Early, Self-Guided Oculomotor Rehabilitation in Adolescents with Sport-Related Concussion Is Feasible and Effective: A Quasi-Experimental Trial
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Sample
2.2. Diagnosis of SRC and Clinical Recovery
2.3. Clinical Assessments
2.3.1. Smooth Pursuits
2.3.2. Horizontal and Vertical Repetitive Saccades
2.3.3. Vestibulo-Ocular Reflex (VOR)
2.3.4. Near Point of Convergence
2.4. Standard Management Protocol
2.5. Experimental Eye Intervention Protocol
2.6. Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| SRC | Sport related concussion |
| PPCS | Persisting post-concussion symptoms |
| ANS | Autonomic nervous system |
| BCPE | Buffalo concussion physical exam |
| VOR | Vestibular oculomotor reflex |
| NPC | Near point convergence |
| mVOMS | Modified vestibular ocular motor screen |
References
- Langdon, S.; Königs, M.; Adang, E.; Goedhart, E.; Oosterlaan, J. Subtypes of sport-related concussion: A systematic review and meta-cluster analysis. Sports Med. 2020, 50, 1829–1842. [Google Scholar] [CrossRef]
- Patricios, J.S.; Schneider, K.J.; Dvorak, J.; Ahmed, O.H.; Blauwet, C.; Cantu, R.C.; Davis, G.A.; Echemendia, R.J.; Makdissi, M.; McNamee, M.; et al. Consensus statement on concussion in sport: The 6th International Conference on Concussion in Sport–Amsterdam, October 2022. Br. J. Sports Med. 2023, 57, 695–711. [Google Scholar] [CrossRef] [PubMed]
- Ellis, M.J.; Leddy, J.; Willer, B. Multi-disciplinary management of athletes with post-concussion syndrome: An evolving pathophysiological approach. Front. Neurol. 2016, 7, 136. [Google Scholar] [CrossRef]
- McPherson, J.I.; Marsh, A.C.; Cunningham, A.; Leddy, J.J.; Corrado, C.; Cheema, Z.D.; Nazir, M.S.; Nowak, A.S.; Farooq, O.; Willer, B.S.; et al. An Exploratory Analysis of Physical Examination Subtypes in Pediatric Athletes With Concussion. Clin. J. Sport Med. 2022, 10, 1097. [Google Scholar] [CrossRef]
- Master, C.L.; Bacal, D.; Grady, M.F.; Hertle, R.; Shah, A.S.; Strominger, M.; Whitecross, S.; Bradford, G.E.; Lum, F.; Donahue, S.P.; et al. Vision and concussion: Symptoms, signs, evaluation, and treatment. Pediatrics 2022, 150, e2021056047. [Google Scholar] [CrossRef]
- Master, C.L.; Scheiman, M.; Gallaway, M.; Goodman, A.; Robinson, R.L.; Master, S.R.; Grady, M.F. Vision diagnoses are common after concussion in adolescents. Clin. Pediatr. 2016, 55, 260–267. [Google Scholar] [CrossRef]
- Ptito, M.; Bleau, M.; Bouskila, J. The retina: A window into the brain. Cells 2021, 10, 3269. [Google Scholar] [CrossRef] [PubMed]
- Sheth, B.R.; Young, R. Two visual pathways in primates based on sampling of space: Exploitation and exploration of visual information. Front. Integr. Neurosci. 2016, 10, 37. [Google Scholar] [CrossRef]
- Kaas, J.H.; Balaram, P. Current research on the organization and function of the visual system in primates. Eye Brain 2014, 6 (Suppl. S1), 1–4. [Google Scholar] [CrossRef] [PubMed]
- Ruskell, G.L. Extraocular muscle proprioceptors and proprioception. Prog. Retin. Eye Res. 1999, 18, 269–291. [Google Scholar] [CrossRef]
- Horn, A.K.; Straka, H. Functional organization of extraocular motoneurons and eye muscles. Annu. Rev. Vis. Sci. 2021, 7, 793–825. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Zhao, Y.; Zhang, H. Ocular autonomic nervous system: An update from anatomy to physiological functions. Vision 2022, 6, 6. [Google Scholar] [CrossRef]
- DL, A.; Raju, T. Autonomic Nervous System and Control of Visual Function. Ann. Neurosci. 2023, 30, 151–153. [Google Scholar] [CrossRef]
- Olmsted, J. The role of the autonomic nervous system in accommodation for far and near vision. J. Nerv. Ment. Dis. 1944, 99, 794–798. [Google Scholar] [CrossRef]
- Echemendia, R.J.; Brett, B.L.; Broglio, S.; Davis, G.A.; Giza, C.C.; Guskiewicz, K.M.; Harmon, K.G.; Herring, S.; Howell, D.R.; Master, C.L.; et al. Introducing the Sport Concussion Assessment Tool 6 (SCAT6); BMJ Publishing Group Ltd. and British Association of Sport and Exercise Medicine: London, UK, 2023; Volume 57, pp. 619–621. [Google Scholar]
- King, P.R.; Donnelly, K.T.; Donnelly, J.P.; Dunnam, M.; Warner, G.; Kittleson, C.J.; Bradshaw, C.B.; Alt, M.; Meier, S.T. Psychometric study of the Neurobehavioral Symptom Inventory. J. Rehabil. Res. Dev. 2012, 49, 879–888. [Google Scholar] [CrossRef]
- Haider, M.N.; Cunningham, A.; Darling, S.; Suffoletto, H.N.; Freitas, M.S.; Jain, R.K.; Willer, B.; Leddy, J.J. Derivation of the Buffalo Concussion Physical Examination risk of delayed recovery (RDR) score to identify children at risk for persistent postconcussive symptoms. Br. J. Sports Med. 2021, 55, 1427–1433. [Google Scholar] [CrossRef]
- Mucha, A.; Collins, M.W.; Elbin, R.; Furman, J.M.; Troutman-Enseki, C.; DeWolf, R.M.; Marchetti, G.; Kontos, A.P. A brief vestibular/ocular motor screening (VOMS) assessment to evaluate concussions: Preliminary findings. Am. J. Sports Med. 2014, 42, 2479–2486. [Google Scholar] [CrossRef] [PubMed]
- Patricios, J.S.; Davis, G.A.; Ahmed, O.H.; Blauwet, C.; Schneider, G.M.; Purcell, L.K.; Echemendia, R.J.; Fremont, P.; Fuller, G.W.; Herring, S.A.; et al. Introducing the Sport Concussion Office Assessment Tool 6 (SCOAT6); BMJ Publishing Group Ltd. and British Association of Sport and Exercise Medicine: London, UK, 2023; Volume 57, pp. 648–650. [Google Scholar]
- Lumba-Brown, A.; Teramoto, M.; Bloom, O.J.; Brody, D.; Chesnutt, J.; Clugston, J.R.; Collins, M.; Gioia, G.; Kontos, A.; Lal, A.; et al. Concussion guidelines step 2: Evidence for subtype classification. Neurosurgery 2020, 86, 2–13. [Google Scholar] [CrossRef]
- Kontos, A.P.; Jorgensen-Wagers, K.; Trbovich, A.M.; Ernst, N.; Emami, K.; Gillie, B.; French, J.; Holland, C.; Elbin, R.; Collins, M.W. Association of Time Since Injury to the First Clinic Visit with Recovery Following Concussion. JAMA Neurol. 2020, 77, 435–440. [Google Scholar] [CrossRef] [PubMed]
- Eagle, S.R.; Womble, M.N.; Elbin, R.; Pan, R.; Collins, M.W.; Kontos, A.P. Concussion symptom cutoffs for identification and prognosis of sports-related concussion: Role of time since injury. Am. J. Sports Med. 2020, 48, 2544–2551. [Google Scholar] [CrossRef]
- Giza, C.C.; Hovda, D.A. The new neurometabolic cascade of concussion. Neurosurgery 2014, 75 (Suppl. S4), S24–S33. [Google Scholar] [CrossRef]
- McCrory, P.; Meeuwisse, W.; Dvorak, J.; Aubry, M.; Bailes, J.; Broglio, S.; Cantu, R.C.; Cassidy, D.; Echemendia, R.J.; Castellani, R.J.; et al. Consensus statement on concussion in sport—The 5th international conference on concussion in sport held in Berlin, October 2016. Br. J. Sports Med. 2017, 51, 838–847. [Google Scholar] [CrossRef]
- Leddy, J.J.; Burma, J.S.; Toomey, C.M.; Hayden, A.; Davis, G.A.; Babl, F.E.; Gagnon, I.; Giza, C.C.; Kurowski, B.G.; Silverberg, N.D.; et al. Rest and exercise early after sport-related concussion: A systematic review and meta-analysis. Br. J. Sports Med. 2023, 57, 762–770. [Google Scholar] [CrossRef]
- Fraser, C.L.; Mobbs, R. Visual effects of concussion: A review. Clin. Exp. Ophthalmol. 2022, 50, 104–109. [Google Scholar] [CrossRef]
- Heller, P.H.; Perry, F.; Jewett, D.; Levine, J. Autonomic components of the human pupillary light reflex. Investig. Ophthalmol. Vis. Sci. 1990, 31, 156–162. [Google Scholar]
- McDougal, D.H.; Gamlin, P.D. Autonomic control of the eye. Compr. Physiol. 2015, 5, 439. [Google Scholar] [CrossRef] [PubMed]
- Stavisky, C.J.; Miecznikowski, J.C.; Haider, M.N.; Chizuk, H.M.; Nazir, M.S.; Grady, M.F.; McPherson, J.I.; Nowak, A.; Willer, B.S.; Master, C.L.; et al. Association of Cognitive Symptoms and Abnormal Oculomotor Signs With Recovery in Adolescents After Sport-Related Concussion. Clin. J. Sport Med. 2022, 35, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Corrado, C.; Willer, B.S.; McPherson, J.I.; Storey, E.; Sisto, S.A.; Master, T.; Wiebe, D.; Grady, M.; Mannix, R.; Meehan, W.; et al. Adolescents with More Oculomotor and Vestibular Signs of Sport-Related Concussion Benefit from Aerobic Exercise: An Exploratory Analysis. J. Neurotrauma 2023, 40, 1718–1729. [Google Scholar] [CrossRef] [PubMed]
- Leddy, J.J.; Haider, M.N.; Ellis, M.J.; Mannix, R.; Darling, S.R.; Freitas, M.S.; Suffoletto, H.N.; Leiter, J.; Cordingley, D.M.; Willer, B. Early subthreshold aerobic exercise for sport-related concussion: A randomized clinical trial. JAMA Pediatr. 2019. epub ahead of print. [Google Scholar] [CrossRef]
- Leddy, J.J.; Master, C.L.; Mannix, R.; Wiebe, D.J.; Grady, M.F.; Meehan, W.P.; Storey, E.P.; Vernau, B.T.; Brown, N.J.; Hunt, D.; et al. Early targeted heart rate aerobic exercise versus placebo stretching for sport-related concussion in adolescents: A randomised controlled trial. Lancet Child. Adolesc. Health 2021, 5, 792–799. [Google Scholar] [CrossRef]
- Monaco, A.; Ortu, E.; Giannoni, M.; D’Andrea, P.; Cattaneo, R.; Mummolo, A.; Pietropaoli, D. Standard correction of vision worsens EMG activity of pericranial muscles in chronic TMD subjects. Pain Res. Manag. 2020, 2020, 3932476. [Google Scholar] [CrossRef]
- Storey, E.P.; Corwin, D.J.; McDonald, C.C.; Arbogast, K.B.; Metzger, K.B.; Pfeiffer, M.R.; Margulies, S.S.; Grady, M.F.; Master, C.L. Assessment of saccades and gaze stability in the diagnosis of pediatric concussion. Clin. J. Sport Med. 2022, 32, 108–113. [Google Scholar] [CrossRef]
- Zieliński, G.; Wójcicki, M.; Rapa, M.; Matysik-Woźniak, A.; Baszczowski, M.; Ginszt, M.; Litko-Rola, M.; Szkutnik, J.; Różyło-Kalinowska, I.; Rejdak, R.; et al. Masticatory muscle thickness and activity correlates to eyeball length, intraocular pressure, retinal and choroidal thickness in healthy women versus women with myopia. J. Pers. Med. 2022, 12, 626. [Google Scholar] [CrossRef]
- Gunasekaran, P.; Hodge, C.; Rose, K.; Fraser, C.L. Persistent visual disturbances after concussion. Aust. J. Gen. Pract. 2019, 48, 531–536. [Google Scholar] [CrossRef] [PubMed]
- Warren, M. A hierarchical model for evaluation and treatment of visual perceptual dysfunction in adult acquired brain injury, part 1. Am. J. Occup. Ther. 1993, 47, 42–54. [Google Scholar] [CrossRef] [PubMed]
- Warren, M. A hierarchical model for evaluation and treatment of visual perceptual dysfunction in adult acquired brain injury, part 2. Am. J. Occup. Ther. 1993, 47, 55–66. [Google Scholar] [CrossRef]
- Morrow, C.; Craton, N. Oculomotor examination and treatment for concussion. Neurol. Neurosurg. 2021, 5, 1–5. [Google Scholar] [CrossRef]
- Sharma, U.; Majumder, R.; Biswas, V.; Awasthi, S. Awareness, knowledge, and barriers to vision therapy services among eye care practitioners. Int. J. Community Med. Public Health 2025, 12, 1379. [Google Scholar] [CrossRef]
- Strunin, L.; Boden, L.I. The workers’ compensation system: Worker friend or foe? Am. J. Ind. Med. 2004, 45, 338–345. [Google Scholar] [CrossRef]
- Schwedt, T.J.; Chong, C.D.; Peplinski, J.; Ross, K.; Berisha, V. Persistent post-traumatic headache vs. migraine: An MRI study demonstrating differences in brain structure. J. Headache Pain 2017, 18, 1–8. [Google Scholar] [CrossRef]
- O’Neil, M.E.; Carlson, K.; Storzbach, D.; Brenner, L.; Freeman, M.; Quiñones, A.; Motu’apuaka, M.; Ensley, M.; Kansagara, D. Complications of Mild Traumatic Brain Injury in Veterans and Military Personnel: A Systematic Review; Department of Veterans Affairs: Washington, DC, USA, 2014. [Google Scholar]
- Ingram, V.; Fielding, M.; Dunne, L.A.; Piantella, S.; Weakley, J.; Johnston, R.D.; McGuckian, T.B. The Incidence of Sports-Related Concussion in Children and Adolescents: A Systematic Review and Meta-Analysis. Sports Med.-Open 2025, 11, 36. [Google Scholar] [CrossRef]
- Kimbler, D.E.; Murphy, M.; Dhandapani, K.M. Concussion and the adolescent athlete. J. Neurosci. Nurs. 2011, 43, 286–290. [Google Scholar] [CrossRef]
- Abdi, S.; Kangari, H.; Rahmani, S.; Baghban, A.A.; Rad, Z.K. Home vision therapy and prism prescription in presbyopic persons with convergence insufficiency: Study protocol for a randomized controlled trial. BMC Ophthalmol. 2024, 24, 169. [Google Scholar] [CrossRef]
- Haider, M.N.; Leddy, J.J.; Du, W.; Macfarlane, A.J.; Viera, K.B.; Willer, B.S. Practical Management: Brief Physical Examination for Sport-Related Concussion in the Outpatient Setting. Clin. J. Sport Med. 2020, 30, 513–517. [Google Scholar] [CrossRef]
- Haider, M.N.; Leddy, J.J.; Pavlesen, S.; Kluczynski, M.; Baker, J.G.; Miecznikowski, J.C.; Willer, B.S. A systematic review of criteria used to define recovery from sport-related concussion in youth athletes. Br. J. Sports Med. 2018, 52, 1179–1190. [Google Scholar] [CrossRef]
- Sady, M.D.; Vaughan, C.G.; Gioia, G.A. Psychometric characteristics of the postconcussion symptom inventory in children and adolescents. Arch. Clin. Neuropsychol. 2014, 29, 348–363. [Google Scholar] [CrossRef]
- Fodero, J.; Leddy, J.J.; Haider, M.N.; Hall, J.J. Re-test Reliability of the Buffalo Concussion Physical Examination in Americal Medical Society for Sports Medicine 2021 Oral Research Poster Presentations. Clin. J. Sport Med. 2021, 31, 185–221. [Google Scholar] [CrossRef]
- Kontos, A.P.; Monti, K.; Eagle, S.R.; Thomasma, E.; Holland, C.L.; Thomas, D.; Bitzer, H.B.; Mucha, A.; Collins, M.W. Test–retest reliability of the Vestibular Ocular Motor Screening (VOMS) tool and modified Balance Error Scoring System (mBESS) in US military personnel. J. Sci. Med. Sport 2021, 24, 264–268. [Google Scholar] [CrossRef] [PubMed]
- Bezherano, I.; Haider, M.N.; Willer, B.S.; Leddy, J.J. Practical management: Prescribing subsymptom threshold aerobic exercise for sport-related concussion in the outpatient setting. Clin. J. Sport Med. 2021, 31, 465–468. [Google Scholar] [CrossRef] [PubMed]
- Broglio, S.P.; Collins, M.W.; Williams, R.M.; Mucha, A.; Kontos, A.P. Current and emerging rehabilitation for concussion: A review of the evidence. Clin. Sports Med. 2015, 34, 213–231. [Google Scholar] [CrossRef]
- Schneider, K.J.; Meeuwisse, W.H.; Nettel-Aguirre, A.; Barlow, K.; Boyd, L.; Kang, J.; Emery, C.A. Cervicovestibular rehabilitation in sport-related concussion: A randomised controlled trial. Br. J. Sports Med. 2014, 48, 1294–1298. [Google Scholar] [CrossRef]
- Zieliński, G. Effect Size Guidelines for Individual and Group Differences in Physiotherapy. Arch. Phys. Med. Rehabil. 2025, in press. [Google Scholar] [CrossRef]
- IBM Corp. IBM SPSS Statistics for Windows; Version 28.0, Released 2023; IBM Corp.: Armonk, NY, USA, 2023. [Google Scholar]
- Hawryluk, G.W.; Manley, G.T. Classification of traumatic brain injury: Past, present, and future. Handb. Clin. Neurol. 2015, 127, 15–21. [Google Scholar]
- Corwin, D.J.; Arbogast, K.B.; Swann, C.; Haber, R.; Grady, M.F.; Master, C.L. Reliability of the visio-vestibular examination for concussion among providers in a pediatric emergency department. Am. J. Emerg. Med. 2020, 38, 1847–1853. [Google Scholar] [CrossRef]
- Haider, M.N.; Herget, L.; Zafonte, R.D.; Lamm, A.G.; Wong, B.M.; Leddy, J.J. Rehabilitation of sport-related concussion. Clin. Sports Med. 2021, 40, 93–109. [Google Scholar] [CrossRef]
- Harmon, K.G.; Clugston, J.R.; Dec, K.; Hainline, B.; Herring, S.; Kane, S.F.; Kontos, A.P.; Leddy, J.J.; McCrea, M.; Poddar, S.K.; et al. American Medical Society for Sports Medicine position statement on concussion in Sport. Br. J. Sports Med. 2019, 53, 213–225. [Google Scholar] [CrossRef]
- Leddy, J.J.; Baker, J.G.; Willer, B. Active Rehabilitation of Concussion and Post-concussion Syndrome. Phys. Med. Rehabil. Clin. N. Am. 2016, 27, 437–454. [Google Scholar] [CrossRef] [PubMed]
- Watabe, T.; Suzuki, H.; Abe, M.; Sasaki, S.; Nagashima, J.; Kawate, N. Systematic review of visual rehabilitation interventions for oculomotor deficits in patients with brain injury. Brain Inj. 2019, 33, 1592–1596. [Google Scholar] [CrossRef]
- Peters, M.; Price, J. The Peters/Price (See to Play) Vision Concussion Protocol: Diagnosis and Treatment. Optom. Vis. Perform. 2015, 3, 126. [Google Scholar]
- Gallaway, M.; Scheiman, M.; Mitchell, G.L. Vision therapy for post-concussion vision disorders. Optom. Vis. Sci. 2017, 94, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Berryman, A.; Rasavage, K.; Politzer, T.; Gerber, D. Oculomotor treatment in traumatic brain injury rehabilitation: A randomized controlled pilot trial. Am. J. Occup. Ther. 2020, 74, 7401185050p1–7401185050p7. [Google Scholar] [CrossRef] [PubMed]
- Purves, D.; Augustine, G.J.; Fitzpatrick, D.; Katz, L.C.; LaMantia, A.-S.; McNamara, J.O.; Williams, S.M. Types of eye movements and their functions. Neuroscience 2001, 20, 361–390. [Google Scholar]
- McPherson, J.I.; Haider, M.N.; Miyashita, T.; Bromley, L.; Mazur, B.; Willer, B.; Leddy, J. Adults are not older adolescents: Comparing physical therapy findings among adolescents, young adults and older adults with persistent post-concussive symptoms. Brain Inj. 2023, 37, 628–634. [Google Scholar] [CrossRef] [PubMed]


| Oculomotor Abnormality | Rehabilitation Instructions |
|---|---|
| Try to do this oculomotor training 2 times daily (morning and evening). You only have to do the eye exercises that your doctor told you to do. We recommend you use a metronome to track your reps. Google’s metronome is a convenient option. The goal is to improve endurance over time. Once you can complete an individual eye exercise without symptoms and with normal speed, you no longer need to practice these eye exercise. | |
| Smooth Pursuits | You will need a computer with a full-sized monitor (do not use your phone). Search for “smooth pursuits retraining” on Youtube.com and select the videos your clinician has recommended. Sit with your head about 1.5 feet from the computer screen and start the video. With your head still, follow the moving target with your eyes. Start with the easiest video and progress to next if it does not cause worsening of your symptoms. Do this for at least 1–2 min each time. |
| Horizontal and Vertical Repetitive Saccades | Horizontal: Put 2 post-it notes with an X on the wall, shoulder width apart. Look back and forth right to left for the recommended repetitions. Vertical: Place the 2 post-it notes with an X vertical on wall about 12 inches apart. Look up and down for the recommended repetitions. Make sure to really focus on the X every time you turn. You can try this with small letters as well. The goal is to be able to do 60 reps in 1 min without worsening your eye symptoms too much. Start with the number of repetitions that cause symptoms plus 3 more repetitions to increase stamina. Take a break and repeat until you have completed 1 min of each activity. Then advance by 3–5 reps every 1–2 days. |
| VOR | Put 1 post-it note on the wall in the middle of the 4 post-it notes used above for saccades. Horizontal: Keep eyes focused on the post-it note and nod up and down for the above time recommended. Vertical: Shake head left and right while focusing on the target for the above time recommended. Same as before, make sure to really focus on the X. You can try this with small letters as well. The goal is to be able to do 30 reps in 1 min without worsening your eye symptoms too much. Start with the number of repetitions that cause symptoms plus 3 more repetitions to increase stamina. Take a break and repeat until you have completed 1 min of each activity. Then advance by 3–5 reps every 1–2 days. |
| NPC | Pencil Pushups: Use a pen with letters. Hold the pen an arm’s length away and keep the letters in focus as you bring the pen towards your nose. Once the letters get blurry, continue slowly until the letters become double. Try to keep them single. When they remain double slowly go in reverse back out to arm’s length. Repeat for about one minute. |
| Standard Care Arm | Experimental Arm | p-Value | Effect Size | |
|---|---|---|---|---|
| Sample size | 106 | 27 | - | - |
| Age | 14.98 ± 1.87 | 15.50 ± 1.53 | 0.180 | 0.290 |
| Sex | 59.4% male | 63.0% male, | 0.738 | 0.029 |
| Days since injury | 5.69 ± 2.78 | 5.74 ± 2.43 | 0.929 | 0.019 |
| Loss of consciousness | 5 (4.7%) | 4 (14.8%) | 0.082 a | 0.162 |
| Previous Concussion | ||||
| 0 | 56 (52.8%) | 16 (59.3%) | 0.865 | 0.098 |
| 1 | 28 (26.4%) | 5 (18.5%) | ||
| 2 | 19 (17.9%) | 5 (18.5%) | ||
| 3+ | 3 (2.8%) | 1 (3.7%) | ||
| Symptom severity (max = 132) | 41.33 ± 20.56 | 40.30 ± 23.36 | 0.822 | 0.049 |
| Non-oculomotor Clinical Exam | ||||
| Orthostatic intolerance | 66 (62.3%) | 15 (55.6%) | 0.451 | 0.066 |
| Neck spasm | 2 (1.9%) | 1 (3.7%) | 0.570 a | 0.049 |
| Neck tenderness | 62 (58.5%) | 10 (37.0%) | 0.046 * | 0.173 |
| Neck range of motion | 14 (13.2%) | 4 (14.8%) | 0.827 a | 0.019 |
| Complex tandem gait | 60 (56.6%) | 16 (59.3%) | 0.803 | 0.022 |
| Oculomotor Clinical Exam | ||||
| Smooth Pursuits | 96 (90.6%) | 25 (92.6%) | 0.743 | 0.028 |
| Horizontal Saccades | 104 (98.1%) | 25 (92.6%) | 0.134 a | 0.130 |
| Vertical Saccades | 77 (72.6%) | 16 (59.3%) | 0.176 | 0.117 |
| Abnormal NPC (10–25 cm) | 37 (34.9%) | 11 (40.7%) | 0.573 | 0.049 |
| VOR | 97 (91.5%) | 22 (81.5%) | 0.130 | 0.131 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haider, M.N.; Edwards, J.M.; McPherson, J.I.; Rao, K.A.; Leddy, J.J.; Chizuk, H.M. Early, Self-Guided Oculomotor Rehabilitation in Adolescents with Sport-Related Concussion Is Feasible and Effective: A Quasi-Experimental Trial. Appl. Sci. 2025, 15, 11330. https://doi.org/10.3390/app152111330
Haider MN, Edwards JM, McPherson JI, Rao KA, Leddy JJ, Chizuk HM. Early, Self-Guided Oculomotor Rehabilitation in Adolescents with Sport-Related Concussion Is Feasible and Effective: A Quasi-Experimental Trial. Applied Sciences. 2025; 15(21):11330. https://doi.org/10.3390/app152111330
Chicago/Turabian StyleHaider, Mohammad N., Jazlyn M. Edwards, Jacob I. McPherson, Krishnamurti A. Rao, John J. Leddy, and Haley M. Chizuk. 2025. "Early, Self-Guided Oculomotor Rehabilitation in Adolescents with Sport-Related Concussion Is Feasible and Effective: A Quasi-Experimental Trial" Applied Sciences 15, no. 21: 11330. https://doi.org/10.3390/app152111330
APA StyleHaider, M. N., Edwards, J. M., McPherson, J. I., Rao, K. A., Leddy, J. J., & Chizuk, H. M. (2025). Early, Self-Guided Oculomotor Rehabilitation in Adolescents with Sport-Related Concussion Is Feasible and Effective: A Quasi-Experimental Trial. Applied Sciences, 15(21), 11330. https://doi.org/10.3390/app152111330

