Sánchez-Soto, L.L.; Muñoz, A.; de la Hoz, P.; Klimov, A.B.; Leuchs, G. Phase Space Insights: Wigner Functions for Qubits and Beyond. Appl. Sci. 2025, 15, 5155. [Google Scholar] [CrossRef]
- Duan, L.M.; Giedke, G.; Cirac, J.I.; Zoller, P. Inseparability Criterion for Continuous Variable Systems. Phys. Rev. Lett. 2000, 84, 2722–2725. [Google Scholar] [CrossRef] [PubMed]
- Bohigas, O.; Giannoni, M.J.; Schmit, C. Characterization of Chaotic Quantum Spectra and Universality of Level Fluctuation Laws. Phys. Rev. Lett. 1984, 52, 1–4. [Google Scholar] [CrossRef]
- Chamorro-Posada, P. Corner Reflector Plasmonic Nanoantennas for Enhanced Single-Photon Emission. Appl. Sci. 2024, 14, 10300. [Google Scholar] [CrossRef]
- Jentschura, U.D.; Serbo, V.G. Generation of High-Energy Photons with Large Orbital Angular Momentum by Compton Backscattering. Phys. Rev. Lett. 2011, 106, 013001. [Google Scholar] [CrossRef]
- Liñares, J.; Prieto-Blanco, X.; Balado, D.; Carral, G.M. Fully autocompensating high-dimensional quantum cryptography by quantum degenerate four-wave mixing. Phys. Rev. A 2021, 103, 043710. [Google Scholar] [CrossRef]
- Finlay, O.J.; Gruse, J.N.; Thornton, C.; Allott, R.; Armstrong, C.D.; Baird, C.D.; Bourgeois, N.; Brenner, C.; Cipiccia, S.; Cole, J.M.; et al. Characterisation of a laser plasma betatron source for high resolution x-ray imaging. Plasma Phys. Control. Fusion 2021, 63, 084010. [Google Scholar] [CrossRef]
- Sukharenko, V.; Dorsinville, R. Polarization-Sensitive Quantum Optical Coherence Tomography: Birefringence Profiles of Biological Samples. Appl. Sci. 2024, 14, 1168. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liñares, J.; Prieto-Blanco, X. Quantum Optics: Theory, Methods, and Applications. Appl. Sci. 2025, 15, 11691. https://doi.org/10.3390/app152111691
Liñares J, Prieto-Blanco X. Quantum Optics: Theory, Methods, and Applications. Applied Sciences. 2025; 15(21):11691. https://doi.org/10.3390/app152111691
Chicago/Turabian StyleLiñares, Jesús, and Xesús Prieto-Blanco. 2025. "Quantum Optics: Theory, Methods, and Applications" Applied Sciences 15, no. 21: 11691. https://doi.org/10.3390/app152111691
APA StyleLiñares, J., & Prieto-Blanco, X. (2025). Quantum Optics: Theory, Methods, and Applications. Applied Sciences, 15(21), 11691. https://doi.org/10.3390/app152111691
