Calculation Method for Torsional Angle of Main Cables of Suspension Bridges with Spatial Cables
Abstract
1. Introduction
2. Distribution Law of Torsion Angle of Spatial Main Cables
2.1. Transverse Uniformly Distributed Load Along the Cable Length
2.2. Transverse Uniformly Distributed Load Along Span Length
2.3. Comparison of Two Calculation Methods
3. Experiment and Results
3.1. Design of Test Model
3.2. Test Process
3.3. Comparison of Theoretical Calculation and Experimental Results
4. Finite Element Analysis
4.1. Basic Parameters
4.2. The Results of the FEM Are Compared with the Measured Values
4.3. Analysis of Torque and Bending Moment Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, M.; Wan, T.B.; Wang, B. Analysis of Stiffening Girder Hoisting Process of Suspension Bridge with Spatially-Configured Main Cables. World Bridges 2025, 53, 96–101. (In Chinese) [Google Scholar] [CrossRef]
- Qi, D.C.; Shen, R.L.; Liu, Z.J. Torsional calculation method of spatial cable with consideration of tension torsion coupling effect. J. Chang. Univ. (Nat. Sci. Ed.) 2015, 35, 91–97. (In Chinese) [Google Scholar] [CrossRef]
- Qi, D.C.; Wang, H.X. Model test of main cable torsion of spatial cable suspension bridge. Railw. Eng. 2016, 14–17. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, J.P.; Huang, H.Y.; Liu, A.R.; Mei, L.B.; Li, Y.H. An overall bridge model test study on the mechanical behaviors in the process of system transfomation of self-anchored suspension bridge with spatial cable system. China Civ. Eng. J. 2011, 44, 108–115. (In Chinese) [Google Scholar] [CrossRef]
- Li, C.X.; Liu, Z.K.; Cao, S.D. Test study on spatial cable torsion properties and torsion effect. China Civ. Eng. J. 2015, 48, 84–92. (In Chinese) [Google Scholar] [CrossRef]
- Li, C.X.; Li, Y.; Gao, C.; Zeng, Y.H.; Wu, Z.; Ye, L.X. Experimental on torsion performance of spatial main cables ofwire rope in suspension bridges. J. Chang. Univ. (Nat. Sci. Ed.) 2019, 39, 67–77. (In Chinese) [Google Scholar] [CrossRef]
- Li, C.X.; Li, Y.; He, J. Experimental study on torsional behavior of spatial main cable for a self-anchored suspension bridge. Adv. Struct. Eng. 2019, 22, 3086–3099. [Google Scholar] [CrossRef]
- Li, Y.; Li, C.X.; Cao, S.D.; Zeng, Y.H.; Gao, C. Numerical analysis of torsional property about spatial cable oftwin towers single span suspension bridge. J. Beijing Jiaotong Univ. 2018, 42, 27–35. (In Chinese) [Google Scholar] [CrossRef]
- Tian, G.; Zhang, W. A semi-analytical form-finding method of the 3D curved cable considering its flexural and torsional stiffnesses in suspension bridges. Appl. Math. Model. 2023, 124, 806–839. [Google Scholar] [CrossRef]
- Tian, G.; Zhang, W.; Chen, Y.P. Analytical assessment of suspension bridge’s 3D curved cable configuration and cable clamp pre-installation angle considering the main cable torsional and flexural stiffnesses. Appl. Math. Model. 2025, 138, 115805. [Google Scholar] [CrossRef]
- Zhang, W.; Lu, X.; Wang, Z.; Liu, Z. Effect of the main cable bending stiffness on flexural and torsional vibrations of sus-pension bridges: Analytical approach. Eng. Struct. 2021, 240, 112393. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, K.; Zhu, H.P. Nonlinear shape analysis for constructional multiwire cable structures with clamps considering multi-stiffness properties. Eng. Struct. 2024, 302, 117428. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, Y.; Wang, X.; Wu, X.; Liu, H. Experimental research on bending performance of structural cable. Constr. Build. Mater. 2015, 96, 279–288. [Google Scholar] [CrossRef]
- Arena, A.; Pacitti, A.; Lacarbonara, W. Nonlinear response of elastic cables with flexural-torsional stiffness. Int. J. Solids Struct. 2016, 87, 267–277. [Google Scholar] [CrossRef]
- Grigorjeva, T.; Juozapaitis, A.; Kamaitis, Z. Static analysis and simplified design of suspension bridges having various rigidity of cables. J. Civ. Eng. Manag. 2010, 16, 363–371. [Google Scholar] [CrossRef]
- Grigorjeva, T.; Juozapaitis, A.; Kamaitis, Z.; Paeglitis, A. Finite element modelling for static behaviour analysis of suspension bridges with varying rigidity of main cables. Balt. J. Road Bridge E 2008, 3, 121–128. [Google Scholar] [CrossRef]
- Ni, Y.Q.; Ko, J.M.; Zheng, G. Free and forced vibration of large-diameter sagged cables taking into account bending stiffness. In Proceedings of the Second International Conference on Advances in Steel Structures, Hong Kong, China, 15–17 December 1999; Volume 1, pp. 513–520. [Google Scholar]
- Ni, Y.Q.; Ko, J.M.; Zheng, G. Dynamic analysis of large-diameter sagged cables taking into account flexural rigidity. J. Sound Vib. 2002, 257, 301–319. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, M.; Wang, X.; Zhao, J.; Bai, Y. Analytical investigation of the main cable bending stiffness effect on free flexural vibration of suspension bridges with a 3D cable system. Structures 2022, 41, 764–776. [Google Scholar] [CrossRef]
- Bendalla, A.S.K.; Morgenthal, G. A nonlinear finite element framework for static and dynamic analysis of structural cables with deviating supports. Eng. Struct. 2023, 291, 116363. [Google Scholar] [CrossRef]
- Sheng, F.; Zhong, Z.; Wang, K.H. Theory and model implementation for analyzing line structures subject to dynamic motions of large deformation and elongation using the absolute nodal coordinate formulation (ANCF) approach. Non-Linear Dyn. 2020, 101, 333–359. [Google Scholar] [CrossRef]
- Wang, D.; Zhu, H.; Xu, W.; Ye, J.; Zhang, D.; Wahab, M.A. Contact and slip behaviors of main cable of the long-span suspension bridge. Eng. Fail. Anal. 2022, 136, 106232. [Google Scholar] [CrossRef]
- Wang, L.; Shen, R.; Wang, T.; Bai, L.; Zhou, N.; Gu, S. A methodology for nonuniform slip analysis and evaluation of cable strands within saddle. Eng. Struct. 2024, 303, 117551. [Google Scholar] [CrossRef]
- Meier, C.; Popp, A.; Wall, W.A. Geometrically exact finite element formulations for slender beams: Kirchhoff-Love theory versus Simo-Reissner theory. Arch. Comput. Methods Eng. 2019, 26, 163–243. [Google Scholar] [CrossRef]
- Liu, Y.; Song, K.; Meng, L. A geometrically exact discrete elastic rod model based on improved discrete curvature. Comput. Methods Appl. Mech. Eng. 2022, 392, 114640. [Google Scholar] [CrossRef]















| Deflection Angles | 20° | 30° | 40° | |||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Horizontal Distance from the Midspan (m) | Equation (6) | Equation (9) | Relative Error (%) | Equation (6) | Equation (9) | Relative Error (%) | Equation (6) | Equation (9) | Relative Error (%) | |
| 0 | 20.00 | 20.00 | 0.00 | 30.00 | 30.00 | 0.00 | 40.00 | 40.00 | 0.00 | |
| 0.473 | 20.00 | 20.00 | −0.02 | 30.00 | 29.99 | 0.02 | 39.99 | 39.99 | 0.01 | |
| 0.783 | 19.98 | 19.97 | 0.03 | 29.96 | 29.96 | 0.02 | 39.95 | 39.95 | 0.01 | |
| 1.032 | 19.93 | 19.92 | 0.04 | 29.89 | 29.88 | 0.04 | 39.86 | 39.84 | 0.04 | |
| 1.329 | 19.80 | 19.78 | 0.11 | 29.70 | 29.68 | 0.08 | 39.60 | 39.57 | 0.09 | |
| 1.637 | 19.54 | 19.50 | 0.21 | 29.31 | 29.25 | 0.21 | 39.08 | 39.00 | 0.21 | |
| 1.958 | 19.06 | 18.98 | 0.40 | 28.58 | 28.47 | 0.40 | 38.11 | 37.96 | 0.40 | |
| 2.267 | 18.29 | 18.17 | 0.65 | 27.43 | 27.25 | 0.67 | 36.58 | 36.33 | 0.68 | |
| 2.566 | 17.17 | 16.99 | 1.02 | 25.75 | 25.49 | 1.00 | 34.33 | 33.98 | 1.02 | |
| 3.147 | 13.46 | 13.19 | 1.99 | 20.19 | 19.79 | 1.97 | 26.92 | 26.38 | 1.99 | |
| 3.691 | 7.35 | 7.12 | 3.17 | 11.03 | 10.68 | 3.17 | 14.71 | 14.23 | 3.24 | |
| 3.951 | 3.21 | 3.09 | 3.76 | 4.82 | 4.63 | 3.86 | 6.42 | 6.17 | 3.91 | |
| 4.12 | 0.00 | 0.00 | - | 0.00 | 0.00 | - | 0.00 | 0.00 | - | |
| Basic Parameter | Symbol | Unit | Value |
|---|---|---|---|
| Span length | L | m | 8.24 |
| Designed vertical sag | f | m | 1.205 |
| Cross-sectional area | A | m2 | 0.00049 |
| Young modulus | E | Gpa | 210 |
| Poisson’s ratio | μ | / | 0.3 |
| Shear modulus | G | Gpa | 80.77 |
| Density | D | N/m3 | 76,930 |
| Flexural moment of inertia | I | m4 | 1.917 × 10−8 |
| Polar moment of inertia | J | m4 | 3.83 × 10−8 |
| Combination | Working Condition | Flexural Moment of Inertia | Polar Moment of Inertia | Polar Moment of Inertia/Moment of Inertia |
|---|---|---|---|---|
| 1 | 1 | I | J | I/J |
| 2 | 0.5 J | 2 I/J | ||
| 3 | 0.1 J | 10 I/J | ||
| 4 | 0.01 J | 100 I/J | ||
| 2 | 5 | 0.1 I | 0.1 J | I/J |
| 6 | 0.05 J | 2 I/J | ||
| 7 | 0.01 J | 10 I/J | ||
| 8 | 0.001 J | 100 I/J | ||
| 3 | 9 | 0.01 I | 0.01 J | I/J |
| 10 | 0.005 J | 2 I/J | ||
| 11 | 0.001 J | 10 I/J | ||
| 12 | 0.0001 J | 100 I/J |
| Horizontal Distance from the Midspan (m) | 0.01 J | 0.0 J | Theoretical Value |
|---|---|---|---|
| −4.09 | −1.95 | 0.04 | 1.23 |
| −3.54 | 0.77 | 0.92 | 0.80 |
| −2.99 | 0.38 | 0.74 | 0.48 |
| −2.44 | 0.18 | 0.57 | 0.26 |
| −1.89 | 0.08 | 0.42 | 0.12 |
| −1.34 | 0.03 | 0.29 | 0.04 |
| −0.79 | 0.01 | 0.16 | 0.01 |
| −0.24 | 0.00 | 0.05 | 0.00 |
| 0.31 | 0.00 | −0.06 | 0.00 |
| 0.86 | −0.01 | −0.18 | −0.01 |
| 1.41 | −0.04 | −0.30 | −0.05 |
| 1.96 | −0.09 | −0.44 | −0.14 |
| 2.51 | −0.20 | −0.59 | −0.28 |
| 3.06 | −0.42 | −0.76 | −0.52 |
| 3.61 | −0.84 | −0.95 | −0.85 |
| 4.09 | 1.91 | −0.04 | −1.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chai, S.; Zhao, Q.; Zheng, C.; Chen, S. Calculation Method for Torsional Angle of Main Cables of Suspension Bridges with Spatial Cables. Appl. Sci. 2025, 15, 11256. https://doi.org/10.3390/app152011256
Chai S, Zhao Q, Zheng C, Chen S. Calculation Method for Torsional Angle of Main Cables of Suspension Bridges with Spatial Cables. Applied Sciences. 2025; 15(20):11256. https://doi.org/10.3390/app152011256
Chicago/Turabian StyleChai, Shengbo, Qingyu Zhao, Cailin Zheng, and Shang Chen. 2025. "Calculation Method for Torsional Angle of Main Cables of Suspension Bridges with Spatial Cables" Applied Sciences 15, no. 20: 11256. https://doi.org/10.3390/app152011256
APA StyleChai, S., Zhao, Q., Zheng, C., & Chen, S. (2025). Calculation Method for Torsional Angle of Main Cables of Suspension Bridges with Spatial Cables. Applied Sciences, 15(20), 11256. https://doi.org/10.3390/app152011256
