Validity of Nebraska Tractor Test Laboratory (NTTL) Data for Estimating Drawbar Pull and Fuel Consumption of a Massey Ferguson Tractor Under Field Operating Conditions
Abstract
1. Introduction
2. Materials and Methods
2.1. Collecting the Required Tractor Test Data
2.2. Procedure of the Research Work
2.3. Development of Multiple Linear Regression Models
2.4. Field Measurements
3. Results and Discussion
3.1. Massey Ferguson Tractor Test Data Analysis
3.2. Interrelationships Among Some Dependent and Independent Variables
3.3. Regression Analysis of Drawbar Pull and Fuel Consumption Parameters
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Angelucci, L.; Varani, M.; Pinet, F.; Martin, V.; Vertua, A.; Molari, G.; Mattetti, M. The role of tyres and soil conditions in enhancing the efficiency of agricultural tractors. Soil Tillage Res. 2025, 251, 106570. [Google Scholar] [CrossRef]
- Lanças, K.P.; Marques Filho, A.C.; Santana, L.S.; Ferraz, G.A.e.S.; Faria, R.O.; Martins, M.B. Agricultural Tractor Test: A Bibliometric Review. AgriEngineering 2024, 6, 2229–2248. [Google Scholar] [CrossRef]
- Lanças, K.P.; Marques Filho, A.C.; Moura, M.D.S.; Damasceno, F.A.D.J.; Ba-lestrin, D.R. Agricultural tractor test. Rev. Ciência Agronômica 2020, 51, e20207750. [Google Scholar] [CrossRef]
- Roeber, J.B.; Pitla, S.K.; Hoy, R.M.; Luck, J.D.; Kocher, M.F. Development and validation of a tractor drawbar force measurement and data acquisition system (DAQ). Appl. Eng. Agric. 2017, 33, 781–789. [Google Scholar] [CrossRef]
- Rao, X.; Huang, R.; Zhou, P.; Zhang, Y.; Huang, S. Effect of altitude on thermal balance of a heavy-duty diesel engine. IOP Conf. Ser. Earth Environ. Sci. 2020, 467, 012001. [Google Scholar] [CrossRef]
- Hunt, D. Farm Power and Machinery Management, 9th ed.; Iowa State University Press: Ames, IA, USA, 1995. [Google Scholar]
- Shafaei, S.M.; Loghavi, M.; Kamgar, S. On the neurocomputing based intelligent simulation of tractor fuel efficiency parameters. Inf. Process. Agric. 2018, 5, 205–223. [Google Scholar] [CrossRef]
- Madzivanzira, T.; Mvumi, B.M.; Nazare, R.M.; Nyakudya, E.; Mtambanengwe, F.; Mapfumo, P. Evaluation of Two-Wheel Tractor Fuel Consumption Rates During Direct Seeding of Sorghum and Pearl Millet in Sandy and Clayey Soils. Adv. Agric. 2025, 2025, 4837619. [Google Scholar] [CrossRef]
- Jokiniemi, T.; Rossner, H.; Ahokas, J. Simple and cost effective method for fuel consumption measurements of agricultural machinery. Agron. Res. 2012, 10, 97–107. [Google Scholar]
- Al-miran, D.A.E.; Jasim, A.A. Evaluation of performance efficiency of a locally made electronic device for measuring fuel consumption in agricultural tractors. Adv. Sci. Technol. Res. J. 2025, 19, 381–388. [Google Scholar] [CrossRef]
- Igoni, A.H.; Ekemube, R.A.; Nkakini, S.O. Predicting tractor fuel consumption during ridging on a sandy loam soil in a humid tropical climate. J. Eng. Technol. Res. 2019, 11, 29–40. [Google Scholar] [CrossRef]
- Harrigan, T.M.; Rotz, C.A. Draft relationships for tillage and seeding equipment. Appl. Eng. Agric. 1995, 11, 773–783. [Google Scholar] [CrossRef]
- Siemens, J.C.; Bowers, W. Machinery Management: How to Select Machinery to Fit the Real Needs of Farm Managers; Farm Business Management (FMB) series; John Deere: East Moline, IL, USA, 1999; 5p. [Google Scholar]
- Aboukarima, A.M. Interactive computer application for predicting performance indicators of a tractor-chisel plow system in C-sharp environment. Misr J. Agric. Eng. 2016, 33, 751–788. [Google Scholar] [CrossRef]
- Kumawat, L.; Raheman, H. Development of draft force estimation model for hand tractor powered digger-cum-conveyor by rake angle and digging depth. J. Biosyst. Eng. 2023, 48, 152–164. [Google Scholar] [CrossRef]
- Bae, B.-M.; Kim, Y.-S.; Kim, W.-S.; Kim, Y.-J.; Lee, S.-D.; Kim, T.-J. The Development of a Draft Force Prediction Model for Agricultural Tractors Based on the Discrete Element Method in Loam and Clay Loam. Agriculture 2023, 13, 2205. [Google Scholar] [CrossRef]
- Özbayer, M.M.; Güner, M. Comparison of performance characteristics of agricultural tractors. J. Agric. Fac. Gaziosmanpaşa Univ. 2022, 39, 6–18. [Google Scholar] [CrossRef]
- Evans, M.D.; Clark, R.L.; Manor, G. An improved traction model for ballast selection. Trans. ASAE 1991, 34, 773–780. [Google Scholar] [CrossRef]
- Rahimi-Ajdadi, F.; Abbaspour-Gilandeh, Y. Artificial neural network and stepwise multiple range regression methods for prediction of tractor fuel consumption. Measurement 2011, 44, 2104–2111. [Google Scholar] [CrossRef]
- Harris, H.D. Prediction of tractor engine performance using OECD standard test data. J. Agric. Eng. Res. 1992, 53, 181–193. [Google Scholar] [CrossRef]
- Nagar, H.; Machavaram, R.; Kulkarni, P.; Soni, P. AI-based engine performance prediction cum advisory system to maximise fuel efficiency and field performance of the tractor for optimum tillage. Syst. Sci. Control Eng. 2024, 12, 2347936. [Google Scholar] [CrossRef]
- Brixius, W.W. Traction Prediction Equations for Bias Ply Tires; ASAE Paper No. 871622; ASAE: St. Joseph, MI, USA, 1987; 8p. [Google Scholar]
- Şeflek, A.Y.; Orhan, N.; Özkan, M. The impact of tractor drawbar height on performance and optimization using response surface methodology. Sci. Rep. 2025, 15, 5370. [Google Scholar] [CrossRef]
- Moinfar, A.; Shahgholi, G.; Gilandeh, Y.A.; Gundoshmian, T.M. The effect of the tractor driving system on its performance and fuel consumption. Energy 2020, 202, 117803. [Google Scholar] [CrossRef]
- Alhassan, E.A.; Olaoye, J.O.; Lukman, A.F.; Adekanye, T.A.; Abioye, O.M. Statistical modelling of a tractor tractive performance during ploughing operation on a tropical. Alfisol. Open Agric. 2024, 9, 20220282. [Google Scholar] [CrossRef]
- Al-Sager, S.M.; Almady, S.S.; Marey, S.A.; Al-Hamed, S.A.; Aboukarima, A.M. Prediction of Specific Fuel Consumption of a Tractor during the Tillage Process Using an Artificial Neural Network Method. Agronomy 2024, 14, 492. [Google Scholar] [CrossRef]
- Mahore, V.; Soni, P.; Paul, A.; Patidar, P.; Machavaram, R. Machine learning-based draft prediction for mouldboard ploughing in sandy clay loam soil. J. Terramechanics 2024, 111, 31–40. [Google Scholar] [CrossRef]
- Al-Hamed, S.A.; Grisso, R.D.; Zoz, F.M.; Von Bargen, K. Tractor performance spreadsheet for radial tires. Comput. Electron. Agric. 1994, 10, 45–62. [Google Scholar] [CrossRef]
- Godwin, R.J.; O’dogherty, M.J.; Saunders, C.; Balafoutis, A.T. A force prediction model for mouldboard ploughs incorporating the effects of soil character-istic properties, plough geometric factors and ploughing speed. Biosyst. Eng. 2007, 97, 117–129. [Google Scholar] [CrossRef]
- Naderi-Boldaji, M.; Karparvarfard, S.H.; Azimi-Nejadian, H. Investigation of the predictability of mouldboard plough draught from soil mechanical strength (cone index vs. shear strength) using finite element modelling. J. Terramechanics 2023, 108, 21–31. [Google Scholar] [CrossRef]
- ASABE Standards D497; Agricultural Machinery Management Data. ASAE: St. Joseph, MI, USA, 2000.
- Naji Al-Dosary, N.M.; Aboukarima, A.M.; Al-Hamed, S.A.; Zayed, M.F.; Marey, S.A.; Kayad, A. Modification of Values for the Horizontal Force of Tillage Implements Estimated from the ASABE form Using an Artificial Neural Network. Appl. Sci. 2023, 13, 7442. [Google Scholar] [CrossRef]
- Kheir, H.K.M. Validity of ASABE Standards in Estimating Total Operating Cost of Agricultural Machinery in Sudan. Doctoral Dissertation, University of Khartoum, Khartoum, Sudan, 2009. [Google Scholar]
- Ahmed, M.M. Evaluation of Some Standards for Tillage Implement’s Draft Requirements in Soba Area, Khartoum State, Sudan. Master’s Thesis, University of Khartoum, Khartoum, Sudan, 2009. [Google Scholar]
- Grisso, R.D.; Roberson, G.T.; Vaughan, D.H. Method for Fuel Prediction for Specific Tractor Models; an ASABE Meeting Presentation Paper Number: 061089. In Proceedings of the 2006 ASABE Annual International Meeting Sponsored by ASABE Portland Convention Center, Portland, Oregon, 9–12 July 2006. [Google Scholar]
- Grisso, R.D.; Kocher, M.F.; Vaughan, D.H. Predicting tractor fuel consumption. Appl. Eng. Agric. 2004, 20, 553–561. [Google Scholar] [CrossRef]
- Cutini, M.; Brambilla, M.; Pochi, D.; Fanigliulo, R.; Bisaglia, C. A Simplified Approach to the Evaluation of the Influences of Key Factors on Agricultural Tractor Fuel Consumption during Heavy Drawbar Tasks under Field Conditions. Agronomy 2022, 12, 1017. [Google Scholar] [CrossRef]
- Available online: https://tractortestlab.unl.edu/ (accessed on 1 December 2019).
- IBM Corp. IBM SPSS Statistics for Windows, version 27.0. Computer software. IBM Corp: Armonk, NY, USA, 2020.
- Hocking, R.R. A biometrics invited paper. The analysis and selection of variables in linear regression. Biometrics 1976, 32, 1–49. [Google Scholar] [CrossRef]
- Hosmer, D.W., Jr.; Lemeshow, S.; Sturdivant, R.X. Applied Logistic Regression; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013. [Google Scholar]
- Zhang, Z. Variable selection with stepwise and best subset approaches. Ann. Transl. Med. 2016, 4, 136. [Google Scholar] [CrossRef]
- Kwan, J.L.Y.; Chan, W. Comparing standardized coefficients in structural equation modeling: A model reparameterization approach. Behav. Res. Methods 2011, 43, 730–745. [Google Scholar] [CrossRef]
- Fox, J. Applied Regression Analysis, Linear Models, and Related Methods; Sage Publications, Inc.: Thousand Oaks, CA, USA, 1997. [Google Scholar]
- Nieminen, P. Application of Standardized Regression Coefficient in Meta-Analysis. BioMedInformatics 2022, 2, 434–458. [Google Scholar] [CrossRef]
- Sadek, M.A.; Chen, Y.; Zeng, Z. Draft force prediction for a high-speed disc implement using discrete element modelling. Biosyst. Eng. 2021, 202, 133–141. [Google Scholar] [CrossRef]
- Ndisya, J.; Gitau, A.; Mbuge, D.; Hiuhu, A. The Effect of the Operational Parameters on the Draft Requirement of Ripping in a Sandy Clay Soil. Open J. Optim. 2016, 5, 1–13. [Google Scholar] [CrossRef][Green Version]
- Regional Network for Agricultural Machinery (RNAM). RNAM Test Code and Procedures for Agricultural Machinery; Technical series No. 12, regional network for agricultural machinery, Economic and Social Commission for Asia and the Pacific, United Nation (UN); RNAM: Los Baños, Philippines, 1995. [Google Scholar][Green Version]
- Vlădutoiu, L.C.; Marin, E.; Nenciu, F.; Lateș, D.; Persu, I.C.; Cristea, M.; Manea, D. Performance Assessment of a Vibratory-Enhanced Plowing System for Improved Energy Efficiency and Tillage Quality on Compacted Soils. AgriEngineering 2025, 7, 304. [Google Scholar] [CrossRef]
- Adam, P.; Lukáš, R.; Jiří, V. Drawbar Pull and Its Effect on the Weight Distribution of a Tractor. Acta Univ. Agric. Silvic. Mendelianae Brun. 2017, 65, 145–150. [Google Scholar] [CrossRef]
- Ghalehjoghi, A.S.; Loghavi, M. The effects of axle load and draft force on tractive efficiency and fuel consumption of two high performance tractors during plowing with a semi-mounted 4-bottom moldboard plow. J. Water Soil Sci. 2007, 11, 125–136. [Google Scholar]
- Gong, S.-Y.; Baek, S.-M.; Baek, S.-Y.; Kim, Y.-J.; Kim, W.-S. Machine Learning-Based Estimation of Tractor Performance in Tillage Operations Using Soil Physical Properties. Agronomy 2025, 15, 2228. [Google Scholar] [CrossRef]
- Sima, N.Q.; Harmel, R.D.; Fang, Q.X.; Ma, L.; Andales, A.A. A modified F-test for evaluating model performance by including both experimental and simulation uncertainties. Environ. Model. Softw. 2018, 104, 236–248. [Google Scholar] [CrossRef]
- Moreno, J.J.M.; Pol, A.P.; Abad, A.S.; Blasco, B.C. Using the R-MAPE index as a resistant measure of forecast accuracy. Psicothema 2013, 25, 500–506. [Google Scholar] [CrossRef] [PubMed]
- Safari, M.; Gazor, H.R. Comparison of conventional tractors performance during primary tillage in Iran. Agric. Eng. Int. CIGR J. 2014, 16, 61–68. [Google Scholar]
- Al-Janobi, A.A.; Al-Suhaibani, S.A. Draft of primary tillage implements in sandy loam soil. Appl. Eng. Agric. 1998, 14, 343–348. [Google Scholar] [CrossRef]
- Lisowski, A.; Lauryn, D.; Nowakowski, T.; Klonowski, J.; Świętochowski, A.; Sypuła, M.; Chlebowski, J.; Kamiński, J.; Kostyra, K.; Dąbrowska, M.; et al. Empirical Models for Estimating Draught and Vertical Reaction Forces of a Duckfoot Tool in Compacted Soil: Effects of Moisture Content, Depth, Width, and Speed. Appl. Sci. 2025, 15, 3573. [Google Scholar] [CrossRef]









| Independent Variables | Symbols of the Variables | Measurement Unit |
|---|---|---|
| Fuel density | X1 | (kg/lit) |
| Number of engine cylinders | X2 | (Dimensionless) |
| Rated engine speed | X3 | (rpm) |
| Cylinder diameter | X4 | (mm) |
| Stroke length | X5 | (mm) |
| Compression ratio | X6 | (Dimensionless) |
| Engine displacement | X7 | (ml) |
| Wheelbase | X8 | (mm) |
| Forward speed | X9 | (km/h) |
| Engine speed | X10 | (rpm) |
| Cooling medium temperature | X11 | (°C) |
| Ambient air temperature | X12 | (°C) |
| Barometer | X13 | (kPa) |
| Diameter of the rear wheel rim | X14 | (in) |
| Inflation air inside rear tires | X15 | (kPa) |
| Diameter of the front wheel rim | X16 | (in) |
| Inflation air inside front tires | X17 | (kPa) |
| Height of the drawbar above the ground | X18 | (mm) |
| Static weight on rear tires | X19 | (kg) |
| Static weight on front tires | X20 | (kg) |
| Dependent Variables | ||
| Drawbar pull | Y1 | (kN) |
| Fuel consumption | Y2 | (lit/h) |
| Technical Items | Measurement Unit | Value |
|---|---|---|
| Cylinder diameter | (mm) | 100 |
| Stroke length | (mm) | 127 |
| Rated engine speed | (rpm) | 2200 |
| Rated power | (kW) | 61.1 |
| Chassis type | Front wheel assist | FWA |
| Number of engine cylinders | (Dimensionless) | 4 |
| Wheelbase | (mm) | 2140 |
| Tractor weight | (kg) | 2619 |
| Front tire size | (in) | 7.5–16 |
| Rear tire size | (in) | 18.4–30 |
| Engine displacement | (ml) | 4000 |
| Manufacture | Brazil | |
| Compression ratio | (Dimensionless) | 17.3 |
| Height of the drawbar above the ground | (mm) | 550 |
| Variable | Unit | Minimum | Maximum | Mean | Standard Deviation |
|---|---|---|---|---|---|
| X1 | (kg/lit) | 0.84 | 0.85 | 0.85 | ±0.01 |
| X2 | (Dimensionless) | 4.00 | 6.00 | 5.57 | ±0.82 |
| X3 | (rpm) | 2100.00 | 2200.00 | 2180.74 | ±39.49 |
| X4 | (mm) | 100.00 | 111.00 | 104.66 | ±4.32 |
| X5 | (mm) | 120.00 | 145.00 | 128.83 | ±7.57 |
| X6 | Dimensionless) | 16.00 | 19.30 | 17.24 | ±0.72 |
| X7 | (ml) | 3990.00 | 8419.00 | 6221.41 | ±1320.72 |
| X8 | (mm) | 2093.00 | 3105.00 | 2759.88 | ±251.33 |
| X9 | (km/h) | 2.14 | 20.06 | 8.47 | ±3.55 |
| X10 | (rpm) | 1793.00 | 2282.00 | 2023.35 | ±138.99 |
| X11 | (°C) | 64.00 | 95.00 | 85.21 | ±4.24 |
| X12 | (°C) | 0.00 | 27.00 | 16.71 | ±6.95 |
| X13 | (kPa) | 95.73 | 103.20 | 100.90 | ±1.52 |
| X14 | (in) | 34.00 | 46.00 | 40.07 | ±3.26 |
| X15 | (kPa) | 65.00 | 110.00 | 94.35 | ±11.33 |
| X16 | (in) | 24.00 | 34.00 | 28.68 | ±1.76 |
| X17 | (kPa) | 60.00 | 130.00 | 102.40 | ±15.53 |
| X18 | (mm) | 500.00 | 640.00 | 554.77 | ±37.86 |
| X19 | (kg) | 2478.00 | 6930.00 | 4022.88 | ±1304.85 |
| X20 | (kg) | 1605.00 | 5090.00 | 2803.95 | ±1038.50 |
| Drawbar pull | (kN) | 7.30 | 120.57 | 42.70 | ±20.04 |
| Fuel consumption | (lit/h) | 13.23 | 68.70 | 32.37 | ±12.75 |
| Model * | Correlation Coefficient | R2 | Adjusted R2 | Std. Error of the Estimate |
|---|---|---|---|---|
| 1 | 0.687 a | 0.472 | 0.471 | 14.57 |
| 2 | 0.936 b | 0.876 | 0.875 | 7.09 |
| 3 | 0.944 c | 0.891 | 0.890 | 6.64 |
| 4 | 0.949 d | 0.900 | 0.899 | 6.36 |
| 5 | 0.950 e | 0.903 | 0.902 | 6.28 |
| 6 | 0.952 f | 0.906 | 0.904 | 6.20 |
| 7 | 0.952 g | 0.906 | 0.904 | 6.20 |
| 8 | 0.952 h | 0.907 | 0.905 | 6.17 |
| Model * | Correlation Coefficient | R2 | Adjusted R2 | Std. Error of the Estimate |
|---|---|---|---|---|
| 1 | 0.906 a | 0.821 | 0.821 | 5.40 |
| 2 | 0.930 b | 0.864 | 0.864 | 4.71 |
| 3 | 0.937 c | 0.878 | 0.877 | 4.47 |
| 4 | 0.942 d | 0.887 | 0.886 | 4.31 |
| 5 | 0.946 e | 0.894 | 0.893 | 4.18 |
| 6 | 0.948 f | 0.899 | 0.897 | 4.09 |
| 7 | 0.949 g | 0.901 | 0.899 | 4.05 |
| 8 | 0.951 h | 0.904 | 0.902 | 4.00 |
| 9 | 0.952 i | 0.906 | 0.903 | 3.96 |
| 10 | 0.955 j | 0.911 | 0.909 | 3.85 |
| 11 | 0.954 k | 0.911 | 0.909 | 3.85 |
| 12 | 0.954 l | 0.911 | 0.909 | 3.86 |
| Independent Variables | B (Unstandardized Regression Coefficients) for Drawbar Pull | Independent Variables | B (Unstandardized Regression Coefficients) for Fuel Consumption |
|---|---|---|---|
| B0 (Constant) | 54.138 | B0 (Constant) | −194.973 |
| B20 (X20) | 0.012 | B19 (X19) | 0.003 |
| B9 (X9) | 3.784 | B11 (X11) | 0.484 |
| B6 (X6) | −2.934 | B7 (X7) | 0.003 |
| B18 (X18) | −0.051 | B9 (X9) | 0.394 |
| B19 (X19) | 0.004 | B16 (X16) | 2.087 |
| B2 (X2) | 2.046 | B5 (X5) | 0.056 |
| B6 (X6) | 1.864 | ||
| B12 (X12) | 0.057 | ||
| B3 (X3) | 0.033 | ||
| B15 (X15) | 0.229 |
| Independent Variables | β (The Calculated Standardized Regression Coefficients) for Drawbar Pull | Independent Variables | β (The Calculated Standardized Regression Coefficients) for Fuel Consumption |
|---|---|---|---|
| β0 (Constant) | β0 (Constant) | ||
| β20 (X20) | 0.622 | β19(X19) | 0.307 |
| β9 (X9) | 0.671 | β11 (X11) | 0.161 |
| β6 (X6) | −0.105 | β7(X7) | 0.311 |
| β18 (X18) | −0.096 | β9 (X9) | 0.110 |
| β19 (X19) | 0.261 | β16 (X16) | 0.287 |
| β2 (X2) | 0.084 | β5 (X5) | 0.033 |
| β6 (X6) | 0.105 | ||
| β12 (X12) | 0.031 | ||
| β3 (X3) | 0.102 | ||
| β15 (X15) | 0.203 |
| Independent Variables | Symbols of the Independent Variables | Value |
|---|---|---|
| Static weight on front tires (kg) | X20 | 650.7 |
| Forward speed (km/h) | X9 | Changeable |
| Compression ratio (Dimensionless) | X6 | 17.3 |
| Height of the drawbar above the ground (mm) | X18 | 550 |
| Static weight on rear tires (kg) | X19 | 1518.3 |
| Number of engine cylinders ((Dimensionless) | X2 | 4 |
| Rated engine speed (rpm) | X3 | 2200 |
| Stroke length (mm) | X5 | 127 |
| Engine displacement (ml) | X7 | 4000 |
| Cooling medium (water) temperature (°C) | X11 | 30 |
| Ambient air temperature (°C) | X12 | 20 |
| Inflation air inside rear tires (kPa) | X15 | 70 |
| Diameter of the front wheel rim (in) | X16 | 24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Sager, S.M.; Almasoud, W.A.; Almady, S.S.; Al-Hamed, S.A.; Aboukarima, A.M. Validity of Nebraska Tractor Test Laboratory (NTTL) Data for Estimating Drawbar Pull and Fuel Consumption of a Massey Ferguson Tractor Under Field Operating Conditions. Appl. Sci. 2025, 15, 11204. https://doi.org/10.3390/app152011204
Al-Sager SM, Almasoud WA, Almady SS, Al-Hamed SA, Aboukarima AM. Validity of Nebraska Tractor Test Laboratory (NTTL) Data for Estimating Drawbar Pull and Fuel Consumption of a Massey Ferguson Tractor Under Field Operating Conditions. Applied Sciences. 2025; 15(20):11204. https://doi.org/10.3390/app152011204
Chicago/Turabian StyleAl-Sager, Saleh M., Waleed A. Almasoud, Saad S. Almady, Saad A. Al-Hamed, and Abdulwahed M. Aboukarima. 2025. "Validity of Nebraska Tractor Test Laboratory (NTTL) Data for Estimating Drawbar Pull and Fuel Consumption of a Massey Ferguson Tractor Under Field Operating Conditions" Applied Sciences 15, no. 20: 11204. https://doi.org/10.3390/app152011204
APA StyleAl-Sager, S. M., Almasoud, W. A., Almady, S. S., Al-Hamed, S. A., & Aboukarima, A. M. (2025). Validity of Nebraska Tractor Test Laboratory (NTTL) Data for Estimating Drawbar Pull and Fuel Consumption of a Massey Ferguson Tractor Under Field Operating Conditions. Applied Sciences, 15(20), 11204. https://doi.org/10.3390/app152011204

