Ecoregion-Based Landslide Susceptibility Mapping: A Spatially Partitioned Modeling Strategy for Oregon, USA
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Ecoregions
2.2. Data Preparation
2.2.1. Landslide Inventory and Sample Construction
2.2.2. Conditioning Factors
2.3. Methodological Workflow
2.4. Multicollinearity Analysis Method
2.5. eXtreme Gradient Boosting (XGBoost) Model
2.6. Evaluation Metrics
3. Results
3.1. Multicollinearity Analysis
3.2. Conditioning Factor Importance Analysis
3.3. Model Performance Comparison
3.4. Spatial Distribution of Susceptibility
3.5. Analysis of Spatial Pattern Differences
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Turner, A.K. Social and environmental impacts of landslides. Innov. Infrastruct. Solut. 2018, 3, 70. [Google Scholar] [CrossRef]
- Carrión-Mero, P.; Montalván-Burbano, N.; Morante-Carballo, F.; Quesada-Román, A.; Apolo-Masache, B. Worldwide Research Trends in Landslide Science. Int. J. Environ. Res. Public Health 2021, 18, 9445. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Yu, C.; Li, Z.; Utili, S.; Frattini, P.; Crosta, G.; Peng, J. Triggering and recovery of earthquake accelerated landslides in Central Italy revealed by satellite radar observations. Nat. Commun. 2022, 13, 7278. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Feng, W.; Yi, X.; Liu, K.; Guo, C.; Tang, X.; Wu, Z. Clustered shallow landslides triggered by heavy rainfall in May 2022 in Wuping County, Fujian Province, China. Bull. Eng. Geol. Environ. 2025, 84, 257. [Google Scholar] [CrossRef]
- Mirus, B.B.; Jones, E.S.; Baum, R.L.; Godt, J.W.; Slaughter, S.; Crawford, M.M.; Lancaster, J.; Stanley, T.; Kirschbaum, D.B.; Burns, W.J.; et al. Landslides across the USA: Occurrence, susceptibility, and data limitations. Landslides 2020, 17, 2271–2285. [Google Scholar] [CrossRef]
- Mirus, B.B.; Belair, G.M.; Wood, N.J.; Jones, J.; Martinez, S.N. Parsimonious High—Resolution Landslide Susceptibility Modeling at Continental Scales. AGU Adv. 2024, 5, e2024AV001214. [Google Scholar] [CrossRef]
- Chicas, S.D.; Li, H.; Mizoue, N.; Ota, T.; Du, Y.; Somogyvári, M. Landslide susceptibility mapping core-base factors and models’ performance variability: A systematic review. Nat. Hazards 2024, 120, 12573–12593. [Google Scholar] [CrossRef]
- Chang, Z.; Huang, J.; Huang, F.; Bhuyan, K.; Meena, S.R.; Catani, F. Uncertainty Analysis of Non-Landslide Sample Selection in Landslide Susceptibility Prediction Using Slope Unit-Based Machine Learning Models. Gondwana Res. 2023, 117, 307–320. [Google Scholar] [CrossRef]
- Agboola, G.; Beni, L.H.; Elbayoumi, T.; Thompson, G. Optimizing landslide susceptibility mapping using machine learning and geospatial techniques. Ecol. Inf. 2024, 81, 102583. [Google Scholar] [CrossRef]
- Zhu, A.X.; Wang, R.; Qiao, J.; Qin, C.Z.; Chen, Y.; Liu, J.; Du, F.; Lin, Y.; Zhu, T. An expert knowledge-based approach to landslide susceptibility mapping using GIS and fuzzy logic. Geomorphology 2014, 214, 128–138. [Google Scholar] [CrossRef]
- Shano, L.; Raghuvanshi, T.K.; Meten, M. Landslide susceptibility mapping using frequency ratio model: The case of Gamo highland, South Ethiopia. Arab. J. Geosci. 2021, 14, 623. [Google Scholar] [CrossRef]
- Jennifer, J.J.; Saravanan, S.; Abijith, D. Application of Frequency Ratio and Logistic Regression Model in the Assessment of Landslide Susceptibility Mapping for Nilgiris District, Tamilnadu, India. Indian Geotech. J. 2021, 51, 773–787. [Google Scholar] [CrossRef]
- Ado, M.; Amitab, K.; Maji, A.K.; Jasińska, E.; Gono, R.; Leonowicz, Z.; Jasiński, M. Landslide susceptibility mapping using machine learning: A literature survey. Remote Sens. 2022, 14, 3029. [Google Scholar] [CrossRef]
- Shao, X.; Yan, W.; Yan, C.; Zhao, W.; Wang, Y.; Shi, X.; Dong, H.; Li, T.; Yu, J.; Zuo, P.; et al. Explainable Machine Learning for Mapping Rainfall-Induced Landslide Thresholds in Italy. Appl. Sci. 2025, 15, 7937. [Google Scholar] [CrossRef]
- Zuo, P.; Zhao, W.; Yan, W.; Jin, J.; Yan, C.; Wu, B.; Shao, X.; Wang, W.; Zhou, Z.; Wang, J. Landslide Susceptibility Mapping Using an LSTM Model with Feature-Selecting for the Yangtze River Basin in China. Water 2025, 17, 167. [Google Scholar] [CrossRef]
- Chowdhury, M.S.; Rahman, M.N.; Sheikh, M.S.; Sayeid, M.A.; Mahmud, K.H.; Hafsa, B. GIS-based landslide susceptibility mapping using logistic regression, random forest and decision and regression tree models in Chattogram District, Bangladesh. Heliyon 2024, 10, e23424. [Google Scholar] [CrossRef]
- Sun, K.; Li, Z.; Wang, S.; Hu, R. A support vector machine model of landslide susceptibility mapping based on hyperparameter optimization using the Bayesian algorithm: A case study of the highways in the southern Qinghai–Tibet Plateau. Nat. Hazards 2024, 120, 11377–11398. [Google Scholar] [CrossRef]
- Woodard, J.B.; Mirus, B.B.; Crawford, M.M.; Or, D.; Leshchinsky, B.A.; Allstadt, K.E.; Wood, N.J. Mapping Landslide Sus-ceptibility Over Large Regions With Limited Data. J. Geophys. Res. Earth Surf. 2023, 128, e2022JF006810. [Google Scholar] [CrossRef]
- Lizárraga, J.J.; Buscarnera, G. Probabilistic modeling of shallow landslide initiation using regional scale random fields. Landslides 2020, 17, 1979–1988. [Google Scholar] [CrossRef]
- Loche, M.; Alvioli, M.; Marchesini, I.; Bakka, H.; Lombardo, L. Landslide susceptibility maps of Italy: Lesson learnt from dealing with multiple landslide types and the uneven spatial distribution of the national inventory. Earth-Sci. Rev. 2022, 232, 104125. [Google Scholar] [CrossRef]
- Hong, H.; Pradhan, B.; Sameen, M.I.; Kalantar, B.; Zhu, A.; Chen, W. Improving the accuracy of landslide susceptibility model using a novel region-partitioning approach. Landslides 2018, 15, 753–772. [Google Scholar] [CrossRef]
- Chalkias, C.; Polykretis, C.; Karymbalis, E.; Soldati, M.; Ghinoi, A.; Ferentinou, M. Exploring spatial non-stationarity in the relationships between landslide susceptibility and conditioning factors: A local modeling approach using geographically weighted regression. Bull. Eng. Geol. Environ. 2020, 79, 2799–2814. [Google Scholar] [CrossRef]
- Li, Y.; Huang, S.; Li, J.; Huang, J.; Wang, W. Spatial Non-Stationarity-Based Landslide Susceptibility Assessment Using PCAMGWR Model. Water 2022, 14, 881. [Google Scholar] [CrossRef]
- Yu, X.; Gao, H. A landslide susceptibility map based on spatial scale segmentation: A case study at Zigui-Badong in the Three Gorges Reservoir Area, China. PLoS ONE 2020, 15, e0229818. [Google Scholar] [CrossRef]
- Triplett, L.D.; Hammer, M.N.; DeLong, S.B.; Gran, K.B.; Jennings, C.E.; Engle, Z.T.; Bartley, J.K.; Blumentritt, D.J.; Breckenridge, A.J.; Day, S.; et al. Factors influencing landslide occurrence in low-relief formerly glaciated landscapes: Landslide inventory and susceptibility analysis in Minnesota, USA. Nat. Hazards 2025, 121, 11799–11827. [Google Scholar] [CrossRef]
- Kavzoglu, T.; Teke, A. Predictive Performances of Ensemble Machine Learning Algorithms in Landslide Susceptibility Mapping Using Random Forest, Extreme Gradient Boosting (XGBoost) and Natural Gradient Boosting (NGBoost). Arab. J. Sci. Eng. 2022, 47, 7367–7385. [Google Scholar] [CrossRef]
- Sahin, E.K. Comparative analysis of gradient boosting algorithms for landslide susceptibility mapping. Geocart. Int. 2022, 37, 2441–2465. [Google Scholar] [CrossRef]
- Kavzoglu, T.; Teke, A. Advanced hyperparameter optimization for improved spatial prediction of shallow landslides using extreme gradient boosting (XGBoost). Bull. Eng. Geol. Environ. 2022, 81, 201. [Google Scholar] [CrossRef]
- Ecoregions of North America. Available online: https://www.epa.gov/eco-research/ecoregions-north-america (accessed on 1 July 2025).
- Orr, E.L.; Orr, W.N. Oregon Geology, 6th ed.; Oregon State University Press: Corvallis, OR, USA, 2012. [Google Scholar]
- Orr, W.N.; Orr, E.L. Geology of the Pacific Northwest, 3rd ed.; Waveland Press: Long Grove, IL, USA, 2018. [Google Scholar]
- Oregon Department of Geology and Mineral Industries. Landslide Hazards in Oregon; Oregon Department of Geology and Mineral Industries: Portland, OR, USA, 2008. Available online: https://d3itl75cn7661p.cloudfront.net/dogami/fs/landslide-factsheet.pdf (accessed on 1 August 2025).
- Burns, W.J.; Madin, I.P. Protocol for Inventory Mapping of Landslide Deposits from Light Detection and Ranging (Lidar) Imagery; Special Paper 42; Oregon Department of Geology and Mineral Industries: Portland, OR, USA, 2009. Available online: https://d3itl75cn7661p.cloudfront.net/dogami/dds/slido/sp-42_onscreen.pdf (accessed on 1 August 2025).
- Omernik, J.M. Ecoregions of the Conterminous United States. Ann. Assoc. Am. Geogr. 1987, 77, 118–125. [Google Scholar] [CrossRef]
- Hughes, R.M.; Whittier, T.R.; Rohm, C.M.; Larsen, D.P. A regional framework for establishing recovery criteria. Environ. Manag. 1990, 14, 673–683. [Google Scholar] [CrossRef]
- Whittier, T.R.; Hughes, R.M.; Larsen, D.P. Correspondence between ecoregions and spatial patterns in stream ecosystems in Oregon. Can. J. Fish. Aquat. Sci. 1988, 45, 1264–1278. [Google Scholar] [CrossRef]
- Statewide Landslide Information Database for Oregon (SLIDO). Available online: https://www.oregon.gov/dogami/slido/Pages/data.aspx (accessed on 1 August 2025).
- Gu, T.; Duan, P.; Wang, M.; Li, J.; Zhang, Y. Effects of non-landslide sampling strategies on machine learning models in landslide susceptibility mapping. Sci. Rep. 2024, 14, 7201. [Google Scholar] [CrossRef] [PubMed]
- Lee, S. Current and future status of GIS-based landslide susceptibility mapping: A literature review. Korean J. Remote Sens. 2019, 35, 179–193. [Google Scholar] [CrossRef]
- El-Haddad, B.A.; Youssef, A.M.; Mahdi, A.M.; Karimi, Z.; Pourghasemi, H.R. Seismic-induced landslides susceptibility mapping of the NEOM area, northwestern Saudi Arabia using machine learning models. Earth Sci. Inform. 2025, 18, 443. [Google Scholar] [CrossRef]
- Sun, Y.; Dai, H.L.; Xu, L.; Asaditaleshi, A.; Ahmadi Dehrashid, A.; Adnan Ikram, R.M.; Moayedi, H.; Ahmadi Dehrashid, H.; Thi, Q.T. Development of the artificial neural network’s swarm-based approaches predicting East Azerbaijan landslide susceptibility mapping. Environ. Dev. Sustain. 2025, 27, 6065–6102. [Google Scholar] [CrossRef]
- Yu, X.; Chen, H. Research on the influence of different sampling resolution and spatial resolution in sampling strategy on landslide susceptibility mapping results. Sci. Rep. 2024, 14, 1549. [Google Scholar] [CrossRef]
- Benesty, J.; Chen, J.; Huang, Y.; Cohen, I. Pearson correlation coefficient. In Noise Reduction in Speech Processing; Springer: Berlin/Heidelberg, Germany, 2009; Volume 2, pp. 1–4. [Google Scholar] [CrossRef]
- Daoud, J.I. Multicollinearity and Regression Analysis. J. Phys. Conf. Ser. 2017, 949, 012009. [Google Scholar] [CrossRef]
- Chen, T.Q.; Guestrin, C.; Assoc Comp, M. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar] [CrossRef]
- Can, R.; Kocaman, S.; Gokceoglu, C. A Comprehensive assessment of XGBoost algorithm for landslide susceptibility mapping in the upper basin of Ataturk Dam, Turkey. Appl. Sci. 2021, 11, 4993. [Google Scholar] [CrossRef]
- Yang, J.; Song, C.; Yang, Y.; Xu, C.; Guo, F.; Xie, L. New method for landslide susceptibility mapping supported by spatial logistic regression and GeoDetector: A case study of Duwen Highway Basin, Sichuan Province, China. Geomorphology 2019, 324, 62–71. [Google Scholar] [CrossRef]
- Chen, W.; Lei, X.; Chakrabortty, R.; Pal, S.C.; Sahana, M.; Janizadeh, S. Evaluation of different boosting ensemble machine learning models and novel deep learning and boosting framework for head-cut gully erosion susceptibility. J. Environ. Manag. 2021, 284, 112015. [Google Scholar] [CrossRef]
- Lobo, J.M.; Jiménez-Valverde, A.; Real, R. AUC: A Misleading Measure of the Performance of Predictive Distribution Models. Glob. Ecol. Biogeogr. 2008, 17, 145–151. [Google Scholar] [CrossRef]
- Lu, F.; Zhang, G.; Wang, T.; Ye, Y.; Zhen, J.; Tu, W. Analyzing spatial non-stationarity effects of driving factors on landslides: A multiscale geographically weighted regression approach based on slope units. Bull. Eng. Geol. Environ. 2024, 83, 394. [Google Scholar] [CrossRef]
- Forest Landslides’ Frequency, Size Influenced More by Road Building, Logging than Heavy Rain. Available online: https://news.oregonstate.edu/news/forest-landslides%E2%80%99-frequency-size-influenced-more-road-building-logging-heavy-rain (accessed on 1 August 2025).
- Wemple, B.C.; Jones, J.A.; Grant, G.E. Channel network extension by logging roads in two basins, Western Cascades, Oregon. J. Am. Water Resour. Assoc. 1996, 32, 1195–1207. [Google Scholar] [CrossRef]
Data Name | Data Sources | Resolution/Scale |
---|---|---|
Landslides Elevation | SLIDO-4.5 GEOHub DEM | - 10 m |
Slope | GEOHub DEM | 10 m |
Aspect | GEOHub DEM | 10 m |
Topographic Wetness Index | GEOHub DEM | 10 m |
Curvature | GEOHub DEM | 10 m |
LandCover | North American Land Cover, 2020 (Landsat, 30 m) | 30 m |
SoilType | Harmonized World Soil Database version 2.0 | 1000 m |
Lithology | USGS Geologic Maps of US States | 1:500,000 |
Distance to Rivers | National Rivers Inventory (NRI) | 1:24,000 |
Distance to Roads | Oregon All Public Roads Dataset | 1:24,000 |
Mean Annual Temperature | Prism | 4000 m |
Mean Annual Precipitation | Prism | 4000 m |
Factors | Code | Description |
---|---|---|
Lithology | 1 | Metamorphic, amphibolite |
2 | Metamorphic, schist | |
3 | Ice | |
4 | Metamorphic, serpentinite | |
5 | Sedimentary, clastic | |
6 | Igneous, intrusive | |
7 | Igneous and Metamorphic, undifferentiated | |
8 | Igneous, volcanic | |
9 | Metamorphic, undifferentiated | |
10 | Igneous and Sedimentary, undifferentiated | |
11 | Metamorphic and Sedimentary, undifferentiated | |
12 | Unconsolidated, undifferentiated | |
13 | Igneous, undifferentiated | |
14 | Metamorphic, volcanic | |
15 | Water | |
Land cover | 1 | No data |
2 | Temperate or sub-polar needleleaf forest | |
3 | Temperate or sub-polar broadleaf deciduous forest | |
4 | Mixed forest | |
5 | Temperate or sub-polar shrubland | |
6 | Temperate or sub-polar grassland | |
7 | Wetland | |
8 | Cropland | |
9 | Barren land | |
10 | Urban and built-up | |
11 | Water | |
12 | Snow and ice | |
Soil type | 1 | Acrisols (umbric) |
2 | Acrisols (humic) | |
3 | Cambisols (umbric) | |
4 | Phaeozems (greyic) | |
5 | Phaeozems (luvic) | |
6 | Kastanozems (haplic) | |
7 | Kastanozems (luvic) | |
8 | Luvisols (haplic) | |
9 | Regosols (eutric) | |
10 | Solonetz (haplic) | |
11 | Andosols (vitric) | |
12 | Vertisols (rendzic) | |
13 | Regosols (calcaric) | |
14 | Calcisols (haplic) | |
15 | Water Bodies | |
16 | Urban Areas |
Ecological Zone | Accuracy | Precision | Recall | F1_Score | AUC |
---|---|---|---|---|---|
Coast Range | 0.9368 | 0.9416 | 0.9364 | 0.9390 | 0.9839 |
Cascades | 0.8469 | 0.8544 | 0.8511 | 0.8528 | 0.9372 |
Eastern Cascades Slopes and Foothills | 0.9167 | 0.9000 | 0.9474 | 0.9231 | 0.9690 |
Willamette–Georgia–Puget Lowland | 0.9089 | 0.9169 | 0.9049 | 0.9109 | 0.9686 |
Klamath Mountains | 0.9183 | 0.9107 | 0.9358 | 0.9231 | 0.9721 |
Columbia Plateau | 0.8548 | 0.9200 | 0.7667 | 0.8364 | 0.9719 |
Blue Mountains Complex | 0.9517 | 0.9315 | 0.8831 | 0.9067 | 0.9882 |
Entire Oregon | 0.9427 | 0.9324 | 0.9572 | 0.9447 | 0.9864 |
Regions | Level | LD_Local | LD_Global | TDI(%) |
---|---|---|---|---|
Coast Range | Very Low | 0.09 | 0.22 | 34.13 |
Low | 0.36 | 0.34 | ||
Moderate | 0.74 | 0.46 | ||
High | 1.15 | 1.11 | ||
Very High | 2.14 | 1.15 | ||
Cascades | Very Low | 0.18 | 0.5 | 13.48 |
Low | 0.46 | 0.49 | ||
Moderate | 0.82 | 0.77 | ||
High | 1.73 | 1.29 | ||
Very High | 3.68 | 1.89 | ||
Eastern Cascades Slopes and Foothills | Very Low | 0.09 | 0.19 | 16.02 |
Low | 1.54 | 4.22 | ||
Moderate | 3.79 | 16.11 | ||
High | 5.59 | 38.49 | ||
Very High | 8.72 | 67.13 | ||
Willamette–Georgia–Puget Lowland | Very Low | 0.13 | 0.33 | 35.11 |
Low | 0.35 | 0.72 | ||
Moderate | 0.94 | 0.7 | ||
High | 2.94 | 1.13 | ||
Very High | 6.87 | 1.94 | ||
Klamath Mountains | Very Low | 0.13 | 0.17 | 4.82 |
Low | 0.19 | 0.22 | ||
Moderate | 0.78 | 0.67 | ||
High | 2.65 | 2.49 | ||
Very High | 4.79 | 3.62 | ||
Columbia Plateau | Very Low | 0.12 | 0.37 | 43.3 |
Low | 0.29 | 2.48 | ||
Moderate | 1.12 | 5.58 | ||
High | 4.16 | 16.4 | ||
Very High | 21.34 | 34.67 | ||
Blue Mountains Complex | Very Low | 0.06 | 0.17 | 16.41 |
Low | 0.64 | 4.28 | ||
Moderate | 2.86 | 17.72 | ||
High | 11.28 | 87.83 | ||
Very High | 29.67 | 175.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Z.; Zuo, P.; Zhao, W.; Zhou, Z.; Shao, X.; Yu, J.; Yu, H.; Wang, W.; Gan, J.; Duan, J.; et al. Ecoregion-Based Landslide Susceptibility Mapping: A Spatially Partitioned Modeling Strategy for Oregon, USA. Appl. Sci. 2025, 15, 11242. https://doi.org/10.3390/app152011242
Xu Z, Zuo P, Zhao W, Zhou Z, Shao X, Yu J, Yu H, Wang W, Gan J, Duan J, et al. Ecoregion-Based Landslide Susceptibility Mapping: A Spatially Partitioned Modeling Strategy for Oregon, USA. Applied Sciences. 2025; 15(20):11242. https://doi.org/10.3390/app152011242
Chicago/Turabian StyleXu, Zhixiang, Peng Zuo, Wen Zhao, Zeyu Zhou, Xiangyu Shao, Junpo Yu, Haize Yu, Weijie Wang, Junwei Gan, Jinshun Duan, and et al. 2025. "Ecoregion-Based Landslide Susceptibility Mapping: A Spatially Partitioned Modeling Strategy for Oregon, USA" Applied Sciences 15, no. 20: 11242. https://doi.org/10.3390/app152011242
APA StyleXu, Z., Zuo, P., Zhao, W., Zhou, Z., Shao, X., Yu, J., Yu, H., Wang, W., Gan, J., Duan, J., & Jin, J. (2025). Ecoregion-Based Landslide Susceptibility Mapping: A Spatially Partitioned Modeling Strategy for Oregon, USA. Applied Sciences, 15(20), 11242. https://doi.org/10.3390/app152011242