Technosols for Mine Restoration: Overcoming Challenges and Maximising Benefit
Abstract
1. Introduction
2. Materials and Methods
3. Technical and Other Problems in Mine Restoration
4. Technosols
5. Advantages of Using Technosols in Mine Restoration
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviation
| GIS | Geographic Information System |
References
- Carvalho, F.P. Mining Industry and Sustainable Development: Time for Change. Food Energy Secur. 2017, 6, 61–77. [Google Scholar] [CrossRef]
- Hodge, R.A.; Ericsson, M.; Löf, O.; Löf, A.; Semkowich, P. The Global Mining Industry: Corporate Profile, Complexity, and Change. Miner. Econ. 2022, 35, 587–606. [Google Scholar] [CrossRef]
- Maus, V.; Giljum, S.; Da Silva, D.M.; Gutschlhofer, J.; Da Rosa, R.P.; Luckeneder, S.; Gass, S.L.B.; Lieber, M.; McCallum, I. An Update on Global Mining Land Use. Sci. Data 2022, 9, 433. [Google Scholar] [CrossRef] [PubMed]
- Berthet, E.; Lavalley, J.; Anquetil-Deck, C.; Ballesteros, F.; Stadler, K.; Soytas, U.; Hauschild, M.; Laurent, A. Assessing the Social and Environmental Impacts of Critical Mineral Supply Chains for the Energy Transition in Europe. Glob. Environ. Change 2024, 86, 102841. [Google Scholar] [CrossRef]
- Müller, M. The ‘New Geopolitics’ of Mineral Supply Chains: A Window of Opportunity for African Countries. S. Afr. J. Int. Aff. 2023, 30, 177–203. [Google Scholar] [CrossRef]
- Radebe, N.; Chipangamate, N. Mining Industry Risks, and Future Critical Minerals and Metals Supply Chain Resilience in Emerging Markets. Resour. Policy 2024, 91, 104887. [Google Scholar] [CrossRef]
- Zhang, H. Resilience of Critical Transition Minerals Supply Chain in the Context of Strategic Rivalry: Implications for the National Policy and Regulatory Frameworks. J. Energy Nat. Resour. Law 2025, 43, 1–27. [Google Scholar] [CrossRef]
- International Energy Agency. Global Critical Minerals Outlook 2025; IEA: Paris, French, 2025. [Google Scholar]
- Lenzen, M.; Geschke, A.; West, J.; Fry, J.; Malik, A.; Giljum, S.; Milà I Canals, L.; Piñero, P.; Lutter, S.; Wiedmann, T.; et al. Implementing the Material Footprint to Measure Progress towards Sustainable Development Goals 8 and 12. Nat. Sustain. 2021, 5, 157–166. [Google Scholar] [CrossRef]
- Luckeneder, S.; Giljum, S.; Schaffartzik, A.; Maus, V.; Tost, M. Surge in Global Metal Mining Threatens Vulnerable Ecosystems. Glob. Environ. Change 2021, 69, 102303. [Google Scholar] [CrossRef]
- Tordoff, G.M.; Baker, A.J.M.; Willis, A.J. Current Approaches to the Revegetation and Reclamation of Metalliferous Mine Wastes. Chemosphere 2000, 41, 219–228. [Google Scholar] [CrossRef]
- Mendez, M.O.; Maier, R.M. Phytostabilization of Mine Tailings in Arid and Semiarid Environments—An Emerging Remediation Technology. Environ. Health Perspect. 2008, 116, 278–283. [Google Scholar] [CrossRef]
- Buta, M.; Blaga, G.; Paulette, L.; Păcurar, I.; Roșca, S.; Borsai, O.; Grecu, F.; Sînziana, P.E.; Negrușier, C. Soil Reclamation of Abandoned Mine Lands by Revegetation in Northwestern Part of Transylvania: A 40-Year Retrospective Study. Sustainability 2019, 11, 3393. [Google Scholar] [CrossRef]
- European Parliament. European Union Social and Environmental Impacts of Mining Activities in the EU. In Study Requested by the PETI Committee; European Parliament: Brussels, Belgium, 2022; pp. 1–81. [Google Scholar]
- Lima, A.T.; Mitchell, K.; O’Connell, D.W.; Verhoeven, J.; Van Cappellen, P. The Legacy of Surface Mining: Remediation, Restoration, Reclamation and Rehabilitation. Environ. Sci. Policy 2016, 66, 227–233. [Google Scholar] [CrossRef]
- Rahman, M.d.; Ghataora, G. Use of Waste Gypsum for Trench Backfill. Int. J. Geotech. Eng. 2011, 5, 405–413. [Google Scholar] [CrossRef]
- De Rezende, L.R.; De Carvalho, J.C. The Use of Quarry Waste in Pavement Construction. Resour. Conserv. Recycl. 2003, 39, 91–105. [Google Scholar] [CrossRef]
- Eurostat Waste Statistics 2022. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Waste_statistics (accessed on 4 July 2025).
- UNEP. Becoming #GenerationRestoration: Ecosystem Restoration for People, Nature and Climate; United Nations Environment Programme: Nairobi, Kenya, 2021. [Google Scholar]
- Young, R.E.; Gann, G.D.; Walder, B.; Liu, J.; Cui, W.; Newton, V.; Nelson, C.R.; Tashe, N.; Jasper, D.; Silveira, F.A.O.; et al. International Principles and Standards for the Ecological Restoration and Recovery of Mine Sites. Restor. Ecol. 2022, 30, e13771. [Google Scholar] [CrossRef]
- Spanidis, P.-M.; Roumpos, C.; Pavloudakis, F. A Multi-Criteria Approach for the Evaluation of Low Risk Restoration Projects in Continuous Surface Lignite Mines. Energies 2020, 13, 2179. [Google Scholar] [CrossRef]
- Zandariya, B. Improving the Policy Framework for Financial Assurance for Mine Closure in Mongolia. Resour. Policy 2022, 77, 102628. [Google Scholar] [CrossRef]
- Buondonno, A.; Capra, G.F.; Di Palma, D.; Grilli, E.; Vigliotti, R.C. Pedotechnologies for the Environmental Reclamation of Limestone Quarries. A Protocol Proposal. Land Use Policy 2018, 71, 230–244. [Google Scholar] [CrossRef]
- Ashby, A.; Van Etten, E. Exploring Abandoned Mines through a Public Lens. In Proceedings of the International Conference on Mine Closure, Ulaanbaatar, Mongolia, 23–24 September 2021; QMC Group: Ulaanbaatar, Mongolia, 2021; pp. 207–216. [Google Scholar]
- Auditor General. Report of the Auditor-General to Parliament on a Performance Audit of the Rehabilitation of Abandoned Mines at the Department of Minerals and Energy; Auditor-General of South Africa: Pretoria, South Africa, 2009; pp. 1–18. [Google Scholar]
- AusIMM. Life-of-Mine Conference: Proceedings. In Proceedings of the LoM 2012, Brisbane Australia, 10–12 July 2012; Australasian Institute of Mining and Metallurgy: Carlton, Australia, 2012. Publication series. ISBN 978-1-921522-66-6. [Google Scholar]
- Qin, X.; Zhou, Y.; He, M. Experimental Study on Mechanical Properties and Acoustic Emission Characteristics of Water Bearing Sandstone under Stable Cyclic Loading and Unloading. Shock Vib. 2020, 2020, 9472656. [Google Scholar] [CrossRef]
- Xu, H.; Xu, F.; Lin, T.; Xu, Q.; Yu, P.; Wang, C.; Aili, A.; Zhao, X.; Zhao, W.; Zhang, P.; et al. A Systematic Review and Comprehensive Analysis on Ecological Restoration of Mining Areas in the Arid Region of China: Challenge, Capability and Reconsideration. Ecol. Indic. 2023, 154, 110630. [Google Scholar] [CrossRef]
- Rodrigues, S.; Pereira, M.; Dasilva, E.; Hursthouse, A.; Duarte, A. A Review of Regulatory Decisions for Environmental Protection: Part I—Challenges in the Implementation of National Soil Policies. Environ. Int. 2009, 35, 202–213. [Google Scholar] [CrossRef]
- Olsen, N.; Shannon, D. Valuing the Net Benefits of Ecosystem Restoration: The Ripon City Quarry in Yorkshire, Ecosystem Valuation Initiative Case Study No. 1; IUCN/Aggregate Industries UK (Holcim): Gland, Switzerland; Bardon Hill, UK, 2010. [Google Scholar]
- Li, M.; Liu, S.; Wang, F.; Liu, H.; Liu, Y.; Wang, Q. Cost-Benefit Analysis of Ecological Restoration Based on Land Use Scenario Simulation and Ecosystem Service on the Qinghai-Tibet Plateau. Glob. Ecol. Conserv. 2022, 34, e02006. [Google Scholar] [CrossRef]
- Aguilar-Garrido, A.; Romero-Freire, A.; Paniagua-López, M.; Martínez-Garzón, F.J.; Martín-Peinado, F.J.; Sierra-Aragón, M. Technosols Derived from Mining, Urban, and Agro-Industrial Waste for the Remediation of Metal(Loid)-Polluted Soils: A Microcosm Assay. Toxics 2023, 11, 854. [Google Scholar] [CrossRef]
- Ivannikov, A.L.; Kongar-Syuryun, C.; Rybak, J.; Tyulyaeva, Y. The Reuse of Mining and Construction Waste for Backfill as One of the Sustainable Activities. IOP Conf. Ser. Earth Environ. Sci. 2019, 362, 012130. [Google Scholar] [CrossRef]
- Rodríguez-Espinosa, T.; Navarro-Pedreño, J.; Gómez-Lucas, I.; Jordán-Vidal, M.M.; Bech-Borras, J.; Zorpas, A.A. Urban Areas, Human Health and Technosols for the Green Deal. Environ. Geochem. Health 2021, 43, 5065–5086. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Espinosa, T.; Pérez-Gimeno, A.; Almendro-Candel, M.B.; Navarro-Pedreño, J. Constructing Soils to Mitigate Land Occupation by Urban Expansion and Metabolism to Improve Healthy Cities. Land 2024, 13, 1383. [Google Scholar] [CrossRef]
- Ruiz, F.; Perlatti, F.; Oliveira, D.P.; Ferreira, T.O. Revealing Tropical Technosols as an Alternative for Mine Reclamation and Waste Management. Minerals 2020, 10, 110. [Google Scholar] [CrossRef]
- Jordán, M.M.; Pina, S.; García-Orenes, F.; Almendro-Candel, M.B.; García-Sánchez, E. Environmental Risk Evaluation of the Use of Mine Spoils and Treated Sewage Sludge in the Ecological Restoration of Limestone Quarries. Environ. Geol. 2007, 55, 453–462. [Google Scholar] [CrossRef]
- Santos, E.S.; Abreu, M.M.; Macías, F. Rehabilitation of Mining Areas through Integrated Biotechnological Approach: Technosols Derived from Organic/Inorganic Wastes and Autochthonous Plant Development. Chemosphere 2019, 224, 765–775. [Google Scholar] [CrossRef]
- Almendro-Candel, M.B.; Jordán, M.M.; Navarro-Pedreño, J.; Mataix-Solera, J.; Gómez-Lucas, I. Environmental Evaluation of Sewage Sludge Application to Reclaim Limestone Quarries Wastes as Soil Amendments. Soil Biol. Biochem. 2007, 39, 1328–1332. [Google Scholar] [CrossRef]
- Page-Dumroese, D.S.; Ott, M.R.; Strawn, D.G.; Tirocke, J.M. Using Organic Amendments to Restore Soil Physical and Chemical Properties of a Mine Site in Northeastern Oregon, USA. Appl. Eng. Agric. 2018, 34, 43–55. [Google Scholar] [CrossRef]
- Asensio, V.; Vega, F.A.; Andrade, M.L.; Covelo, E.F. Technosols Made of Wastes to Improve Physico-Chemical Characteristics of a Copper Mine Soil. Pedosphere 2013, 23, 1–9. [Google Scholar] [CrossRef]
- Gutierrez, M. Editorial for Special Issue “Sustainable Use of Abandoned Mines”. Minerals 2020, 10, 1015. [Google Scholar] [CrossRef]
- Cidu, R.; Frau, F.; Da Pelo, S. Drainage at Abandoned Mine Sites: Natural Attenuation of Contaminants in Different Seasons. Mine Water Environ. 2011, 30, 113–126. [Google Scholar] [CrossRef]
- Mossa, J.; James, L.A. 13.6 Impacts of Mining on Geomorphic Systems. In Treatise on Geomorphology; Elsevier: Amsterdam, The Netherlands, 2013; pp. 74–95. ISBN 978-0-08-088522-3. [Google Scholar]
- Werner, T.; Bach, P.; Yellishetty, M.; Amirpoorsaeed, F.; Walsh, S.; Miller, A.; Roach, M.; Schnapp, A.; Solly, P.; Tan, Y.; et al. A Geospatial Database for Effective Mine Rehabilitation in Australia. Minerals 2020, 10, 745. [Google Scholar] [CrossRef]
- Cui, X.; Peng, S.; Lines, L.R.; Zhu, G.; Hu, Z.; Cui, F. Understanding the Capability of an Ecosystem Nature-Restoration in Coal Mined Area. Sci. Rep. 2019, 9, 19690. [Google Scholar] [CrossRef]
- Werner, T.T.; Bebbington, A.; Gregory, G. Assessing Impacts of Mining: Recent Contributions from GIS and Remote Sensing. Extr. Ind. Soc. 2019, 6, 993–1012. [Google Scholar] [CrossRef]
- Martín-Duque, J.F.; Sanz, M.A.; Bodoque, J.M.; Lucía, A.; Martín-Moreno, C. Restoring Earth Surface Processes through Landform Design. A 13-year Monitoring of a Geomorphic Reclamation Model for Quarries on Slopes. Earth Surf. Process. Landf. 2010, 35, 531–548. [Google Scholar] [CrossRef]
- Manero, A.; Kragt, M.; Standish, R.; Miller, B.; Jasper, D.; Boggs, G.; Young, R. A Framework for Developing Completion Criteria for Mine Closure and Rehabilitation. J. Environ. Manag. 2020, 273, 111078. [Google Scholar] [CrossRef]
- Liu, S.; Bai, J.; Wang, G.; Wang, X.; Wu, B. A Method of Backfill Mining Crossing the Interchange Bridge and Application of a Ground Subsidence Prediction Model. Minerals 2021, 11, 945. [Google Scholar] [CrossRef]
- Pal, A.; Rošer, J.; Vulić, M. Surface Subsidence Prognosis above an Underground Longwall Excavation and Based on 3D Point Cloud Analysis. Minerals 2020, 10, 82. [Google Scholar] [CrossRef]
- Ballesteros, M.; Cañadas, E.M.; Foronda, A.; Peñas, J.; Valle, F.; Lorite, J. Central Role of Bedding Materials for Gypsum-Quarry Restoration: An Experimental Planting of Gypsophile Species. Ecol. Eng. 2014, 70, 470–476. [Google Scholar] [CrossRef]
- Nyssen, J.; Vermeersch, D. Slope Aspect Affects Geomorphic Dynamics of Coal Mining Spoil Heaps in Belgium. Geomorphology 2010, 123, 109–121. [Google Scholar] [CrossRef]
- Ren, J.; Kang, X.; Tang, M.; Gao, L.; Hu, J.; Zhou, C. Coal Mining Surface Damage Characteristics and Restoration Technology. Sustainability 2022, 14, 9745. [Google Scholar] [CrossRef]
- Martín-Moreno, C.; Martín Duque, J.F.; Nicolau Ibarra, J.M.; Hernando Rodríguez, N.; Sanz Santos, M.Á.; Sánchez Castillo, L. Effects of Topography and Surface Soil Cover on Erosion for Mining Reclamation: The Experimental Spoil Heap at El Machorro Mine (Central Spain). Land Degrad. Dev. 2016, 27, 145–159. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, J.; Bai, Z.; Reading, L. Effects of Surface Coal Mining and Land Reclamation on Soil Properties: A Review. Earth-Sci. Rev. 2019, 191, 12–25. [Google Scholar] [CrossRef]
- Ballesteros, M.; Cañadas, E.M.; Foronda, A.; Fernández-Ondoño, E.; Peñas, J.; Lorite, J. Vegetation Recovery of Gypsum Quarries: Short-term Sowing Response to Different Soil Treatments. Appl. Veg. Sci. 2012, 15, 187–197. [Google Scholar] [CrossRef]
- Rieder, J.P.; Redente, E.F.; Richard, C.E.; Paschke, M.W. An Approach to Restoration of Acidic Waste Rock at a High-Elevation Gold Mine in Colorado, USA. Ecol. Restor. 2013, 31, 283–294. [Google Scholar] [CrossRef]
- Ackerman, M.; Van Der Waldt, G.; Botha, D. Mitigating the Socio-Economic Consequences of Mine Closure. J. S. Afr. Inst. Min. Met. 2018, 118, 439–447. [Google Scholar] [CrossRef]
- Gentili, R.; Casati, E.; Ferrario, A.; Monti, A.; Montagnani, C.; Caronni, S.; Citterio, S. Vegetation Cover and Biodiversity Levels Are Driven by Backfilling Material in Quarry Restoration. CATENA 2020, 195, 104839. [Google Scholar] [CrossRef]
- Hancock, G.R.; Duque, J.F.M.; Willgoose, G.R. Mining Rehabilitation—Using Geomorphology to Engineer Ecologically Sustainable Landscapes for Highly Disturbed Lands. Ecol. Eng. 2020, 155, 105836. [Google Scholar] [CrossRef]
- Nordstrom, D.K. Geochemical Modelling for Mine Site Characterization and Remediation. E3S Web Conf. 2019, 98, 05013. [Google Scholar] [CrossRef]
- Li, X.; Qin, Z.; Tian, Y.; Zhang, H.; Zhao, H.; Shen, J.; Shao, W.; Jiang, G.; Guo, X.; Zhang, J. Study on Stability and Ecological Restoration of Soil-Covered Rocky Slope of an Abandoned Mine on an Island in Rainy Regions. Sustainability 2022, 14, 12959. [Google Scholar] [CrossRef]
- Daws, M.I.; Koch, J.M. Long-Term Restoration Success of Re-Sprouter Understorey Species Is Facilitated by Protection from Herbivory and a Reduction in Competition. Plant Ecol. 2015, 216, 565–576. [Google Scholar] [CrossRef]
- Ewel, J.J.; Putz, F.E. A Place for Alien Species in Ecosystem Restoration. Front. Ecol. Environ. 2004, 2, 354–360. [Google Scholar] [CrossRef]
- Anibaba, Q.A.; Dyderski, M.K.; Woźniak, G.; Jagodziński, A.M. Native Plant Community Characteristics Explain Alien Species Success in Post-Industrial Vegetation. NeoBiota 2023, 85, 1–22. [Google Scholar] [CrossRef]
- Rossiter, D.G. Classification of Urban and Industrial Soils in the World Reference Base for Soil Resources (5 Pp). J. Soils SediMents 2007, 7, 96–100. [Google Scholar] [CrossRef]
- Lehmann, A. Technosols and other proposals on urban soils for the WRB (World Reference Base for Soil Resources). Int. Agrophysics 2006, 20, 129–134. [Google Scholar]
- FAO. World Soil Resources Reports. In Proceedings of the World Reference Base for Soil Resources 2014: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, Jeju Island, Republic of Korea, 8–13 June 2014; FAO: Rome, Italy, 2014. ISBN 978-92-5-108369-7. [Google Scholar]
- Séré, G.; Schwartz, C.; Ouvrard, S.; Sauvage, C.; Renat, J.-C.; Morel, J.L. Soil Construction: A Step for Ecological Reclamation of Derelict Lands. J. Soils Sediments 2008, 8, 130–136. [Google Scholar] [CrossRef]
- Deeb, M.; Groffman, P.M.; Blouin, M.; Egendorf, S.P.; Vergnes, A.; Vasenev, V.; Cao, D.L.; Walsh, D.; Morin, T.; Séré, G. Using Constructed Soils for Green Infrastructure—Challenges and Limitations. Soil 2020, 6, 413–434. [Google Scholar] [CrossRef]
- European Commission Joint Research Centre; European Environment Agency. The State of Soils in Europe: Fully Evidenced, Spatially Organised Assessment of the Pressures Driving Soil Degradation; Publications Office: rue Mercier, Luxembourg, 2024. [Google Scholar]
- Schneider, D.; Greenberg, M.R. Remediating and Reusing Abandoned Mining Sites in U.S. Metropolitan Areas: Raising Visibility and Value. Sustainability 2023, 15, 7080. [Google Scholar] [CrossRef]
- Mallo, J.C.; De Marco, S.G.; Bazzini, S.M.; Del Río, J.L. Aquaculture: An Alternative Option for the Rehabilitation of Old Mine Pits in the Pampasian Region, Southeast of Buenos Aires, Argentina. Mine Water Environ. 2010, 29, 285–293. [Google Scholar] [CrossRef]
- MITECO. Guía Para La Rehabilitación de Huecos Mineros Con Residuos de Construcción y Demolición (RCD); MITECO: Madrid, Spain, 2018. [Google Scholar]
- Silva, B.M.; Queiroz, H.M.; Ferreira, A.D.; Ruiz, F.; Ferreira, T.O. Technosols Made from Iron Mine Tailings and Construction and Demolition Waste as an Alternative for Sustainable Solid Waste Management. Land Degrad. Dev. 2025, 36, 208–217. [Google Scholar] [CrossRef]
- Antony Jose, S.; Calhoun, J.; Renteria, O.B.; Mercado, P.; Nakajima, S.; Hope, C.N.; Sotelo, M.; Menezes, P.L. Promoting a Circular Economy in Mining Practices. Sustainability 2024, 16, 11016. [Google Scholar] [CrossRef]
- Cotrina-Teatino, M.A.; Marquina-Araujo, J.J. Circular Economy in the Mining Industry: A Bibliometric and Systematic Literature Review. Resour. Policy 2025, 102, 105513. [Google Scholar] [CrossRef]
- Fabbri, D.; Pizzol, R.; Calza, P.; Malandrino, M.; Gaggero, E.; Padoan, E.; Ajmone-Marsan, F. Constructed Technosols: A Strategy toward a Circular Economy. Appl. Sci. 2021, 11, 3432. [Google Scholar] [CrossRef]
- Ministerio de la Presidencia. Real Decreto 975/2009, de 12 de Junio, Sobre Gestión de los Residuos de Las Industrias Extractivas y de Protección y Rehabilitación del Espacio Afectado Por Actividades Mineras; Gobierno de España: Madrid, Spain, 2009.
- de La Dirección General de Calidad y Evaluación Ambiental. Por Lo Que Se Da Publicidad a La Instrucción Técnica de Residuos ITR/01/08, de 8 de Enero de 2008, de La Dirección General de Calidad y Evaluación Ambiental, Referente a La Elaboración de Suelos (Tecnosoles) Derivados de Residuos; de La Dirección General de Calidad y Evaluación Ambiental (Xunta de Galicia): Santiago de Compostela, Spain, 2008. [Google Scholar]
- Harries, K.L.; Woinarski, J.; Rumpff, L.; Gardener, M.; Erskine, P.D. Characteristics and Gaps in the Assessment of Progress in Mine Restoration: Insights from Five Decades of Published Literature Relating to Native Ecosystem Restoration after Mining. Restor. Ecol. 2024, 32, e14016. [Google Scholar] [CrossRef]
- Almendro-Candel, M.B.; Navarro-Pedreño, J.; Jordán, M.M.; Gómez, I.; Meléndez-Pastor, I. Use of Municipal Solid Waste Compost to Reclaim Limestone Quarries Mine Spoils as Soil Amendments: Effects on Cd and Ni. J. Geochem. Explor. 2014, 144, 363–366. [Google Scholar] [CrossRef]
- Robinson, D.A.; Fraser, I.; Dominati, E.J.; Davíðsdóttir, B.; Jónsson, J.O.G.; Jones, L.; Jones, S.B.; Tuller, M.; Lebron, I.; Bristow, K.L.; et al. On the Value of Soil Resources in the Context of Natural Capital and Ecosystem Service Delivery. Soil Sci. Soc. Am. J. 2014, 78, 685–700. [Google Scholar] [CrossRef]
- Padró, J.-C.; Cardozo, J.; Montero, P.; Ruiz-Carulla, R.; Alcañiz, J.M.; Serra, D.; Carabassa, V. Drone-Based Identification of Erosive Processes in Open-Pit Mining Restored Areas. Land 2022, 11, 212. [Google Scholar] [CrossRef]
- Johansen, K.; Erskine, P.D.; McCabe, M.F. Using Unmanned Aerial Vehicles to Assess the Rehabilitation Performance of Open Cut Coal Mines. J. Clean. Prod. 2019, 209, 819–833. [Google Scholar] [CrossRef]
- Luna Ramos, L.; Solé Benet, A.; Lázaro Suau, R.; Arzadun Larrucea, A.; Hens Del Campo, L.; Urdiales Matilla, A. Field-Testing and Characterization of Technosols Made from Industrial and Agricultural Residues for Restoring Degraded Slopes in Semiarid SE Spain. J. Soils Sediments 2021, 21, 1989–1997. [Google Scholar] [CrossRef]
- Jin, G.; Englande, A.J. A Field Study on Cost-effectiveness of Five Erosion Control Measures. Manag. Environ. Qual. Int. J. 2009, 20, 6–20. [Google Scholar] [CrossRef]
- Posthumus, H.; Deeks, L.K.; Rickson, R.J.; Quinton, J.N. Costs and Benefits of Erosion Control Measures in the UK. Soil Use Manag. 2015, 31, 16–33. [Google Scholar] [CrossRef]
- García-Tomillo, A.; Lado, M.; Vidal-Vázquez, E.; Paz-González, A. X Congreso Sobre Uso y Manejo del Suelo: Gestión Sostenible de Suelos y Recursos Hídricos: Libro de Resúmenes; UMS 2020; Universidade da Coruña: A Coruña, Spain, 2020; ISBN 978-84-9749-791-6. [Google Scholar]
- Solé, P.; Ferrer, D.; Raya, I.; Pous, M.; Gonzàlez, R.; Marañón-Jiménez, S.; Alcañiz, J.M.; Carabassa, V. Physical and Chemical Properties of Limestone Quarry Technosols Used in the Restoration of Mediterranean Habitats. Land 2023, 12, 1730. [Google Scholar] [CrossRef]
- Ruiz, F.; Resmini Sartor, L.; De Souza Júnior, V.S.; Cheyson Barros Dos Santos, J.; Osório Ferreira, T. Fast Pedogenesis of Tropical Technosols Developed from Dolomitic Limestone Mine Spoils (SE-Brazil). Geoderma 2020, 374, 114439. [Google Scholar] [CrossRef]
- García, F.M.; García, I.M.; Vázquez, F.M. Environmental and Productive Applications of Tailor-Made Technosols: Biosphere Learnings. In Advances in Geoengineering, Geotechnologies, and Geoenvironment for Earth Systems and Sustainable Georesources Management; Chaminé, H.I., Fernandes, J.A., Eds.; Advances in Science, Technology & Innovation; Springer International Publishing: Cham, Switzerland, 2023; pp. 219–225. ISBN 978-3-031-25985-2. [Google Scholar]
- Pat-Espadas, A.M.; Loredo Portales, R.; Amabilis-Sosa, L.E.; Gómez, G.; Vidal, G. Review of Constructed Wetlands for Acid Mine Drainage Treatment. Water 2018, 10, 1685. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, G.; Han, Y.; Wang, Y.; Tang, C.; Tian, N.; Tang, X.; Jiang, L.; Zuo, H.; Zhang, Y.; et al. Assessment of the Impact of Abandoned Mine Water on Groundwater Environment. Water 2023, 15, 2649. [Google Scholar] [CrossRef]
- Wibowo, Y.G.; Wijaya, C.; Halomoan, P.; Yudhoyono, A.; Safri, M. Constructed Wetlands for Treatment of Acid Mine Drainage: A Review. J. Presipitasi Media Komun. Dan Pengemb. Tek. Lingkung. 2022, 19, 436–450. [Google Scholar] [CrossRef]
- Ma, L.; Ghorbani, Y.; Kongar-Syuryun, C.B.; Khayrutdinov, M.M.; Klyuev, R.V.; Petenko, A.; Brigida, V. Dynamics of Backfill Compressive Strength Obtained from Enrichment Tails for the Circular Waste Management. Resour. Conserv. Recycl. Adv. 2024, 23, 200224. [Google Scholar] [CrossRef]
- Kulczycka, J.; Dziobek, E.; Szmiłyk, A. Challenges in the Management of Data on Extractive Waste—The Polish Case. Miner. Econ. 2020, 33, 341–347. [Google Scholar] [CrossRef]
- Vallero, D.A.; Blight, G. Mine Waste: A Brief Overview of Origins, Quantities, and Methods of Storage. In Waste; Elsevier: Amsterdam, The Netherlands, 2019; pp. 129–151. ISBN 978-0-12-815060-3. [Google Scholar]
- Edraki, M.; Baumgartl, T.; Manlapig, E.; Bradshaw, D.; Franks, D.M.; Moran, C.J. Designing Mine Tailings for Better Environmental, Social and Economic Outcomes: A Review of Alternative Approaches. J. Clean. Prod. 2014, 84, 411–420. [Google Scholar] [CrossRef]
- Jordán, M.M.; García-Sánchez, E.; Almendro-Candel, M.B.; Navarro-Pedreño, J.; Gómez-Lucas, I.; Melendez, I. Geological and Environmental Implications in the Reclamation of Limestone Quarries in Sierra de Callosa (Alicante, Spain). Environ. Earth Sci. 2009, 59, 687–694. [Google Scholar] [CrossRef]
- Ram, L.C.; Srivastava, N.K.; Tripathi, R.C.; Jha, S.K.; Sinha, A.K.; Singh, G.; Manoharan, V. Management of Mine Spoil for Crop Productivity with Lignite Fly Ash and Biological Amendments. J. Environ. Manag. 2006, 79, 173–187. [Google Scholar] [CrossRef]
- Tedesco, M.J.; Teixeira, E.C.; Medina, C.; Bugin, A. Reclamation of Spoil and Refuse Material Produced by Coal Mining Using Bottom Ash and Lime. Environ. Technol. 1999, 20, 523–529. [Google Scholar] [CrossRef]
- Ally, A.N.; Blanche, M.M.; Nana, U.J.P.; Grâce, M.M.; François, N.; Pettang, C. Recovery of Mining Wastes in Building Materials: A Review. Open J. Civ. Eng. 2021, 11, 379–397. [Google Scholar] [CrossRef]
- Yadav, A.K.; Mishra, S.; Mishra, D.P. A Detailed Review Study on Utilization of Mine and Industrial Wastes for Backfill Strengthening. Arab. J. Geosci. 2024, 17, 121. [Google Scholar] [CrossRef]
- Rodríguez-Espinosa, T.; Papamichael, I.; Voukkali, I.; Gimeno, A.P.; Candel, M.B.A.; Navarro-Pedreño, J.; Zorpas, A.A.; Lucas, I.G. Nitrogen Management in Farming Systems under the Use of Agricultural Wastes and Circular Economy. Sci. Total Environ. 2023, 876, 162666. [Google Scholar] [CrossRef]
- Rodríguez-Espinosa, T.; Navarro-Pedreño, J.; Gómez Lucas, I.; Almendro Candel, M.B.; Pérez Gimeno, A.; Zorpas, A.A. Soluble Elements Released from Organic Wastes to Increase Available Nutrients for Soil and Crops. Appl. Sci. 2023, 13, 1151. [Google Scholar] [CrossRef]
- Rodríguez-Espinosa, T.; Navarro-Pedreño, J.; Gómez Lucas, I.; Almendro Candel, M.B.; Pérez Gimeno, A.; Jordán Vidal, M.; Papamichael, I.; Zorpas, A.A. Environmental Risk from Organic Residues. Sustainability 2022, 15, 192. [Google Scholar] [CrossRef]
- Rodríguez-Espinosa, T.; Voukkali, I.; Pérez-Gimeno, A.; Almendro Candel, M.B.; Hernández-Martich, J.D.; Zorpas, A.A.; Lucas, I.G.; Navarro-Pedreño, J. Waste as a Sustainable Source of Nutrients for Plants and Humans: A Strategy to Reduce Hidden Hunger. Sustainability 2024, 16, 7185. [Google Scholar] [CrossRef]
- Asensio, V.; Covelo, E.F.; Kandeler, E. Soil Management of Copper Mine Tailing Soils—Sludge Amendment and Tree Vegetation Could Improve Biological Soil Quality. Sci. Total Environ. 2013, 456–457, 82–90. [Google Scholar] [CrossRef]
- Fernández-Calviño, D.; Pérez-Armada, L.; Cutillas-Barreiro, L.; Paradelo-Núñez, R.; Núñez-Delgado, A.; Fernández-Sanjurjo, M.J.; Álvarez-Rodriguez, E.; Arias-Estévez, M. Changes in Cd, Cu, Ni, Pb and Zn Fractionation and Liberation Due to Mussel Shell Amendment on a Mine Soil. Land Degrad. Dev. 2016, 27, 1276–1285. [Google Scholar] [CrossRef]
- Watkinson, A.D.; Lock, A.S.; Beckett, P.J.; Spiers, G. Developing Manufactured Soils from Industrial By-products for Use as Growth Substrates in Mine Reclamation. Restor. Ecol. 2017, 25, 587–594. [Google Scholar] [CrossRef]
- Curran, M.F.; Sorenson, J.R.; Craft, Z.A.; Crow, T.M.; Robinson, T.J.; Stahl, P.D. Ecological Restoration Practices within a Semi-Arid Natural Gas Field Improve Insect Abundance and Diversity during Early and Late Growing Season. Animals 2022, 13, 134. [Google Scholar] [CrossRef] [PubMed]
- Lau, S.S.S.; Wong, J.W.C. Toxicity Evaluation of Weathered Coal Fly Ash–Amended Manure Compost. Water. Air. Soil Pollut. 2001, 128, 243–254. [Google Scholar] [CrossRef]
- Teacă, C.A.; Bodîrlău, R. Assessment of Toxicity of Industrial Wastes Using Crop Plant Assays. BioResources 2008, 3, 1130–1145. [Google Scholar] [CrossRef]
- Parsons, M.H.; Koch, J.; Lamont, B.B.; Vlahos, S.; Fairbanks, M.M. Planting Density Effects and Selective Herbivory by Kangaroos on Species Used in Restoring Forest Communities. For. Ecol. Manag. 2006, 229, 39–49. [Google Scholar] [CrossRef]
- Close, D.C.; Ruthrof, K.X.; Turner, S.; Rokich, D.P.; Dixon, K.W. Ecophysiology of Species with Distinct Leaf Morphologies: Effects of Plastic and Shadecloth Tree Guards. Restor. Ecol. 2009, 17, 33–41. [Google Scholar] [CrossRef]
- Řehounková, K.; Vítovcová, K.; Prach, K. Threatened Vascular Plant Species in Spontaneously Revegetated Post-mining Sites. Restor. Ecol. 2020, 28, 679–686. [Google Scholar] [CrossRef]






| Topic | Contingencies | Reference |
|---|---|---|
| Geomorphology | Need for backfill material (scarcity or poor structural capacity of available resources). Presence of mining waste. Presence of exogenous materials (e.g., debris, rubbish, alluvial material, abandoned buildings, pipelines and installations). Existence of steep slopes. Generation of subsidence and caves. Instability and landslides. | [28,41,46,48,49,50,51,52,53,54] |
| Hydrology | Excessive surface runoff and erosion. Poor drainage. Inadequate water retention. Surface and groundwater contaminated waters. Presence of water bodies. | [41,43,46,49,54,55] |
| Soil | Lack of fertile soil or presence of soil with reduced fertility and nutrient content. Inadequate physico-chemical properties. Nonexistent or low soil biodiversity and biological activity. Contaminated areas. | [23,38,46,52,56,57,58] |
| Vegetation and fauna | Herbivory and pests. Need to introduce endangered species, non-commercial plant species or species associated with specific substrates. Need to maintain or protect a species or ecosystem. Need to eradicate non-native or invasive species. | [23,49,57,59,60] |
| Others | Abandoned mine. High costs and not designing restoration for sustainable use (social, environmental and economic). Little or no environmental regulation. Little or no knowledge of the background. Poorly defined restoration objectives or a short-sighted approach to restoration with only landscape-focused benefits, without economic, social and environmental benefits. Poor monitoring of the evolution of the restoration or not prolonged over time. Lack of knowledge of new biotechnology systems. Pollution affecting areas away from the mine. Unfavourable climatic conditions and extreme weather events. Need for services, infrastructure and equipment. Logistical and access to the area problems. Large area to restore that has a diversity of zones with different characteristics and needs. The non-involvement of scientific teams or local inhabitants. Vandalism and the presence of passers-by or footpaths. | [23,28,43,58,60] |
| Contribution |
|---|
| Reduce environmental, social and economic risks. |
| Sustainability on circular economy and zero waste models is promoted. |
| If regulations are in place for the use of technosols in mine restoration, its use will become more widespread, generating more knowledge. |
| With a proper project to incorporate the technosols, you can prevent or solve problems as they occur. |
| Facilitating its use after mine restoration and obtaining benefits beyond the environmental (social and economic). |
| Reduces mine restoration costs and prevents the occurrence of unforeseen costs. |
| Reduction in the environmental impact of extractive activities and their extension to other areas. |
| Technically, more efficient biotechnology. |
| Suitable for successful mining restoration. |
| Environmental remediation. |
| The use of technosols is compatible with the use of electronic tools and software. |
| Reduce slope runoff and contribute to geotechnical stability. |
| Enhance food and non-food biomass yield. |
| Improve soil physico-chemical properties and fertility. |
| Improves soil resilience: enables greater water retention capacity. |
| Buffer capacity against soil and water pollutants. |
| Improve resistance to soil erosion and aggregate stability. |
| Allows for restoration in areas where fertile soil is scarce. |
| Develop pedogenic processes (soil formation). |
| Provide ecosystem services (i.e., flood control, carbon storage). |
| Can be used in terrestrial and aquatic ecosystems (wetlands). |
| Improving water quality. |
| Contributes to the development of soil biomass and biodiversity. |
| Feasible to achieve a specific substrate replicating the reference ecosystem. |
| Enables better coping with adverse weather events. |
| By having a standardised methodology for the use and monitoring of the restoration, the benefits of using technosols would be greater. |
| Enhance the development of alliances and synergies with other activities. |
| Versatile use in mining restoration. |
| Type of Mine | Residues | Formulation or Profile of Technosols | Use and Reference |
|---|---|---|---|
| Limestone | Materials must be conformed both to the Andosols properties, e.g., physical and chemical fertility, and to the olive and vine requirements (well-drained, with a loam/sandy-loam texture and a neutral-alkaline pH). Limestone, zeolitised tuffs and commercial manure. | 0 ÷ 20 cm, well drained, common rock fragments, loam, neutral-alkaline. 20 ÷ 40 cm, well drained, common rock fragments, loam, neutral-alkaline. 40 ÷ 80 cm, well drained, common rock fragments, loamy sand, neutral-alkaline. 80 ÷ 120 cm, spolic limestone debris, excessively drained, many rock fragments, coarse gravelly, alkaline. | Agriculture use [23]. |
| Polymetallic sulphide | Polluted soils (PS) by metal(loid)s affected by mining spills and organic and inorganic wastes from mining (iron oxyhydroxide-rich sludge (IO), carbonated waste from peat extraction (CW), and marble cutting and polishing sludge (MS)), from urban activity (composted sewage sludge (WS)), vermicompost from pruning and gardening (VC), and from agro-industry (solid olive mill by-product (OL)). | Six technosols were designed and produced by mixing the polluted soil with a mixture of amendments (%):![]() | Soil remediation and restoration [32]. |
| Sulphide | Two mine wastes mainly composed of gossan (GW) and sulphide-rich wastes (SW) and organic/inorganic wastes from agro-industry (plant remains and substrate—AgW; rockwool used to strawberry crop—RW; residues from liquor distillation—AW; and residues from liquor distillation—CW). | Four technosols: manual mixture of 97% or 94% of GW (fraction < 10 mm) and 3% or 6% of two amendment mixtures containing organic/inorganic. | Soil remediation and restoration [38]. |
| Copper mine | Organic wastes, including mussel residues, wood fragments, sewage sludges and paper mill ashes. | Technosol 1: mussels (70%) and eucalyptus wood fragments (30%). Technosol 2: 50% residues from cleaning mussel rafts and 50% of sewage sludges and ashes from a paper mill. | Soil remediation and restoration [41]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Espinosa, T.; Pérez-Gimeno, A.; Almendro-Candel, M.B.; Navarro-Pedreño, J.; García-Fernández, G. Technosols for Mine Restoration: Overcoming Challenges and Maximising Benefit. Appl. Sci. 2025, 15, 11664. https://doi.org/10.3390/app152111664
Rodríguez-Espinosa T, Pérez-Gimeno A, Almendro-Candel MB, Navarro-Pedreño J, García-Fernández G. Technosols for Mine Restoration: Overcoming Challenges and Maximising Benefit. Applied Sciences. 2025; 15(21):11664. https://doi.org/10.3390/app152111664
Chicago/Turabian StyleRodríguez-Espinosa, Teresa, Ana Pérez-Gimeno, María Belén Almendro-Candel, José Navarro-Pedreño, and Gregorio García-Fernández. 2025. "Technosols for Mine Restoration: Overcoming Challenges and Maximising Benefit" Applied Sciences 15, no. 21: 11664. https://doi.org/10.3390/app152111664
APA StyleRodríguez-Espinosa, T., Pérez-Gimeno, A., Almendro-Candel, M. B., Navarro-Pedreño, J., & García-Fernández, G. (2025). Technosols for Mine Restoration: Overcoming Challenges and Maximising Benefit. Applied Sciences, 15(21), 11664. https://doi.org/10.3390/app152111664


