Sustainability-Aware Maintenance for Machine Tools: A Quantitative Framework Linking Degradation Management with Life-Cycle Cost and Environmental Performance
Abstract
1. Introduction
Background
2. Materials and Methods
2.1. Problem Formulation
3. Results
3.1. Simulation Design
Key Assumptions
- Tool life has a lognormal distribution with mean = 35 cutting hours, coefficient of variation = 0.25;
- Unplanned major breakdowns estimated with Poisson rate 0.8 events per 1000 h under POM; SAM reduces this rate by 75%;
- Downtime per breakdown follows normal distribution with mean 30 h, and standard deviation 6 h, truncated at zero;
- Degradation effects: cutting power increases linearly with wear;
- SAM policy: proactive replacement at 85% of predicted useful life (RUL 15%), aligned where possible with planned maintenance windows every 50 h (0.2 h planned change vs. 0.7 h unplanned). This policy is linked to RUL estimation as follows. Let A be the average spindle power during cutting for the current cycle, A0 the baseline resulting as the mean over the first 10 cycles with a new tool, and AC the critical threshold (A0 + 30%). With the assumption that power increases with wear, we define the consumed life fraction LC as follows:
- The RUL fraction is, therefore, 1 − LC. The +15% rise is used as an alert (typically LC is about 0.5–0.6, i.e., RUL is about 40–50%) to enable scheduling. The replacement trigger is set close to 85% consumed life (i.e., RUL about 15%), which under the linear mapping corresponds to a power increase of about +25%, safely before the +30% critical threshold;
- Experiment design: 400 replications per strategy with a fixed random seed (n = 42). Results reported as replication means;
- As a check, simulated POM outputs were compared with the measured POM baseline, and model means tracked the measurements; the chosen number of replications was sufficient for stable central tendencies.
3.2. Performance Comparison
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| CBA | Cost–Benefit Analysis |
| CO2eq | Carbon dioxide equivalent |
| EPR | Extended Producer Responsibility |
| GWP | Global Warming Potential |
| HMC | Horizontal Machining Center |
| ISO | International Organization for Standardization |
| KPI | Key Performance Indicator |
| LCA | Life Cycle Assessment |
| LCC | Life Cycle Cost |
| LCSA | Life Cycle Sustainability Assessment |
| MES | Manufacturing Execution System |
| MTBF | Mean Time Between Failures |
| POM | Performance-Only Maintenance |
| RQ | Research Question |
| RUL | Remaining Useful Life |
| SAM | Sustainability-Aware Maintenance |
| SMB | Sustainable Maintenance Balance |
References
- Daniyan, I.; Mpofu, K.; Ramatsetse, B.; Gupta, M.K. Review of life cycle models for enhancing machine tools sustainability: Lessons, trends and future directions. Heliyon 2021, 7, e06790. [Google Scholar] [CrossRef]
- Wang, L.; Cai, W.; He, Y.; Peng, T.; Xie, J.; Hu, L.; Li, L. Equipment–process–strategy integration for sustainable machining: A review. Front. Mech. Eng. 2023, 18, 36. [Google Scholar] [CrossRef]
- Cantini, A.; De Carlo, F.; Tucci, M. Application of the lean layout planning system in a leather bags manufacturing plant and proposal of an approach to engage the company’s staff in the research of the layout solution. In Proceedings of the Summer School “Francesco Turco”—Industrial Systems Engineering, Bergamo, Italy, 9–11 September 2020. [Google Scholar]
- Zacharaki, A.; Vafeiadis, T.; Kolokas, N.; Vaxevani, A.; Xu, Y.; Peschl, M.; Ioannidis, D.; Tzovaras, D. RECLAIM: Toward a new era of refurbishment and remanufacturing of industrial equipment. Front. Artif. Intell. 2020, 3, 570562. [Google Scholar] [CrossRef]
- Fantozzi, I.; Di Luozzo, S.; Schiraldi, M.M. Industrial performance measurement systems coherence: A comparative analysis of current methodologies, validation and introduction to key activity indicators. Appl. Sci. 2023, 13, 235. [Google Scholar] [CrossRef]
- Lundgren, C.; Bokrantz, J.; Skoogh, A. Performance indicators for measuring the effects of Smart Maintenance. Int. J. Prod. Perform. Manag. 2020, 70, 1291–1316. [Google Scholar] [CrossRef]
- Younas, M.; Jaffery, S.H.I.; Khan, M.; Ahmad, R.; Ali, L.; Khan, Z.; Khan, A. Tool wear progression and its effect on energy consumption in turning of titanium alloy (Ti-6Al-4V). Mech. Sci. 2019, 10, 373–382. [Google Scholar] [CrossRef]
- Peng, S.; Ping, J.; Li, T.; Wang, F.; Zhang, H.; Liu, C. Environmental benefits of remanufacturing mechanical products: A harmonized meta-analysis of comparative life cycle assessment studies. J. Environ. Manag. 2022, 306, 114479. [Google Scholar] [CrossRef]
- Aldekoa, I.; del Olmo, A.; Sastoque-Pinilla, L.; Sendino-Mouliet, S.; López-Novoa, U.; López de Lacalle, L.N. Early detection of tool wear in electromechanical broaching machines by monitoring main stroke servomotors. Mech. Syst. Signal Process. 2023, 204, 110773. [Google Scholar] [CrossRef]
- Zhu, W.; Fouladirad, M.; Bérenguer, C. Condition-based maintenance policies for a combined wear and shock deterioration model with covariates. Comput. Ind. Eng. 2015, 85, 268–283. [Google Scholar] [CrossRef]
- Hoogmartens, R.; Van Passel, S.; Van Acker, K.; Dubois, M. Bridging the gap between LCA, LCC and CBA as sustainability assessment tools. Environ. Impact Assess. Rev. 2014, 48, 27–33. [Google Scholar] [CrossRef]
- Luthin, A.; Backes, J.G.; Traverso, M. A framework to identify environmental–economic trade-offs by combining life cycle assessment and life cycle costing—A case study of aluminium production. J. Clean. Prod. 2021, 321, 128902. [Google Scholar] [CrossRef]
- Hackenhaar, I.C.; Moraga, G.; Thomassen, G.; Taelman, S.E.; Dewulf, J.; Bachmann, T.M. A comprehensive framework covering life cycle sustainability assessment, resource circularity and criticality. Sustain. Prod. Consum. 2024, 45, 509–524. [Google Scholar] [CrossRef]
- Shokrani, A.; Arrazola, P.J.; Biermann, D.; Mativenga, P.; Jawahir, I.S. Sustainable machining: Recent technological advances. CIRP Ann. 2024, 73, 483–508. [Google Scholar] [CrossRef]
- Jawahir, I.S.; Attia, H.; Dix, M.; Ghadbeigi, H.; Liao, Z.; Schoop, J.; Shokrani, A. Revisiting machinability assessment: Towards total machining performance. CIRP Ann. 2025, 74, 817–842. [Google Scholar] [CrossRef]
- El Abdelaoui, F.Z.; Jabri, A.; El Barkany, A. Optimization techniques for energy efficiency in machining processes—A review. Int. J. Adv. Manuf. Technol. 2023, 125, 2967–3001. [Google Scholar] [CrossRef] [PubMed]
- Alswat, H.M.; Mativenga, P.T. Modelling the direct and embodied energy requirements of machining. J. Clean. Prod. 2022, 366, 132767. [Google Scholar] [CrossRef]
- Franciosi, C.; Voisin, A.; Miranda, S.; Riemma, S.; Iung, B. Measuring maintenance impacts on sustainability of manufacturing industries: From a systematic literature review to a framework proposal. J. Clean. Prod. 2020, 260, 121065. [Google Scholar] [CrossRef]
- Silvestri, L.; Forcina, A.; Introna, V.; Santolamazza, A.; Cesarotti, V. Maintenance transformation through Industry 4.0 technologies: A systematic literature review. Comput. Ind. 2020, 123, 103335. [Google Scholar] [CrossRef]
- Sala, R.; Francalanza, E.; Arena, S. A Review on Three Decades of Manufacturing Maintenance Research: Past, Present and Future Directions. Prod. Manuf. Res. 2025, 13, 2469037. [Google Scholar] [CrossRef]
- Sarda, K.; Del Vecchio, C.; Fruggiero, F.; Mancusi, F.; Menchetti, F.; Natale, R. Physics-enhanced digital twin–based solution to control process state in a steel manufacturing plant. IFAC-Pap. 2024, 58, 31–36. [Google Scholar] [CrossRef]
- Cinar, Z.M.; Nuhu, A.A.; Zeeshan, Q.; Korhan, O.; Asmael, M.; Safaei, B. Machine learning in predictive maintenance towards sustainable smart manufacturing in Industry 4.0. Sustainability 2020, 12, 8211. [Google Scholar] [CrossRef]
- Ercan, E.M. Global Warming Potential of a Smartphone—Using Life Cycle Assessment Methodology. Master’s Thesis, Royal Institute of Technology (KTH), Stockholm, Sweden, 2013. [Google Scholar]
- Raut, J.M.; Pande, P.B.; Madurwar, K.V.; Bhagat, R.M.; Uparkar, S.S.; Shelke, N.; Isleem, H.F.; Arpita; Vairagade, V.S. Life Cycle Assessment and Multicriteria Decision Making Analysis of Additive Manufacturing Processes towards Optimal Performance and Sustainability. Sci. Rep. 2025, 15, 25167. [Google Scholar] [CrossRef]
- Swarr, T.E.; Hunkeler, D.; Klöpffer, W.; Pesonen, H.-L.; Ciroth, A.; Brent, A.C.; Pagan, R. Environmental life-cycle costing: A code of practice. Int. J. Life Cycle Assess. 2011, 16, 389–391. [Google Scholar] [CrossRef]
- Mancusi, F.; Fruggiero, F.; Santarsiero, A. A value-oriented maintenance approach for product protection in EPR policies. In Proceedings of the XXIX AIDI “Francesco Turco” Summer School—Industrial Systems Engineering, Otranto, Italy, 11–13 September 2024. [Google Scholar]
- Duflou, J.R.; Dornfeld, D.; Herrmann, C.; Jeswiet, J.; Kara, S.; Hauschild, M.; Kellens, K. Towards energy and resource efficient manufacturing: A processes and systems approach. CIRP Ann. 2012, 61, 587–609. [Google Scholar] [CrossRef]
- Kolář, P.; Burian, D.; Fojtů, P.; Mašek, P.; Fiala, Š.; Chladek, S.; Petracek, P.; Sveda, J.; Rytir, M. Indirect drill condition monitoring based on machine tool control system data. MM Sci. J. 2022, 2022, 5905–5912. [Google Scholar] [CrossRef]
- Bombiński, S.; Kossakowska-Skajster, J.; Jemielniak, K. New developments and future prospects in commercial tool condition monitoring systems. Measurement 2025, 255, 118037. [Google Scholar] [CrossRef]
- ISO 14040:2006; Environmental Management—Life Cycle Assessment—Principles and Framework. ISO: Geneva, Switzerland, 2020.
- ISO 14044:2006; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. ISO: Geneva, Switzerland, 2020.
- Zieger, V.; Lecompte, T.; Hellouin de Menibus, A. Impact of GHGs temporal dynamics on the GWP assessment of building materials: A case study on bio-based and non-bio-based walls. Build. Environ. 2020, 185, 107210. [Google Scholar] [CrossRef]
- Finkbeiner, M.; Schau, E.M.; Lehmann, A.; Traverso, M. Towards life cycle sustainability assessment. Sustainability 2010, 2, 3309–3322. [Google Scholar] [CrossRef]
- Heijungs, R. Ratio, sum, or weighted sum? The curious case of BASF’s eco-efficiency analysis. ACS Sustain. Chem. Eng. 2022, 10, 8754–8762. [Google Scholar] [CrossRef]
- Manco, P.; Rinaldi, M.; Caterino, M.; Fera, M.; Macchiaroli, R. Maintenance management for geographically distributed assets: A criticality-based approach. Reliab. Eng. Syst. Saf. 2022, 218, 108148. [Google Scholar] [CrossRef]
- Leoni, L.; Cantini, A.; De Carlo, F.; Salvio, M.; Martini, C.; Toro, C.; Martini, F. Energy-saving technology opportunities and investments of the Italian foundry industry. Energies 2021, 14, 8470. [Google Scholar] [CrossRef]
- Leoni, L.; BahooToroody, F.; Khalaj, S.; De Carlo, F.; BahooToroody, A.; Abaei, M.M. Bayesian estimation for reliability engineering: Addressing the influence of prior choice. Int. J. Environ. Res. Public Health 2021, 18, 3349. [Google Scholar] [CrossRef] [PubMed]

| Category | Indicator | Unit | Source/Method |
|---|---|---|---|
| Operations | Availability downtime | %, h | MES/maintenance management system logs |
| Quality | Scrap rate without rework | % parts | Quality management system records |
| Energy | Electricity absorption | kWh | MES power data |
| Consumables | Tools, coolant | units, L | Tool management, supplier data |
| Spares | Component replacements | units | Maintenance management system logs |
| LCC | Costs | EUR | Internal accounting |
| LCA | GWP of resource in use | kg CO2eq | ISO 14040/44 |
| Indicator | POM | SAM | Relative Change Δ (%) |
|---|---|---|---|
| Availability (%) | 90 | 96 | +6.7% |
| Downtime (h) | 100 | 40 | −60% |
| Scrap rate (%) | 5.0 | 2.0 | −60% |
| Direct maintenance (EUR) | 4500 | 4800 | +6.7% |
| Total LCC (EUR) | 12,000 | 11,000 | −8.3% |
| Energy use (kWh) | 25,000 | 23,000 | −8% |
| Tools and coolant (kg CO2eq) | 2000 | 1800 | −10% |
| Total GWP (kg CO2eq) | 40,000 | 33,000 | −17.5% |
| Weights (Cost:Environment) | ΔCost (%) | ΔGWP (%) | SMB Index (%) |
|---|---|---|---|
| 50:50 (baseline) | ~+8 to +9 | ~+15 to +18 | ~+11 to +13 |
| 70:30 (cost-oriented) | ~+8 to +9 | ~+15 to +18 | ~+11 |
| 30:70 (environment-oriented) | ~+8 to +9 | ~+15 to +18 | ~+15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mancusi, F.; Bochicchio, A.; Laforgia, A.; Fruggiero, F. Sustainability-Aware Maintenance for Machine Tools: A Quantitative Framework Linking Degradation Management with Life-Cycle Cost and Environmental Performance. Appl. Sci. 2025, 15, 11333. https://doi.org/10.3390/app152111333
Mancusi F, Bochicchio A, Laforgia A, Fruggiero F. Sustainability-Aware Maintenance for Machine Tools: A Quantitative Framework Linking Degradation Management with Life-Cycle Cost and Environmental Performance. Applied Sciences. 2025; 15(21):11333. https://doi.org/10.3390/app152111333
Chicago/Turabian StyleMancusi, Francesco, Andrea Bochicchio, Antonio Laforgia, and Fabio Fruggiero. 2025. "Sustainability-Aware Maintenance for Machine Tools: A Quantitative Framework Linking Degradation Management with Life-Cycle Cost and Environmental Performance" Applied Sciences 15, no. 21: 11333. https://doi.org/10.3390/app152111333
APA StyleMancusi, F., Bochicchio, A., Laforgia, A., & Fruggiero, F. (2025). Sustainability-Aware Maintenance for Machine Tools: A Quantitative Framework Linking Degradation Management with Life-Cycle Cost and Environmental Performance. Applied Sciences, 15(21), 11333. https://doi.org/10.3390/app152111333

