Experimental and Numerical Analysis of Hydrogen-Induced Effects in ASTM A131 and A36 Steels for Naval Fuel Systems
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Test
2.1.1. Specimen Construction
2.1.2. Experimental Setting
2.2. Numerical Calculations
2.2.1. Description of the Model
2.2.2. Description of Plastic Behavior of the Materials
3. Results and Discussion
3.1. Experimental Analysis
3.2. Metallographic Analysis
3.3. Numerical Analysis
4. Conclusions
- Mechanical degradation: Both steels showed progressive reductions in strength and toughness after 6 h of hydrogen exposure. A transient hardening occurred at 9 h, but long-term properties declined. Maximum reductions in ultimate tensile strength were 19% (A131) and 47% (A36), with toughness decreasing by 39% and 61%, respectively.
- Material performance: A131 exhibited superior mechanical behavior compared to A36 under all exposure conditions.
- Microstructural damage: Hydrogen embrittlement produced inclusions, intergranular decohesion, cracks, micro-pitting, and fissures, increasingly severe with longer exposure.
- Numerical modeling: A GTN-PLNIH FEM model accurately predicted tensile behavior, demonstrating the critical role of initial porosity in accelerating void nucleation and coalescence, leading to reduced toughness and increased brittleness.
- Practical implications: Results highlight the detrimental effect of hydrogen and the importance of mitigation strategies, such as protective coatings and optimized design, for naval and industrial structures in hydrogen-rich environments.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kut, J.P.; Pietrucha-Urbanik, K.; Zeleňáková, M. Assessing the role of hydrogen in sustainable energy futures: A comprehensive bibliometric analysis of research and international collaborations in energy and environmental engineering. Energies 2024, 17, 1862. [Google Scholar] [CrossRef]
- Mohamed Elshafei, J.A.; Mansour, R. Green hydrogen as a potential solution for reducing carbon emissions: A review. J. Energy Res. Rev. 2023, 13, 1–10. [Google Scholar] [CrossRef]
- Dadfarnia, M.; Nagao, A.; Wang, S.; Martin, M.L.; Somerday, B.P.; Sofronis, P. Recent advances on hydrogen embrittlement of structural materials. Int. J. Fract. 2015, 196, 223–243. [Google Scholar] [CrossRef]
- Andeobu, L.; Wibowo, S.; Grandhi, S. Renewable hydrogen for the energy transition in Australia—Current trends, challenges and future directions. Int. J. Hydrogen Energy 2024, 87, 1207–1223. [Google Scholar] [CrossRef]
- Ruggieri, C.; Sarzosa, D.F.B.; Paredes, M. A local stress criterion to assess the effects of hydrogen embrittlement on the fracture strength of notched tensile specimens. Theor. Appl. Fract. Mech. 2023, 127, 104045. [Google Scholar] [CrossRef]
- Cao, J. Effect of hydrogen embrittlement on the safety assessment of low-strength hydrogen transmission pipeline. Eng. Fail. Anal. 2024, 156, 107787. [Google Scholar] [CrossRef]
- Shehata, M.F.; El-Shamy, A.M. Hydrogen-based failure in oil and gas pipelines a review. Gas Sci. Eng. 2023, 115, 204994. [Google Scholar] [CrossRef]
- Zhang, R.; Ai, S.; Long, M.; Wan, L.; Li, Y.; Jia, D.; Duan, H.; Chen, D. Quantitative study on hydrogen concentration–hydrogen embrittlement sensitivity of X80 pipeline steel based on hydrogen permeation kinetics. Metals 2024, 14, 763. [Google Scholar] [CrossRef]
- Rivera-Vargas, G.A.; Matsumoto-Kuwabara, Y.; Baquero-Parra, R. Análisis para la obtención de hidrógeno a partir de biogás proveniente de la fermentación de bebidas naturales. Ing. Investig. Tecnol. 2016, 17, 251–256. [Google Scholar] [CrossRef]
- Ghadiani, H.; Farhat, Z.; Alam, T.; Islam, M.A. Assessing hydrogen embrittlement in pipeline steels for natural gas-hydrogen blends: Implications for existing infrastructure. Solids 2024, 5, 375–393. [Google Scholar] [CrossRef]
- Hino, M.; Mukai, S.; Shimada, T.; Okada, K.; Horikawa, K. Inferences of baking time on hydrogen embrittlement for high strength steel treated with various zinc based electroplating. Mater. Sci. Forum 2021, 1016, 156–161. [Google Scholar] [CrossRef]
- Mihi, A.; Benbouta, R.; Abbassi, A.; Cottis, R. Simulated heat affected zone hardness limits of C-Mn steels used in offshore structures. Mater. Corros. 2006, 57, 766–770. [Google Scholar] [CrossRef]
- Novak, P.; Yuan, R.; Somerday, B.P.; Sofronis, P.; Ritchie, R.O. A statistical, physical-based, micro-mechanical model of hydrogen-induced intergranular fracture in steel. J. Mech. Phys. Solids 2010, 58, 206–226. [Google Scholar] [CrossRef]
- Sun, D.; Han, G.; Vaodee, S.; Fukuyama, S.; Yokogawa, K. Tensile behaviour of type 304 austenitic stainless steels in hydrogen atmosphere at low temperatures. Mater. Sci. Technol. 2001, 17, 302–308. [Google Scholar] [CrossRef]
- Lee, S.J.; Ronevich, J.A.; Krauss, G.; Matlock, D.K. Hydrogen embrittlement of hardened low-carbon sheet steel. ISIJ Int. 2010, 50, 294–301. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, M. Improving hydrogen embrittlement resistance of hot-stamped 1500 MPa steel parts that have undergone a Q&P treatment by the design of retained austenite and martensite Matrix. Metals 2020, 10, 1585. [Google Scholar] [CrossRef]
- Drichel, A.; Spiewak, M.; Röttger, A.; Lützenkirchen-Hecht, D.; Rodrigues, B.V.M.; Slabon, A. Hydrogen Economy vs. Hydrogen Embrittlement: Indirect Electrochemical Determination of Hydrogen Diffusion in Steel. ACS Sustain. Chem. Eng. 2024, 12, 13142–13153. [Google Scholar] [CrossRef]
- Takasugi, T.; Hanada, S. Environmental embrittlement of boron-doped Ni3(Al, Ti) single crystals at room temperature. J. Mater. Res. 1993, 8, 2534–2542. [Google Scholar] [CrossRef]
- Borchers, C.; Michler, T.; Pundt, A. Effect of hydrogen on the mechanical properties of stainless steels. Adv. Eng. Mater. 2008, 10, 11–23. [Google Scholar] [CrossRef]
- Komoda, R.; Kubota, M.; Staykov, A.; Ginet, P.; Barbier, F.; Furtado, J. Inhibitory effect of oxygen on hydrogen-induced fracture of A333 pipe steel. Fatigue Fract. Eng. Mater. Struct. 2019, 42, 1387–1401. [Google Scholar] [CrossRef]
- Scheider, I.; Pfuff, M.; Dietzel, W. Simulation of hydrogen assisted stress corrosion cracking using the cohesive model. Eng. Fract. Mech. 2008, 75, 4283–4291. [Google Scholar] [CrossRef]
- Ahn, D.C.; Sofronis, P.; Dodds, R. Modeling of hydrogen-assisted ductile crack propagation in metals and alloys. Int. J. Fract. 2007, 145, 135–157. [Google Scholar] [CrossRef]
- Toribio, J. Numerical modelling of hydrogen embrittlement of cylindrical bars with residual stress fields. J. Strain Anal. Eng. Des. 2000, 35, 189–203. [Google Scholar] [CrossRef]
- Gong, X.; Lei, R.; Sun, R.; Jiang, X.; Su, Y.; Yan, Y. An ensemble learning strategy for multi-source hydrogen embrittlement data by introducing missing information. Mater. Genome Eng. Adv. 2024, 2, e35. [Google Scholar] [CrossRef]
- Lamas, M.I.; Rodriguez, C.G. Numerical model to analyze NOx reduction by ammonia injection in diesel-hydrogen engines. Int. J. Hydrogen Energy 2017, 42, 26132–26141. [Google Scholar] [CrossRef]
- Troya, J.J.; Álvarez, C.; Fernández-Garrido, C.; Carral, L. Analysing the possibilities of using fuel cells in ships. Int. J. Hydrogen Energy 2016, 41, 2853–2866. [Google Scholar] [CrossRef]
- ASTM C1709-18; Standard Test Methods for Tension Testing of Metallic Materials (E8/E8M—08). Vol. 08, no. Reapproved 1989. ASTM International: West Conshohocken, PA, USA, 2000; pp. 3–4. [CrossRef]
- García, T.E.; Arroyo, B.; Rodríguez, C.; Belzunce, F.J.; Álvarez, J.A. Small punch test methodologies for the analysis of the hydrogen embrittlement of structural steels. Theor. Appl. Fract. Mech. 2016, 86, 89–100. [Google Scholar] [CrossRef]
- Capelle, J.; Dmytrakh, I.; Pluvinage, G. Comparative assessment of electrochemical hydrogen absorption by pipeline steels with different strength. Corros. Sci. 2010, 52, 1554–1559. [Google Scholar] [CrossRef]
- Cupertino-Malheiros, L.; Duportal, M.; Hageman, T.; Zafra, A.; Martínez-Pañeda, E. Hydrogen uptake kinetics of cathodic polarized metals in aqueous electrolytes. Corros. Sci. 2024, 231, 111959. [Google Scholar] [CrossRef]
- ASTM E3-01; Standard Practice for Preparation of Metallographic Specimens. ASTM International: West Conshohocken, PA, USA, 1995.
- ASM International. ASM Handbook: Metallography and Microstructures; ASM International: Materials Park, OH, USA, 2004; Volume 9. [Google Scholar]
- Ansys. Material Reference 2024R2. 2024, pp. 13–345. Available online: http://www.ansys.com (accessed on 26 March 2025).
- Madenci, E.; Guven, I. The Finite Element Method and Applications in Engineering Using ANSYS, 2nd ed.; Springer: Boston, MA, USA, 2015. [Google Scholar]
- Mendoza, J.I.; Marín-López, J.R. Ultimate local strength of a submarine structure considering the influence of localized reduction of thickness. Ocean Eng. 2023, 271, 113778. [Google Scholar] [CrossRef]
- Tvergaard, V.; Needleman, A. Analysis of the cup-cone round tensile fracture. Acta Metall. 1984, 32, 157–169. [Google Scholar] [CrossRef]
- Springmann, M.; Kuna, M. Identification of material parameters of the Gurson—Tvergaard—Needleman model by combined experimental and numerical techniques. Comput. Mater. Sci. 2005, 33, 501–509. [Google Scholar] [CrossRef]
- Vadillo, G. An analysis of Gurson model with parameters dependent on triaxiality based on unitary cells. Eur. J. Mech. A/Solids 2009, 28, 417–427. [Google Scholar] [CrossRef]
- Depraetere, R.; De Waele, W.; Hertelé, S. Fully-coupled continuum damage model for simulation of plasticity dominated hydrogen embrittlement mechanisms. Comput. Mater. Sci. 2021, 200, 110857. [Google Scholar] [CrossRef]
- Dowling, N.E. Mechanical Behavior of Materials, 4th ed.; PEARSON: London, UK, 2015; pp. 334–400. [Google Scholar]
- Iost, A.; Vogt, J.B. Hardness variation in a cathodic hydrogen-charged austenitic stainless steel. Scr. Mater. 1997, 37, 1499–1504. [Google Scholar] [CrossRef]
- Candia, G.L.; Brandaleze, E.; Mansilla, G.A. Study of the effect of hydrogen on the microhardness of steels. Rev. Cienc. Tecnol. 2013, 19, 64–68. [Google Scholar]
Type | C | Si | P | S |
---|---|---|---|---|
A131 | ≤0.22 | 0.10–0.35 | ≤0.04 | ≤0.40 |
A36 | ≤0.25 | ≤0.40 | ≤0.04 | ≤0.05 |
Exp. Time | 3H | 6H | 9H | 12H |
---|---|---|---|---|
A131 | 0.016 | 0.032 | 0.049 | 0.065 |
A36 | 0.032 | 0.065 | 0.097 | -------- |
Exp. Time | 0H | 3H | 6H | 9H | 12H |
---|---|---|---|---|---|
E [Mpa] | 181,776.7 | 188,973.8 | 171,075.2 | 172,392.7 | 176,830.2 |
σo [Mpa] | 352.6 | 329.4 | 314.1 | 335.78 | 284.6 |
N | 0.10 | 0.11 | 0.10 | 0.11 | 0.11 |
σu [Mpa] | 592.5 | 565.1 | 518.0 | 598.4 | 479.2 |
f0 | 0.000 | 0.004 | 0.008 | 0.006 | 0.03 |
CV E [%] | 2.9 | 6.1 | 3.6 | 9.6 | 5.1 |
CV σo/σu [%] | 2.9/0.7 | 8.2/7.9 | 1.3/1.9 | 9.3/9.6 | 2.2/2.3 |
Exp. Time | 0H | 3H | 6H | 9H |
---|---|---|---|---|
E [Mpa] | 135,695.0 | 147,320.8 | 114,118.4 | 138,629.9 |
σo [Mpa] | 90.1 | 59.9 | 49.6 | 74.52 |
N | 0.12 | 0.11 | 0.11 | 0.11 |
σu [Mpa] | 205.2 | 121.0 | 94.9 | 162.3 |
f0 | 0.000 | 0.024 | 0.0021 | 0.0011 |
CV E [%] | 2.8 | 2.9 | 3.6 | 9.7 |
CV σo/σu [%] | 2.4/1.8 | 8.3/9.3 | 5.3/2.9 | 9.5/9.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendoza, J.I.; Carranza, R.I.; Santos, M.D.; Carral, L.; Lamas, M.I. Experimental and Numerical Analysis of Hydrogen-Induced Effects in ASTM A131 and A36 Steels for Naval Fuel Systems. Appl. Sci. 2025, 15, 11343. https://doi.org/10.3390/app152111343
Mendoza JI, Carranza RI, Santos MD, Carral L, Lamas MI. Experimental and Numerical Analysis of Hydrogen-Induced Effects in ASTM A131 and A36 Steels for Naval Fuel Systems. Applied Sciences. 2025; 15(21):11343. https://doi.org/10.3390/app152111343
Chicago/Turabian StyleMendoza, Jorge I., Rogger I. Carranza, María D. Santos, Luis Carral, and María Isabel Lamas. 2025. "Experimental and Numerical Analysis of Hydrogen-Induced Effects in ASTM A131 and A36 Steels for Naval Fuel Systems" Applied Sciences 15, no. 21: 11343. https://doi.org/10.3390/app152111343
APA StyleMendoza, J. I., Carranza, R. I., Santos, M. D., Carral, L., & Lamas, M. I. (2025). Experimental and Numerical Analysis of Hydrogen-Induced Effects in ASTM A131 and A36 Steels for Naval Fuel Systems. Applied Sciences, 15(21), 11343. https://doi.org/10.3390/app152111343