Research on the Morphological Composition and Recovery Possibilities of Selectively Collected Plastics and Metals—A Case Study
Abstract
1. Introduction
2. Research Methodology
3. Results
- It was assumed that in the first year of operation, the deposit system would be 75% effective, in the second year 80%, and in the third year 90%. The assumed effectiveness applies to all packaging covered by the deposit system;
- It was assumed that the deposit system will cover: 100% of the fraction weight—“colorless PET” (the share of 5l of mineral water bottles was omitted), “green PET”, “blue PET”, 2% of the “ferrous metals” fraction in the form of steel beverage cans, 75% of the weight of the “non-ferrous metals” fraction in the form of aluminum beverage cans;
- It was assumed that the share of fractions not covered by the deposit system in the following years after the entry into force of the deposit system would be constant—the same as before the entry of the deposit system in Poland.
- X—estimated quantity and the weight of mechanically recyclable plastics and metals—adopted based on knowledge of the sales market in Poland [%]
- a—it is assumed that 100% of the following fractions are suitable for mechanical recycling: (colorless PET, blue PET, green PET, HDPE and PP packaging, PS packaging, so-called hard plastics, ferrous metals, non-ferrous metals, Liquid food packaging, expanded polystyrene, LDPE packaging) [%]
- b—it is assumed that 50% of the following fractions are suitable for mechanical recycling: (foil, other PET) [%]
4. Discussion of Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jędrczak, A.; Den Boer, E.; Kamińska-Borak, J.; Szpadt, R.; Krzyśków, A.; Wielgosiński, G. Gospodarka Odpadami Komunalnymi w Polsce. Analiza Możliwości i Barier Zagospodarowania Odpadów z Tworzyw Sztucznych, Pochodzących z Selektywnego Zbierania Odpadów Komunalnych, a Kwestie GOZ; Raport Instytutu Ochrony Środowiska: Warszawa, Poland, 2021. [Google Scholar]
- Regulation of the Minister of the Environment of 10 May 2021 on the Detailed Method of Separate Collection of Selected Waste Fractions (Journal of Laws; Uniform Text Journal of Laws 2021 Item 906). Available online: http://www.isap.sejm.gov.pl (accessed on 4 October 2025).
- The Circular Economy for Plastics MARCH 2024 A European Analysis Executive Summary. Available online: www.plasticseurope.org (accessed on 3 October 2025).
- Hryb, W.; Wandrasz, A.J. Możliwości zagospodarowania frakcji nadsitowej odpadów komunalnych zmieszanych. In Ochrona klimatu i środowiska, nowoczesna energetyka; Politechnika Śląska: Gliwice, Poland, 2024; Volume 1037, pp. 15–28. ISBN 978-83 7880-969-2. [Google Scholar]
- Seyring, N.; Dollhofer, M.; Weißenbacher, J.; Herzog, M.; McKinnon, D.; Bakas, I. Assessment of Separate Collection Schemes in the 28 Capitals of the EU. BiPro. Novembro. 2015, pp. 1–161. Available online: https://op.europa.eu/en/publication-detail/-/publication/2c93de42-a2fa-11e5-b528-01aa75ed71a1 (accessed on 4 October 2025).
- Połomka, J.; Jędrczak, A.; Myszograj, S. Risk and Opportunity of Using Plastics from Waste Collected in a Yellow Bag. Polymers 2020, 12, 1815. [Google Scholar] [CrossRef] [PubMed]
- Rynek Recyklingu Odpadów Opakowaniowych w Polsce w 2022 roku; Wydawnictwo Instytutu Ochrony Środowiska: Warszawa, Poland, 2024. Available online: https://ios.edu.pl/raporty-i-analizy/odpady-pl/rynek-recyklingu-odpadow-opakowaniowych-w-polsce-w-2022-roku-najnowszy-raport-ios-pib/ (accessed on 4 October 2025).
- Eurostat. Available online: https://ec.europa.eu/eurostat/data/database (accessed on 11 August 2025).
- Directive (EU) 2018/852 of the European Parliament and of the Council of 30 May 2018 Amending Directive 94/62/EC on Packaging and Packaging Waste. Available online: https://eur-lex.europa.eu/eli/dir/2018/852/oj/eng (accessed on 3 October 2025).
- Directive (EU) 2019/904 of the European Parliament and of the Council of 5 June 2019 on the Reduction of the Impact of Certain Plastic Products on the Environment (PE/11/2019/REV/1). Available online: http://data.europa.eu/eli/dir/2019/904/oj (accessed on 5 October 2025).
- GUS. Analizy Statystyczne; Ochrona Środowiska 2023; GUS: Warszawa, Poland, 2023. Available online: www.stat.gov.pl/obszary-tematyczne/srodowisko-energia/srodowisko/ochrona-srodowiska-2023 (accessed on 4 October 2025).
- GUS. Analizy Statystyczne; Ochrona Środowiska 2022; GUS: Warszawa, Poland, 2022. Available online: www.stat.gov.pl/obszary-tematyczne/srodowisko-energia/srodowisko/ochrona-srodowiska-2022 (accessed on 4 October 2025).
- GUS. Analizy Statystyczne; Ochrona Środowiska 2021; GUS: Warszawa, Poland, 2021. Available online: www.stat.gov.pl/obszary-tematyczne/srodowisko-energia/srodowisko/ochrona-srodowiska-2021 (accessed on 4 October 2025).
- GUS. Analizy Statystyczne; Ochrona Środowiska 2020; GUS: Warszawa, Poland, 2020. Available online: www.stat.gov.pl/obszary-tematyczne/srodowisko-energia/srodowisko/ochrona-srodowiska-2020 (accessed on 4 October 2025).
- GUS. Analizy Statystyczne; Ochrona Środowiska 2015; GUS: Warszawa, Poland, 2015. Available online: www.stat.gov.pl/obszary-tematyczne/srodowisko-energia/srodowisko/ochrona-srodowiska-2015 (accessed on 4 October 2025).
- GUS. Analizy Statystyczne; Ochrona Środowiska 2010; GUS: Warszawa, Poland, 2010. Available online: www.stat.gov.pl/obszary-tematyczne/srodowisko-energia/srodowisko/ochrona-srodowiska-2010 (accessed on 4 October 2025).
- Hryb, W.; Ceglarz, K. Odpady Komunalne w Aspekcie Gospodarki o Obiegu Zamkniętym; Wyd. Politechniki Śląskiej: Gliwice, Poland, 2021; 243p, ISBN 978-83-7880-749-0. Available online: https://repolis.bg.polsl.pl/dlibra/publication/81045/edition/72010?language=en (accessed on 4 October 2025).
- Seaman, G. Plastics by the Numbers, Eartheasy. 2012. Available online: https://learn.eartheasy.com/articles/plastics-by-the-numbers (accessed on 15 August 2025).
- Krawczyk, M. Ecodesign opakowań z tworzyw sztucznych. Energ. I Recykling Gospod. Obiegu Zamkniętego 2018, 3, 50–52. [Google Scholar]
- Dahlen, L.; Vukicevic, S.; Meijer, J.-E.; Lagerkvist, A. Comparison of different collection systems for sorted household waste in Sweden. Waste Manag. 2007, 27, 1298–1305. [Google Scholar] [CrossRef] [PubMed]
- Rada, E.C.; Zatelli, C.; Cioca, L.-I.; Torretta, V. Selective collection quality index for municipal solid waste management. Sustainability 2018, 10, 257. [Google Scholar] [CrossRef]
- Larsen, A.W.; Merrild, H.; Moller, J.; Christensen, T.H. Waste collection systems for recyclables: An environmental and economic assessment for the municipality of Aarhus (Denmark). Waste Manag. 2010, 30, 744–754. [Google Scholar] [CrossRef] [PubMed]
- Gallardo, A.; Bovea, M.D.; Colomer, F.J.; Prades, M. Analysis of collection systems for sorted household waste in Spain. Waste Manag. 2012, 32, 1623–1633. [Google Scholar] [CrossRef] [PubMed]
- Development of a Methodological Tool to Enhance the Precision and the Comparability of Solid Waste Analysis Data. Deliverable 8—Demonstration Part, Methodology for the Analysis of Solid Waste (SWA-Tool) Version User, European Commission, Projekt nr EVK4-CT-2000-00030, 2001–2004. Available online: http://www.mos.gov.pl (accessed on 25 July 2025).
- Szpadt, R.; Jędrczak, A. Określenie Metodyki Badań Składu Sitowego, Morfologicznego i Chemicznego Odpadów Komunalnych, na Zlecenie Ministerstwa Środowiska; Kamieniec Wrocławski: Zielona Góra, Poland, 2006. [Google Scholar]
- Hryb, W. Pozostałości z sortowania tworzyw sztucznych jako składnik paliw z odpadów. Przemysł Chemiczny 2019, 98, 117–121. [Google Scholar] [CrossRef]
Year | Plastics | Metals | Sum Plastics and Metals | Selectively Collected Municipal Waste | The Amount of Metals and Plastics Separately Collected |
---|---|---|---|---|---|
% | % | % | Thousands of Tons | Thousands of Tons | |
2010 | 14.4 | 2.0 | 16.4 | 860 | 141.04 |
2015 | 11.9 | 0.8 | 12.7 | 2537 | 322.20 |
2019 | 10.0 | 0.4 | 10.4 | 3977 | 413.61 |
2020 | 9.9 | 0.1 | 10.0 | 4975 | 497.50 |
2021 | 9.6 | 0.2 | 9.8 | 5440 | 533.12 |
2022 | 10.1 | 0.1 | 10.2 | 5361 | 546.82 |
2023 | 10.4 | 0.1 | 10.5 | 5469 | 574.24 |
Fraction Name: | Value Range (June Samples) | Value Range (September Samples) | Average Value | Standard Deviation | |
---|---|---|---|---|---|
[%] | [%] | [%] | [%] | ||
1 | PET colorless (after drinks and mineral water) | 6.76–10.67 | 6.75–9.07 | 8.31 | 1.66 |
2 | PET green (after drinks and mineral water) | 2.49–2.69 | 2.27–2.68 | 2.53 | 0.17 |
3 | PET blue (after drinks and mineral water) | 6.73–7.54 | 7.06–7.69 | 7.26 | 0.38 |
4 | PET other (white, brown, red and other colors, after oils, vegetable trays, PET after household chemicals and after milk) | 4.12–5.75 | 6.03–8.19 | 6.02 | 1.45 |
5 | Foils (mix of colors and types) | 14.27–20.61 | 18.66–20.21 | 18.44 | 2.51 |
6 | HDPE packaging, PP packaging (household chemicals, food packaging, cups, trays, containers, caps) | 9.22–10.97 | 9.51–13.03 | 10.68 | 1.51 |
7 | PS packaging | 0.11–2.11 | 0.01–0.34 | 0.64 | 0.86 |
8 | The so-called “hard plastics” | 1.3–6.44 | 3.22–5.85 | 4.20 | 2.07 |
9 | PVC | 0.3–1.48 | 0.22–0.69 | 0.67 | 0.50 |
10 | Rubber | 0.53–0.67 | 0.39–0.65 | 0.56 | 0.11 |
11 | Ferrous metals | 3.50–3.71 | 5.05–6.88 | 4.79 | 1.35 |
12 | Non-ferrous metals | 2.72–3.19 | 2.80–3.66 | 3.10 | 0.37 |
13 | Hazardous waste | 0.50–1.03 | 0.28–0.98 | 0.70 | 0.32 |
14 | Liquid food packaging | 3.05–3.42 | 2.55–3.05 | 3.02 | 0.31 |
15 | Multi-material waste (other than Liquid food packaging) | 0.28–1.08 | 0.11–0.60 | 0.52 | 0.37 |
16 | “Other” 7 | 2.63–3.91 | 2.73–3.28 | 3.14 | 0.51 |
17 | Plastics difficult to identify—no marking | 0.55–3.91 | 0.50–1.01 | 1.49 | 1.41 |
18 | Pollution (waste not included in the collection—mainly paper, cardboard and textiles, but also glass, diapers, organic and mineral waste) | 17.95–32.29 | 20.65–21.49 | 23.08 | 5.47 |
19 | Polystyrene—polystyrene and other trays (expanded polystyrene) | 0.28–0.99 | 0.63–0.85 | 0.69 | 0.27 |
20 | LDPE packaging | 0.0–0.25 | 0.11–0.27 | 0.16 | 0.11 |
SUM: | 100 |
Fraction Name: | Value Range (June Samples) | Value Range (September Samples) | Average Value | Standard Deviation | |
---|---|---|---|---|---|
[%] | [%] | [%] | [%] | ||
1 | PET colorless (after drinks and mineral water) | 8.19–9.38 | 7.22–11.10 | 8.97 | 1.45 |
2 | PET green (after drinks and mineral water) | 1.88–2.25 | 1.78–2.84 | 2.19 | 0.42 |
3 | PET blue (after drinks and mineral water) | 6.58–7.63 | 8.04–12.40 | 8.66 | 2.22 |
4 | PET other (white, brown, red and other colors, after oils, vegetable trays, PET after household chemicals and after milk) | 3.91–4.70 | 5.87–7.16 | 5.41 | 1.23 |
5 | Foils (mix of colors and types) | 26.07–32.93 | 20.71–29.91 | 27.41 | 4.57 |
6 | HDPE packaging, PP packaging (household chemicals, food packaging, cups, trays, containers, caps) | 9.04–13.86 | 11.21–12.71 | 11.71 | 1.80 |
7 | PS packaging | 0.58–1.21 | 0.30–0.31 | 0.60 | 0.37 |
8 | The so-called “hard plastics” | 3.25–4.28 | 1.69–3.32 | 3.14 | 0.37 |
9 | PVC | 0.11–1.07 | 0.00–1.15 | 0.58 | 0.53 |
10 | Rubber | 0.46–1.21 | 0.00–0.21 | 0.47 | 0.46 |
11 | Ferrous metals | 3.69–4.95 | 4.02–6.28 | 4.74 | 1.00 |
12 | Non-ferrous metals | 3.41–5.77 | 4.33–6.89 | 5.10 | 1.33 |
13 | Hazardous waste | 0.53–1.53 | 0.18–0.48 | 0.68 | 0.51 |
14 | Liquid food packaging | 3.60–4.32 | 4.22–5.62 | 4.44 | 0.73 |
15 | Multi–material waste (other than Liquid food packaging) | 0.73–1.06 | 0.00–0.34 | 0.53 | 0.40 |
16 | “Other” 7 | 3.79–4.31 | 2.43–5.00 | 3.88 | 0.94 |
17 | Plastics difficult to identify—no marking | 1.91–2.80 | 1.36–2.02 | 2.02 | 0.51 |
18 | Pollution (waste not included in the collection—mainly paper, cardboard and textiles, but also glass, diapers, organic and mineral waste) | 6.85–8.86 | 7.13–9.66 | 8.13 | 1.17 |
19 | Polystyrene—polystyrene and other trays (expanded polystyrene) | 0.84–1.21 | 0.18–0.19 | 0.60 | 0.44 |
20 | LDPE packaging | 0.27–0.99 | 0.00 | 0.32 | 0.41 |
21 | Toys | 0.00 | 0.0–1.78 | 0.45 | 0.77 |
SUM: | 100 |
Fraction Name: | Morphological Composition of Selectively Collected Plastics and Metals for Multi-Family Housing (Blocks of Flats) Before the Entry into Force of the Deposit System in Poland | Deposit System in Poland | |||
---|---|---|---|---|---|
1 Year Efficiency 75% | 2 Year Efficiency 80% | 3 Year Efficiency 90% | |||
[%] | [%] | [%] | [%] | ||
1 | PET colorless (after drinks and mineral water) | 8.31 | 2.46 | 1.99 | 1.02 |
2 | PET green (after drinks and mineral water) | 2.53 | 0.74 | 0.61 | 0.31 |
3 | PET blue (after drinks and mineral water) | 7.26 | 2.14 | 1.73 | 0.89 |
4 | PET other (white, brown, red and other colors, after oils, vegetable trays, PET after household chemicals and after milk) | 6.02 | 7.12 | 7.20 | 7.38 |
5 | Foils (mix of colors and types) | 18.44 | 21.80 | 22.06 | 22.62 |
6 | HDPE packaging, PP packaging (household chemicals, food packaging, cups, trays, containers, caps) | 10.68 | 12.62 | 12.79 | 13.10 |
7 | PS packaging | 0.64 | 0.76 | 0.77 | 0.79 |
8 | The so-called “hard plastics” | 4.20 | 4.96 | 5.02 | 5.15 |
9 | PVC | 0.67 | 0.79 | 0.80 | 0.82 |
10 | Rubber | 0.56 | 0.66 | 0.67 | 0.69 |
11 | Ferrous metals (2% steel cans) | 4.79 | 5.58 | 5.64 | 5.76 |
12 | Non-ferrous metals (75% aluminum beverage cans) | 3.10 | 1.60 | 1.48 | 1.24 |
13 | Hazardous waste | 0.70 | 0.83 | 0.84 | 0.86 |
14 | Liquid food packaging | 3.02 | 3.57 | 3.61 | 3.70 |
15 | Multi–material waste (other than Liquid food packaging) | 0.52 | 0.61 | 0.62 | 0.64 |
16 | “Other” 7 | 3.14 | 3.71 | 3.76 | 3.84 |
17 | Plastics difficult to identify—no marking | 1.49 | 1.76 | 1.78 | 1.83 |
18 | Pollution (waste not included in the collection—mainly paper, cardboard and textiles, but also glass, diapers, organic and mineral waste) | 23.08 | 27.28 | 27.61 | 28.31 |
19 | Polystyrene—polystyrene and other trays (expanded polystyrene) | 0.69 | 0.82 | 0.83 | 0.85 |
20 | LDPE packaging | 0.16 | 0.19 | 0.19 | 0.20 |
SUM: | 100 |
Selective Collection of Plastics and Metals Depending on the Type of Housing | “Yellow Container”—Multi-Family Housing [%] | “Yellow Bag”— Single-Family Housing [%] |
---|---|---|
Pollution (waste not included in the collection—mainly paper, cardboard and textiles, but also glass, diapers, organic and mineral waste) | 23 | 8.1 |
Share of mechanically recyclable plastics and metals in relation to the entire mass of waste fractions collected (estimated according to Equation (1)) | 58 | 67 |
Possibility of separating plastics and metals from automated sorting plants assuming a sorting efficiency of 85% | 49 | 57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hryb, W.; Wandrasz, A.J. Research on the Morphological Composition and Recovery Possibilities of Selectively Collected Plastics and Metals—A Case Study. Appl. Sci. 2025, 15, 11227. https://doi.org/10.3390/app152011227
Hryb W, Wandrasz AJ. Research on the Morphological Composition and Recovery Possibilities of Selectively Collected Plastics and Metals—A Case Study. Applied Sciences. 2025; 15(20):11227. https://doi.org/10.3390/app152011227
Chicago/Turabian StyleHryb, Wojciech, and Andrzej J. Wandrasz. 2025. "Research on the Morphological Composition and Recovery Possibilities of Selectively Collected Plastics and Metals—A Case Study" Applied Sciences 15, no. 20: 11227. https://doi.org/10.3390/app152011227
APA StyleHryb, W., & Wandrasz, A. J. (2025). Research on the Morphological Composition and Recovery Possibilities of Selectively Collected Plastics and Metals—A Case Study. Applied Sciences, 15(20), 11227. https://doi.org/10.3390/app152011227