Conceptually Simple Method for Optimizing Model Computations in MATLAB Simulink
Abstract
1. Introduction
2. Illustrative Planar Examples
2.1. Example 1: Three Modeling Variants
- Model 1.1 is composed of Euler–Bernoulli beams and joints.
- Model 1.2 serves as an experimental variant. It also employs Euler–Bernoulli beams, but it uses solid joints. This configuration does not conform to the assumptions of the theoretical model, as the nodes do not incorporate movable joints.
- Model 1.3 consists of rigid bars with one degree of freedom (1 DOF) and joints. This model most closely resembles the conventional standards used in static structural analysis software.
2.1.1. Model 1.1: Truss System Composed of Euler–Bernoulli Beams and Joints
2.1.2. Model 1.2: Truss System Composed of Euler–Bernoulli Beams and Solid Joints
2.1.3. Model 1.3: Truss System Composed of Solid Bars with One Degree of Freedom (1 DOF) and Joints
2.2. Example 2: Three Modeling Variants
- Model 2.1 consists of Euler–Bernoulli beams and joints.
- Model 2.2 is primarily experimental. It is composed of Euler–Bernoulli beams and solid joints. This model does not satisfy the assumptions of the theoretical model, as the nodes do not contain movable joints.
- Model 2.3 comprises solid bars with one degree of freedom (1 DOF) and joints.
2.2.1. Model 2.1: Truss System Composed of Euler–Bernoulli Beams and Joints
2.2.2. Model 2.2. Truss System Composed of Euler–Bernoulli Beams and Solid Joints
2.2.3. Model 2.3. Truss System Composed of Solid Bars with 1 DOF and Joints
3. Computational Optimization Procedure
Procedure 1: Visualization of the computational accuracy of Fload m as a function of con | |
Input: multiplication constant con, vector of load force F_load, control measurement of the load force F_load_m, simulation sequence duration SampleTime, measurement sequence (Sequence), end of simulation StopTime, vector of sequences Seq_vector, Lag, Lead, sequence step k, ith sample of the F_load_m variable. | |
Output: Sorted values F_load_m_separ_k, maxima of the measured values for the given sequence Max_F_load_m(k), minima of the measured values for the given sequence Min_F_load_m(k), mean of the measured values for the given sequence Mean_F_load_m(k), time for all sequences TIME{k}. | |
1 | For k = 1 to size(Seq_vector) do |
2 | If k < size(Seq_vector) then |
3 | For i = 1 to size(F_load_m) do |
4 | If ((Seq_vector(k)-Lag) ≤ F_load_m(i)) & (F_load_m(i) ≤ (Seq_vector(k+1)-Lead)) |
5 | F_load_m_separ (i) ← F_load_m (i) |
6 | End |
7 | End |
8 | F_load_m_separ_k← F_load_m_separ |
9 | clear F_load_m_separ—delete previous values |
10 | F_load_m_separ_1 = F_load_m_separ_k(1,:)—force vector extracted from matrix F_load_m_separ_k for the sequence |
11 | F_load_m_separ_2 = F_load_m_separ_k(2,:)—time vector extracted from matrix F_load_m_separ_k for the sequence |
12 | A{k} = F_load_m_separ_1(F_load_m_separ_1 ~=0)—exclusion of invalid values |
13 | Max_F_load_m(k) = max(A{k})—maxima of F_load_m_separ_k |
14 | Min_F_load_m(k) = min(A{k})—minima of F_load_m_separ_k |
15 | Mean_F_load_m(k)—mean values computed from F_load_m_separ_ 1 |
16 | time = F_load_m_separ_2 (F_load_m_separ_2 ~= 0)—exclusion of invalid time values for the sequence |
17 | TIME{k}—all time sequences |
18 | Else |
19 | End |
20 | End |
- The computation did not consistently conform 100% to the theoretical probability of the Gaussian distribution [24]. For example, instead of the expected 99.73% probability set, the actual result was 98.98%.
- During the computation, the simulation can be interrupted at any moment. As a result, no samples are excluded, and calculating the standard deviation does not provide meaningful insight in this context. Consequently, even samples that fall outside multiples of the standard deviation interval remain included in the data set. Therefore, we opted to use the actual maxima and minima derived from the given set of values.
4. Results
4.1. Results for Example 1
4.1.1. Theoretical Calculation for Example 1: Three Modeling Variants
4.1.2. Results for Example 1: Theoretical Calculation and MATLAB Models
4.1.3. Results for Example 1: Visualization of the Deformed State of the Models
4.2. Results for Example 2
4.2.1. Theoretical Calculation for Example 2: Three Modeling Variants
4.2.2. Results for Example 2: Theoretical Calculation and MATLAB Models
4.2.3. Results for Example 2: Visualization of the Deformed State of the Structures
4.3. Results for Example 3: Test Calculation of a More Complex Structure Based on Example 2
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
FEA | Finite Element Analysis |
FEM | Finite Element Method |
DOF | Degree Of Freedom |
Fload | Load force vector |
Fload m | Control measurement of load force vector |
N, N | Vector, component of normal force acting on the bar |
F, F | Vector, component of the force (not a reaction force) acting on the support |
l | Bar length, unless specified otherwise |
L | Distance between nodes in the x–axis direction |
H | Distance between nodes in the y–axis direction |
d | Bar diameter |
S | Bar cross-section |
E | Young’s modulus describing the bar’s elasticity |
G | Shear modulus |
Density | Material density |
μ | Poisson’s ratio |
δ, δ | Vector, component of node deflection in plane |
bm | Coefficient proportional to the mass matrix in the Rayleigh damping model |
bk | Coefficient proportional to the stiffness matrix in the Rayleigh damping model |
brj | Damping at the support |
b | Damping in the joint of the solid bar with 1 DOF |
k | Stiffness in the joint of the solid bar with 1 DOF, as well as sequence step size, sequence step |
con | Multiplication (proportional) constant |
x, y, z | Axes of the coordinate system, or components of the position vector |
u(m) | mth element of input variable vector u for a function in Simulink |
MATLAB® | (MathWorks, 1 Apple Hill Drive, Natick, MA 01760 USA, Founded in 1984) |
References
- Ondocko, S.; Svetlik, J.; Jánoš, R.; Semjon, J.; Dovica, M. Calculation of Trusses System in MATLAB—Multibody. Appl. Sci. 2024, 14, 9547. [Google Scholar] [CrossRef]
- MathWorks, Inc. Simscape™ Multibody™ Getting Started Guide. The MathWorks. 2025. Available online: https://www.mathworks.com/help/pdf_doc/sm/sm_gs.pdf (accessed on 17 June 2025).
- MathWorks, Inc. Simscape™ Multibody™ User’s Guide. The MathWorks. 2025. Available online: https://www.mathworks.com/help/pdf_doc/sm/sm_ug.pdf (accessed on 17 June 2025).
- Langtangen, H.P.; Pedersen, G.P. Scaling of Differential Equations; Springer Nature: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Bradley, D. What is mechatronics and why teach it? Int. J. Electr. Eng. Educ. 2004, 41, 275–291. [Google Scholar] [CrossRef]
- Bishop, R.H. Mechatronics: An Introduction; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- MathWorks, Inc. SimMechanics™ 3 User’s Guide; The MathWorks: Natick, MA, USA, 2009. [Google Scholar]
- Hroncova, D.; Pastor, M. Mechanical system and SimMechanics simulation. Am. J. Mech. Eng. 2013, 1, 251–255. [Google Scholar]
- Frankovský, P.; Hroncová, D.; Delyová, I.; Virgala, I. Modeling of dynamic systems in simulation environment MATLAB/Simulink–SimMechanics. Am. J. Mech. Eng. 2013, 1, 282–288. [Google Scholar]
- MathWorks, Inc. System Scaling by Nominal Values. 2025. Available online: https://www.mathworks.com/help/releases/R2025b/simscape/ug/system-scaling-by-nominal-values.html?searchHighlight=command+scaling&s_tid=doc_srchtitle#mw_3cc30ae6-fec4-4118-a0d3-032dbf0901cc (accessed on 3 October 2025).
- Miller, S.; Soares, T.; Weddingen, Y.V.; Wendlandt, J. Modeling flexible bodies with simscape multibody software. In An Overview of Two Methods for Capturing the Effects of Small Elastic Deformations; MathWorks: Natick, MA, USA, 2017. [Google Scholar]
- Bauchau, O.A.; Craig, J.I. Euler–Bernoulli beam theory. In Structural Analysis; Springer: Dordrecht, The Netherlands, 2009; pp. 173–221. [Google Scholar]
- Trebuňa, F.; Šimčák, F. Odolnosť Prvkov Mechanických Sústav; Technická Univerzita: Košice, Slovakia, 2004. [Google Scholar]
- Lengvarský, P.; Pástor, M.; Bocko, J. Riveted Joints and Linear Buckling in the Steel Load–bearing Structure. Am. J. Mech. Eng. 2017, 5, 329–333. [Google Scholar]
- Karnovsky, I.A.; Lebed, O. Advanced Methods of Structural Analysis; Springer Nature: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Plevris, V.; Ahmad, A. Deriving analytical solutions using symbolic matrix structural analysis for continuous beams. Sci. Rep. 2025, 15, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Florian, Z.; Pellant, K.; Suchánek, M. Technická mechanika I–Statika; Vysoké Učení Technické v Brně: Brno, Czech Republic, 2004. [Google Scholar]
- Available online: https://github.com/stefanondocko/AddOptimInSimulink (accessed on 17 June 2025).
- MathWorks, Inc. Using Simulink. In Simulink–Model–Based and System–Based Design; MathWorks Inc.: Natick, MA, USA, 2002. [Google Scholar]
- MathWorks, Inc. Speed Up Simulation. 2023. Available online: https://www.mathworks.com/help//releases/R2021a/simulink/ug/speed-up-simulation.html (accessed on 22 June 2025).
- Gavin, H.P. Classical Damping, Non–Classical Damping and Complex Modes; Duke University: Durham, NC, USA, 2018. [Google Scholar]
- MathWorks, Inc. Choose an ODE Solver. Ordinary Differential Equations. 2025. Available online: https://uk.mathworks.com/help/matlab/math/choose-an-ode-solver.html (accessed on 17 June 2025).
- Oršanský, P.; Ftorek, B. Štatistické a Numerické Metódy; EDIS–ŽU: Žilina, Slovakia, 2017. [Google Scholar]
- Buša, J.; Pirč, V.; Schrotter, Š. Numerické Metódy, Pravdepodobnosť a Matematická Štatistika; FEI TU: Košice, Slovakia, 2006. [Google Scholar]
- Available online: https://github.com/vplevris/SymbolicMSA-2DTrusses (accessed on 17 June 2025).
- Murín, J.; Hrabovský, J.; Kutiš, V. Metóda Konečných Prvkov—Vybrané Kapitoly pre Mechatronikov; Slovenská technická univerzita v Bratislave: Bratislava, Slovakia, 2014. [Google Scholar]
- Öchsner, A. Euler–Bernoulli beam theory. In Classical Beam Theories of Structural Mechanics; Springer: Berlin/Heidelberg, Germany, 2021; pp. 7–66. [Google Scholar]
- MathWorks, Inc. Solver–Solver that Computes States and Outputs for Simulation. 2025. Available online: https://uk.mathworks.com/help/simulink/gui/solver.html (accessed on 17 June 2025).
Quantity [Unit] | Theoretical Calculation | MATLAB Model 1.1 | MATLAB Model 1.2 | MATLAB Model 1.3 |
---|---|---|---|---|
N1 [N] | −0.94337567·103 | −0.94337566·103 | −0.94322189·103 | −0.94337567·103 |
N2 [N] | 0.94337567·103 | 0.94337562·103 | 0.94322214·103 | 0.94337563·103 |
N3 [N] | 1.88675134·103 | 1.88675121·103 | 1.88649462·103 | 1.88675121·103 |
N4 [N] | 9.66025403·103 | 9.66025400·103 | 9.65990727·103 | 9.66025394·103 |
N5 [N] | 1.88675134·103 | 1.88675131·103 | 1.88681570·103 | 1.88675120·103 |
N6 [N] | −1.88675134·103 | −1.88675129·103 | −1.88620302·103 | −1.88675108·103 |
N7 [N] | 1.88675134·103 | 1.88675124·103 | 1.88657522·103 | 1.88675128·103 |
F1x [N] | 3.88675134·103 | 3.88675125·103 | 3.88666800·103 | 3.88675120·103 |
F1y [N] | 8.36602540·103 | 8.36602540·103 | 8.36602543·103 | 8.36602535·103 |
F3x [N] | −1.88675134·103 | −1.88675122·103 | −1.88666800·103 | −1.88675126·103 |
F3y [N] | 1.63397459·103 | 1.63397452·103 | 1.63397457·103 | 1.63397461·103 |
FLoad x 1 [N] | 2.00000000·103 | 2.00000012·103 | 2.00005115·103 | 2.00000015·103 |
FLoad y 1 [N] | 10.00000000·103 | 9.99999994·103 | 9.99975543·103 | 9.99999980·103 |
δ2x [m] | −0.57197295·10−4 | −0.57197293·10−4 | −0.57187981·10−4 | −0.57197300·10−4 |
δ2y [m] | 4.70248778·10−4 | 4.70248791·10−4 | 4.70200032·10−4 | 4.70248768·10−4 |
δ4x [m] | 0.35464965·10−4 | 0.35464940·10−4 | 0.35486893·10−4 | 0.35464980·10−4 |
δ4y [m] | 6.55838856·10−4 | 6.55838876·10−4 | 6.55801902·10−4 | 6.55838846·10−4 |
δ5x [m] | 1.49859556·10−4 | 1.49859564·10−4 | 1.49865932·10−4 | 1.49859564·10−4 |
δ5y [m] | 2.18612952·10−4 | 2.18612977·10−4 | 2.18604317·10−4 | 2.18612957·10−4 |
Quantity [Unit] | Theoretical Calculation | MATLAB Model 2.1 | MATLAB Model 2.2 | MATLAB Model 2.3 |
---|---|---|---|---|
N1 [N] | 0 | −0.00036038 | 0.06985929 | −0.00092453 |
N2 [N] | 2·104 | 2.00000007·104 | 1.99997963·104 | 2.00000012·104 |
N3 [N] | 0 | −0.00030489 | −0.70545982 | −0.00057530 |
N4 [N] | −3·104 | −3.00000005·104 | −2.99992002·104 | −3.00000008·104 |
N5 [N] | 0 | −0.00069505 | 0.41597051 | −0.00181315 |
N6 [N] | 2·104 | 2.00000004·104 | 1.99999088·104 | 2.00000008·104 |
N7 [N] | 0 | −0.00084519 | −3.72374373 | −0.00178803 |
N8 [N] | −3·104 | −2.99999998·104 | −2.99971831·104 | −2.99999994·104 |
N9 [N] | 0 | −0.00123336 | −1.59349130 | −0.00281782 |
N10 [N] | 2·104 | 1.99999997·104 | 1.99947667·104 | 1.99999993·104 |
N11 [N] | −2.82842712·104 | −2.82842702·104 | −2.82719856·104 | −2.82842694·104 |
N12 [N] | 2·104 | 1.99999997·104 | 1.99945650·104 | 1.99999998·104 |
N13 [N] | −2·104 | −1.99999982·104 | −1.99954651·104 | −1.99999958·104 |
N14 [N] | −1·104 | −1.00000023·104 | −1.00000467·104 | −1.00000050·104 |
N15 [N] | 1.41421356·104 | 1.41421358·104 | 1.41343004·104 | 1.41421362·104 |
N16 [N] | 1·104 | 9.99999991·103 | 1.00014635·104 | 9.99999993·103 |
N17 [N] | −1·104 | −9.99999820·103 | −9.99855709·103 | −9.99999543·103 |
N18 [N] | −1·104 | −1.00000000·104 | −9.99689885·103 | −1.00000002·104 |
N19 [N] | 1.41421356·104 | 1.41421358·104 | 1.41391288·104 | 1.41421366·104 |
N20 [N] | 0 | 0.00019897 | 1.13419678 | 0.00002046 |
N21 [N] | 0 | −0.00019154 | 1.04655832 | 0.00011316 |
F1x [N] | 0 | −0.00001027 | −0.00000029 | −0.00008829 |
F1y [N] | 2·104 | 2.00000007·104 | 2.00001212·104 | 2.00000012·104 |
F2x [N] | 0 | 0 | 0 | 0 |
F2y [N] | −3·104 | −3.00000007·104 | −3.00001212·104 | −3.00000012·104 |
FLoad x 1 [N] | 0 | 0.00197450 | −0.68322370 | 0.00527883 |
FLoad y 1 [N] | −1·104 | −1.00000003·104 | −9.99682731·103 | −1.00000005·104 |
δ2x [m] | 0 | 0 | 0 | 0 |
δ2y [m] | 0 | 0 | 0 | 0 |
δ3x [m] | 1.21260909·10−3 | 1.21260907·10−3 | 1.21268896·10−3 | 1.21260919·10−3 |
δ3y [m] | 1.21260909·10−3 | 1.21260913·10−3 | 1.21259634·10−3 | 1.21260913·10−3 |
δ4x [m] | 1.21260909·10−3 | 1.21260901·10−3 | 1.21269939·10−3 | 1.21260893·10−3 |
δ4y [m] | −1.81891363·10−3 | −1.81891360·10−3 | −1.81886655·10−3 | −1.81891370·10−3 |
δ5x [m] | 5.45674090·10−3 | 5.45674098·10−3 | 5.45724232·10−3 | 5.45674144·10−3 |
δ5y [m] | 2.42521818·10−3 | 2.42521815·10−3 | 2.42517526·10−3 | 2.42521798·10−3 |
δ6x [m] | 5.45674090·10−3 | 5.45674070·10−3 | 5.45710518·10−3 | 5.45674065·10−3 |
δ6y [m] | −3.63782727·10−3 | −3.63782731·10−3 | −3.63763418·10−3 | −3.63782759·10−3 |
δ7x [m] | 1.61621718·10−2 | 1.61621718·10−2 | 1.61606005·10−2 | 1.61621722·10−2 |
δ7y [m] | 3.63782727·10−3 | 3.63782650·10−3 | 3.63730639·10−3 | 3.63782513·10−3 |
δ8x [m] | 1.737478098·10−2 | 1.737478055·10−2 | 1.73728087·10−2 | 1.73747803·10−2 |
δ8y [m] | −4.24413181·10−3 | −4.24413292·10−3 | −4.24416919·10−3 | −4.24413480·10−3 |
δ9x [m] | 4.24413181·10−3 | 4.24413010·10−3 | 4.24443048·10−3 | 4.24412783·10−3 |
δ9y [m] | −1.908966920·10−2 | −1.90896690·10−2 | −1.90858478·10−2 | −1.90896690·10−2 |
δ10x [m] | 1.798108552·10−2 | 1.79810834·10−2 | 1.79788210·10−2 | 1.79810809·10−2 |
δ10y [m] | −1.969597374·10−2 | −1.96959748·10−2 | −1.96922747·10−2 | −1.96959767·10−2 |
δ11x [m] | 3.63782727·10−3 | 3.63782379·10−3 | 3.63775137·10−3 | 3.63781893·10−3 |
δ11y [m] | −3.575412022·10−2 | −3.57541196·10−2 | −3.57470982·10−2 | −3.57541193·10−2 |
δ12x [m] | 1.798108552·10−2 | 1.79810817·10−2 | 1.797846122·10−2 | 1.79810766·10−2 |
δ12y [m] | −3.575412022·10−2 | −3.57541210·10−2 | −3.574737653·10−2 | −3.57541227·10−2 |
Quantity [Unit] | Theoretical Calculation | MATLAB Example 3 | Quantity [Unit] | Theoretical Calculation | MATLAB Example 3 |
---|---|---|---|---|---|
N1 [N] | 1.11696551·104 | 1.11696549·104 | F20Ry [N] | −0.03267949·104 | 0.03267948·104 |
N2 [N] | 0.03773502·104 | 0.03773502·104 | FLoadx 1 [N] | 0.2·104 | 0.20000003·104 |
N3 [N] | −0.16980762·104 | −0.16980761·104 | FLoady 1 [N] | 1·104 | 0.99999997·104 |
N4 [N] | 0.33961524·104 | 0.33961518·104 | δ2x [m] | −0.10295513·10−3 | −0.10295517·10−3 |
N5 [N] | −0.03773502·104 | −0.03773503·104 | δ2y [m] | 1.63899678·10−3 | 1.63899669·10−3 |
N6 [N] | 0.03773502·104 | 0.03773502·104 | δ3x [m] | −0.81654806·10−3 | −0.81654804·10−3 |
N7 [N] | −0.13207259·104 | −0.13207258·104 | δ3y [m] | 1.25342200·10−3 | 1.25342194·10−3 |
N8 [N] | 0.30188021·104 | 0.30188015·104 | δ4x [m] | −0.18303134·10−3 | −0.18303137·10−3 |
N9 [N] | −0.03773502·104 | −0.03773502·104 | δ4y [m] | 2.12614960·10−3 | 2.12614946·10−3 |
N10 [N] | 0.03773502·104 | 0.03773502·104 | δ5x [m] | −0.61063780·10−3 | −0.61063780·10−3 |
N11 [N] | −0.09433756·104 | −0.09433756·104 | δ5y [m] | 1.90568920·10−3 | 1.90568908·10−3 |
N12 [N] | 0.26414518·104 | 0.26414514·104 | δ6x [m] | −0.24022864·10−3 | −0.24022866·10−3 |
N13 [N] | −0.03773502·104 | −0.03773502·104 | δ6y [m] | 2.32270114·10−3 | 2.32270096·10−3 |
N14 [N] | 0.03773502·104 | 0.03773502·104 | δ7x [m] | −0.42760645·10−3 | −0.42760645·10−3 |
N15 [N] | −0.05660254·104 | −0.05660253·104 | δ7y [m] | 2.24093681·10−3 | 2.24093665·10−3 |
N16 [N] | 0.22641016·104 | 0.22641010·104 | δ8x [m] | −0.27454701·10−3 | −0.27454702·10−3 |
N17 [N] | −0.03773502·104 | −0.03773501·104 | δ8y [m] | 2.28148798·10−3 | 2.28148782·10−3 |
N18 [N] | 0.03773502·104 | 0.03773501·104 | δ9x [m] | −0.26745402·10−3 | −0.26745405·10−3 |
N19 [N] | −0.01886751·104 | −0.01886751·104 | δ9y [m] | 2.31200143·10−3 | 2.31200128·10−3 |
N20 [N] | 0.18867513·104 | 0.18867509·104 | δ10x [m] | −0.28598647·10−3 | −0.28598646·10−3 |
N21 [N] | −0.03773502·104 | −0.03773502·104 | δ10y [m] | 2.05534673·10−3 | 2.05534661·10−3 |
N22 [N] | 0.03773502·104 | 0.03773502·104 | δ11x [m] | −0.13018051·10−3 | −0.13018053·10−3 |
N23 [N] | 0.01886751·104 | 0.01886750·104 | δ11y [m] | 2.17171965·10−3 | 2.17171953·10−3 |
N24 [N] | 0.15094010·104 | 0.15094006·104 | δ12x [m] | −0.27454701·10−3 | −0.27454697·10−3 |
N25 [N] | −0.03773502·104 | −0.03773502·104 | δ12y [m] | 1.69711398·10−3 | 1.69711389·10−3 |
N26 [N] | 0.03773502·104 | 0.03773501·104 | δ13x [m] | −0.01578592·10−3 | −0.01578590·10−3 |
N27 [N] | 0.05660254·104 | 0.05660252·104 | δ13y [m] | 1.87292807·10−3 | 1.87292798·10−3 |
N28 [N] | 0.11320508·104 | 0.11320505·104 | δ14x [m] | −0.24022864·10−3 | −0.24022858·10−3 |
N29 [N] | −0.03773502·104 | −0.03773501·104 | δ14y [m] | 1.25962634·10−3 | 1.25962628·10−3 |
N30 [N] | 0.03773502·104 | 0.03773503·104 | δ15x [m] | 0.07572974·10−3 | 0.07572976·10−3 |
N31 [N] | 0.09433756·104 | 0.09433753·104 | δ15y [m] | 1.46846330·10−3 | 1.46846324·10−3 |
N32 [N] | 0.07547005·104 | 0.07547003·104 | δ16x [m] | −0.18303134·10−3 | −0.18303129·10−3 |
N33 [N] | −0.03773502·104 | −0.03773503·104 | δ16y [m] | 0.79572039·10−3 | 0.79572037·10−3 |
N34 [N] | 0.03773502·104 | 0.03773501·104 | δ17x [m] | 0.14436650·10−3 | 0.14436654·10−3 |
N35 [N] | 0.13207259·104 | 0.13207256·104 | δ17y [m] | 1.01116193·10−3 | 1.01116192·10−3 |
N36 [N] | 0.03773502·104 | 0.03773501·104 | δ18x [m] | −0.10295513·10−3 | −0.10295508·10−3 |
N37 [N] | −0.03773502·104 | −0.03773501·104 | δ18y [m] | 0.35823274·10−3 | 0.35823275·10−3 |
N38 [N] | 0.03773502·104 | 0.03773502·104 | δ19x [m] | 0.19012433·10−3 | 0.19012439·10−3 |
N39 [N] | 0.16980762·104 | 0.16980758·104 | δ19y [m] | 0.55386056·10−3 | 0.55386056·10−3 |
F1Lx [N] | −0.38867513·104 | 0.38867509·104 | δ21x [m] | 0.21300325·10−3 | 0.21300326·10−3 |
F1Ly [N] | −0.96732050·104 | 0.96732051·104 | δ21y [m] | 0.14939578·10−3 | 0.14939579·10−3 |
F20Rx [N] | 0.18867513·104 | −0.18867508·104 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ondočko, Š.; Svetlík, J.; Jánoš, R.; Semjon, J.; Sukop, M.; Stejskal, T.; Marcinko, P. Conceptually Simple Method for Optimizing Model Computations in MATLAB Simulink. Appl. Sci. 2025, 15, 11312. https://doi.org/10.3390/app152111312
Ondočko Š, Svetlík J, Jánoš R, Semjon J, Sukop M, Stejskal T, Marcinko P. Conceptually Simple Method for Optimizing Model Computations in MATLAB Simulink. Applied Sciences. 2025; 15(21):11312. https://doi.org/10.3390/app152111312
Chicago/Turabian StyleOndočko, Štefan, Jozef Svetlík, Rudolf Jánoš, Ján Semjon, Marek Sukop, Tomáš Stejskal, and Peter Marcinko. 2025. "Conceptually Simple Method for Optimizing Model Computations in MATLAB Simulink" Applied Sciences 15, no. 21: 11312. https://doi.org/10.3390/app152111312
APA StyleOndočko, Š., Svetlík, J., Jánoš, R., Semjon, J., Sukop, M., Stejskal, T., & Marcinko, P. (2025). Conceptually Simple Method for Optimizing Model Computations in MATLAB Simulink. Applied Sciences, 15(21), 11312. https://doi.org/10.3390/app152111312