SED-GPT: A Non-Invasive Method for Long-Sequence Fine-Grained Semantics and Emotions Decoding
Abstract
Featured Application
Abstract
1. Introduction
- Extended emotion decoding in high-context language: This study investigates the feasibility of long-sequence emotion decoding in Chinese, extending emotion decoding to high-context language systems.
- Fine-grained emotion decoding with SED-GPT: We propose a novel fine-grained decoding framework (SED-GPT) for Chinese narratives, which aligns brain activity with LLM-based semantic vector representations to reconstruct inner speech semantics.
- Dynamic neural interactions in emotion–semantic processing: By systematically examining the dynamic interplay between the language network and emotional systems during Chinese semantic processing, this work provides neural evidence for cognition–emotion coupling.
2. Materials and Methods
2.1. Dataset
2.2. Data Preprocessing
2.3. SED-GPT
2.4. Fine-Tuning of LLMs
2.5. Semantic to Brain Response Conversion Module
Algorithm 1. SBRCM |
Input: Semantic embeddings , fMRI signals , TR = 0.71 s, Hemodynamic delays = [5, 6, 7, 8, 9, 10] Output: Optimal decoded semantic sequence , Emotion Distribution #Encoding 1: Construct delayed semantic feature matrix 2: Normalize features 3: Predict brain response 4: Estimate optimal weight 5: Construct a delayed brain response feature vector 6: Predict word rate following the same logic as : #Each TR is partitioned into sub-intervals according to word rate . #Decoding 7: The posterior is decomposed into the prior and the likelihood # The likelihood is obtained by comparing with 8: Compute the new candidate sequence score 9. Iteratively retain the top-scoring sequences and update candidate sequences 10: Final decoded sequence 11: Compute emotion distribution Emotion Distribution = GoEmotions() |
2.6. Evaluation Metrics
2.6.1. Semantic Similarity
2.6.2. Emotional Similarity
3. Results
3.1. Brain Activation and Functional Connectivity of Chinese Semantic Perception
3.1.1. Brain Activation of Chinese Semantic Perception
3.1.2. Functional Connectivity of Chinese Semantic Perception
3.2. Brain Regions Activated by Emotional Words
3.3. Semantic Decoding Performance
3.4. Emotion Decoding Performance
4. Discussion
- Network reorganization and resource redistribution. Emotional words were associated with widespread changes across cortical networks. High social value words (e.g., praise) activate an integrated network of empathic, motor simulation and evaluation, while activity in general executive control regions is significantly reduced [57].
- Embodied simulation mechanism. In the joy condition, significant activation was observed in the left and right precentral gyrus, which may involve the recruitment of oral and facial motor representations. In the praise condition, notable activation was detected in the postcentral gyrus and the anterior supramarginal gyrus, reflecting the engagement of somatosensory and speech-related pathways. These findings support the notion that abstract emotions participate in sensory-motor representation mapping [56].
- The emotion-visual imagery coupling mechanism. Positive emotions (e.g., joy, admiration) and negative emotions (e.g., fear) were associated with activation in the inferior occipital cortex, cuneus and right higher-order visual areas, revealing the multi-level integration of vivid mental imagery with emotional processing [73].
- The self/others reference and value assessment mechanism. Emotional words (e.g., admiration) activated the dorsomedial prefrontal cortex and superior frontal gyrus, reflecting metacognitive simulation of self and others in complex social emotions [74].
- Suppression patterns of specific emotions. Emotional words (e.g., criticism) elicited large-scale deactivation in visual-semantic, sensorimotor and executive/metacognitive networks (e.g., middle frontal gyrus, frontal pole). This pattern may reflect down-regulation of DMN processing to concentrate cognitive resources on affective synesthesia and social reasoning network [75].
- The current study relied on translating Chinese transcripts into English to obtain word-level GPT-2 embeddings. Although we performed temporal alignment to minimize distortion, translation may still introduce semantic drift and reduce ecological validity. Future work will explore Chinese-native LLMs with word-level tokenization to avoid this bias.
- The relatively small sample size and homogeneous participant pool (healthy young adults) may limit the generalizability of the findings to other populations, such as clinical cohorts with depression or anxiety disorders.
- GLM and PPI analyses reveal correlational relationships rather than causal mechanisms. Follow-up studies incorporating brain stimulation or lesion models are needed to test the causal role of specific regions.
- The study did not perform external cross-dataset validation, limiting the generalizability of decoding frameworks across different acquisition sites, scanners, and participant groups.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
FP | Frontal Pole |
PreCG | Precentral Gyrus |
PoCG | Postcentral Gyrus |
MFG | Middle Frontal Gyrus |
SFG | Superior Frontal Gyrus |
IFGpt | Inferior Frontal Gyrus, pars triangularis |
IFGoper | Inferior Frontal Gyrus, pars opercularis |
ACC | Anterior Cingulate Cortex |
ParaCG | Paracingulate Gyrus |
PCC | Posterior Cingulate Cortex |
PCG | Posterior Cingulate Gyrus |
SMA | Supplementary Motor Area |
FMC | Frontomedial Cortex |
FOC | Frontal Orbital Cortex |
COC | Central Opercular Cortex |
SCC | Supracalcarine Cortex |
LOCsup | Lateral Occipital Cortex, superior division |
LOCid | Lateral Occipital Cortex, inferior division |
LOCs | Lateral Occipital Cortex, superior division |
OP | Occipital Pole |
CunC | Cuneal Cortex |
PCunC | Precuneous Cortex |
MTG | Middle Temporal Gyrus |
MTGto | Middle Temporal Gyrus, temporooccipital part |
MTGpd | Middle Temporal Gyrus, posterior division |
MTGad | Middle Temporal Gyrus, anterior division |
STG | Superior Temporal Gyrus |
STGpd | Superior Temporal Gyrus, posterior division |
TP | Temporal Pole |
ITGto | Inferior Temporal Gyrus, temporooccipital part |
ITGpd | Inferior Temporal Gyrus, posterior division |
AG | Angular Gyrus |
SMGa | Supramarginal Gyrus, anterior division |
SMGp | Supramarginal Gyrus, posterior division |
References
- Fernyhough, C.; Borghi, A.M. Inner speech as language process and cognitive tool. Trends Cogn. Sci. 2023, 27, 1180–1193. [Google Scholar] [CrossRef]
- Nummenmaa, L.; Saarimäki, H.; Glerean, E.; Gotsopoulos, A.; Jääskeläinen, I.P.; Hari, R.; Sams, M. Emotional speech synchronizes brains across listeners and engages large-scale dynamic brain networks. Neuroimage 2014, 102, 498–509. [Google Scholar] [CrossRef] [PubMed]
- Etkin, A.; Egner, T.; Kalisch, R. Emotional processing in anterior cingulate and medial prefrontal cortex. Trends Cogn. Sci. 2011, 15, 85–93. [Google Scholar] [CrossRef]
- Devinsky, O.; Morrell, M.J.; Vogt, B.A. Contributions of anterior cingulate cortex to behaviour. Brain 1995, 118, 279–306. [Google Scholar] [CrossRef]
- Binder, J.R.; Conant, L.L.; Humphries, C.J.; Fernandino, L.; Simons, S.B.; Aguilar, M.; Desai, R.H. Toward a brain-based componential semantic representation. Cogn. Neuropsychol. 2016, 33, 130–174. [Google Scholar] [CrossRef]
- Lenci, A.; Lebani, G.E.; Passaro, L.C. The emotions of abstract words: A distributional semantic analysis. Top. Cogn. Sci. 2018, 10, 550–572. [Google Scholar] [CrossRef]
- Satpute, A.B.; Lindquist, K.A. At the neural intersection between language and emotion. Affect. Sci. 2021, 2, 207–220. [Google Scholar] [CrossRef]
- Gaillard, R.; Del Cul, A.; Naccache, L.; Vinckier, F.; Cohen, L.; Dehaene, S. Nonconscious semantic processing of emotional words modulates conscious access. Proc. Natl. Acad. Sci. USA 2006, 103, 7524–7529. [Google Scholar] [CrossRef]
- Kuperberg, G.R.; Deckersbach, T.; Holt, D.J.; Goff, D.; West, W.C. Increased temporal and prefrontal activity in response to semantic associations in schizophrenia. Arch. Gen. Psychiatry 2007, 64, 138–151. [Google Scholar] [CrossRef]
- Zhu, X.; Guo, C.; Feng, H.; Wang, X.; Wang, R. A review of key technologies for emotion analysis using multimodal information. Cogn. Comput. 2024, 16, 1504–1530. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Yu, Z.; Tang, F.; Lu, Z.; Li, C.; Dang, K.; Su, J. Decoding the flow: Causemotion for emotional causality analysis in long-form conversations. arXiv 2025, arXiv:2501.00778. [Google Scholar]
- Chaudhary, U. Non-invasive brain signal acquisition techniques: Exploring EEG, EOG, fNIRS, fMRI, MEG, and fUS. In Expanding Senses Using Neurotechnology: Volume 1—Foundation of Brain-Computer Interface Technology; Springer Nature: Cham, Switzerland, 2025; pp. 25–80. [Google Scholar] [CrossRef]
- Winter, W.R.; Nunez, P.L.; Ding, J.; Srinivasan, R. Comparison of the effect of volume conduction on EEG coherence with the effect of field spread on MEG coherence. Stat. Med. 2007, 26, 3946–3957. [Google Scholar] [CrossRef] [PubMed]
- Wilcox, T.; Biondi, M. fNIRS in the developmental sciences. Wiley Interdiscip. Rev. Cogn. Sci. 2015, 6, 263–283. [Google Scholar] [CrossRef] [PubMed]
- deCharms, C.R. Applications of real-time fMRI. Nat. Rev. Neurosci. 2008, 9, 720–729. [Google Scholar] [CrossRef] [PubMed]
- Kassam, K.S.; Markey, A.R.; Cherkassky, V.L.; Loewenstein, G.; Just, M.A. Identifying emotions on the basis of neural activation. PLoS ONE 2013, 8, e66032. [Google Scholar] [CrossRef]
- Saarimäki, H.; Gotsopoulos, A.; Jääskeläinen, I.P.; Lampinen, J.; Vuilleumier, P.; Hari, R.; Sams, M.; Nummenmaa, L. Discrete neural signatures of basic emotions. Cereb. Cortex 2016, 26, 2563–2573. [Google Scholar] [CrossRef]
- Kragel, P.A.; LaBar, K.S. Decoding the nature of emotion in the brain. Trends Cogn. Sci. 2016, 20, 444–455. [Google Scholar] [CrossRef]
- Wei, J.; Tay, Y.; Bommasani, R.; Raffel, C.; Zoph, B.; Borgeaud, S.; Yogatama, D.; Bosma, M.; Zhou, D.; Metzler, D.; et al. Emergent abilities of large language models. arXiv 2022, arXiv:2206.07682. [Google Scholar] [CrossRef]
- Tang, J.; LeBel, A.; Jain, S.; Huth, A.G. Semantic reconstruction of continuous language from non-invasive brain recordings. Nat. Neurosci. 2023, 26, 858–866. [Google Scholar] [CrossRef]
- Ye, Z.; Ai, Q.; Liu, Y.; de Rijke, M.; Zhang, M.; Lioma, C.; Ruotsalo, T. Generative language reconstruction from brain recordings. Commun. Biol. 2025, 8, 346. [Google Scholar] [CrossRef]
- Liu, P.; Dong, G.; Guo, D.; Li, K.; Li, F.; Yang, X.; Wang, M.; Ying, X. A survey on fMRI-based brain decoding for reconstructing multimodal stimuli. arXiv 2025, arXiv:2503.15978. [Google Scholar]
- Wang, S.; Zhang, X.; Zhang, J.; Zong, C. A synchronized multimodal neuroimaging dataset for studying brain language processing. Sci. Data 2022, 9, 590. [Google Scholar] [CrossRef] [PubMed]
- Pajula, J.; Tohka, J. How many is enough? Effect of sample size in inter-subject correlation analysis of fMRI. Comput. Intell. Neurosci. 2016, 2016, 2094601. [Google Scholar] [CrossRef] [PubMed]
- Baker, D.H.; Vilidaite, G.; Lygo, F.A.; Smith, A.K.; Flack, T.R.; Gouws, A.D.; Andrews, T.J. Power contours: Optimising sample size and precision in experimental psychology and human neuroscience. Psychol. Methods 2021, 26, 295. [Google Scholar] [CrossRef]
- Di, X.; Zhang, Z.; Biswal, B.B. Understanding psychophysiological interaction and its relations to beta series correlation. Brain Imaging Behav. 2021, 15, 958–973. [Google Scholar] [CrossRef]
- Roiser, J.P.; Linden, D.E.; Gorno-Tempinin, M.L.; Moran, R.J.; Dickerson, B.C.; Grafton, S.T. Minimum statistical standards for submissions to Neuroimage: Clinical. Neuroimage Clin. 2016, 12, 1045. [Google Scholar] [CrossRef]
- Xu, L.; Lin, H.; Pan, Y.; Chen, J. Constructing the affective lexicon ontology. J. China Soc. Sci. Tech. Inf. 2008, 27, 180–185. [Google Scholar]
- Ge, J.; Gao, J.H. A review of functional MRI application for brain research of Chinese language processing. Magn. Reson. Lett. 2023, 3, 1–13. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, H.; Luo, C.; Zhang, J.; Jin, Z.; Li, L. The neural basis of semantic cognition in Mandarin Chinese: A combined fMRI and TMS study. Hum. Brain Mapp. 2019, 40, 5412–5423. [Google Scholar] [CrossRef]
- Demszky, D.; Movshovitz-Attias, D.; Ko, J.; Cowen, A.; Nemade, G.; Ravi, S. GoEmotions: A dataset of fine-grained emotions. arXiv 2020, arXiv:2005.00547. [Google Scholar]
- Si, C.; Zhang, Z.; Chen, Y.; Qi, F.; Wang, X.; Liu, Z.; Wang, Y.; Liu, Q.; Sun, M. Sub-character tokenization for Chinese pretrained language models. Trans. Assoc. Comput. Linguist. 2023, 11, 469–487. [Google Scholar] [CrossRef]
- Zhang, Z.; Han, X.; Zhou, H.; Ke, P.; Gu, Y.; Ye, D.; Qin, Y.; Su, Y.; Ji, H.; Guan, J.; et al. CPM: A large-scale generative Chinese pre-trained language model. AI Open 2021, 2, 93–99. [Google Scholar] [CrossRef]
- Ma, L.; Cui, W.; Yang, W.; Wang, Z. Noninvasive decoding and reconstruction of continuous Chinese language semantics. J. Data Acquis. Process. 2025, 40, 616–636. [Google Scholar] [CrossRef]
- Xun, G.R.E. Word Boundary Information and Chinese Word Segmentation. Int. J. Asian Lang. Process. 2012, 23, 15–32. [Google Scholar]
- Binder, J.R.; Desai, R.H.; Graves, W.W.; Conant, L.L. Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb. Cortex 2009, 19, 2767–2796. [Google Scholar] [CrossRef]
- Caucheteux, C.; Gramfort, A.; King, J.R. Disentangling syntax and semantics in the brain with deep networks. In Proceedings of the 38th International Conference on Machine Learning, Virtual, 18–24 July 2021; Volume 139, pp. 1336–1348. [Google Scholar]
- Hermann, K.M.; Kocisky, T.; Grefenstette, E.; Espeholt, L.; Kay, W.; Suleyman, M.; Blunsom, P. Teaching machines to read and comprehend. Adv. Neural Inf. Process. Syst. 2015, 28, 1693–1701. [Google Scholar]
- Jain, S.; Huth, A. Incorporating context into language encoding models for fMRI. Adv. Neural Inf. Process. Syst. 2018, 31, 6629–6638. [Google Scholar]
- Deniz, F.; Nunez-Elizalde, A.O.; Huth, A.G.; Gallant, J.L. The representation of semantic information across human cerebral cortex during listening versus reading is invariant to stimulus modality. J. Neurosci. 2019, 39, 7722–7736. [Google Scholar] [CrossRef]
- Benara, V.; Singh, C.; Morris, J.X.; Antonello, R.J.; Stoica, I.; Huth, A.G.; Gao, J. Crafting interpretable embeddings for language neuroscience by asking LLMs questions. Adv. Neural Inf. Process. Syst. 2024, 37, 124137. [Google Scholar]
- Lin, J.; Nogueira, R.; Yates, A. Pretrained Transformers for Text Ranking: Bert and Beyond; Springer Nature: Berlin/Heidelberg, Germany, 2022. [Google Scholar] [CrossRef]
- Elmore, K.L.; Richman, M.B. Euclidean distance as a similarity metric for principal component analysis. Mon. Weather Rev. 2001, 129, 540–549. [Google Scholar] [CrossRef]
- Ali, A.; Renals, S. Word error rate estimation for speech recognition: E-WER. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), Melbourne, Australia, 15–20 July 2018; Association for Computational Linguistics (ACL): Stroudsburg, PA, USA, 2018; pp. 20–24. [Google Scholar] [CrossRef]
- Xia, P.; Zhang, L.; Li, F. Learning similarity with cosine similarity ensemble. Inf. Sci. 2015, 307, 39–52. [Google Scholar] [CrossRef]
- Nielsen, F. On a generalization of the Jensen–Shannon divergence and the Jensen–Shannon centroid. Entropy 2020, 22, 221. [Google Scholar] [CrossRef] [PubMed]
- Podani, J.; Ricotta, C.; Schmera, D. A general framework for analyzing beta diversity, nestedness and related community-level phenomena based on abundance data. Ecol. Complex. 2013, 15, 52–61. [Google Scholar] [CrossRef]
- Chen, S.; Chen, M.; Wang, X.; Liu, X.; Liu, B.; Ming, D. Brain–computer interfaces in 2023–2024. Brain-X 2025, 3, e70024. [Google Scholar] [CrossRef]
- Huth, A.G.; de Heer, W.A.; Griffiths, T.L.; Theunissen, F.E.; Gallant, J.L. Natural speech reveals the semantic maps that tile human cerebral cortex. Nature 2016, 532, 453–458. [Google Scholar] [CrossRef]
- Giacobbe, C.; Raimo, S.; Cropano, M.; Santangelo, G. Neural correlates of embodied action language processing: A systematic review and meta-analytic study. Brain Imaging Behav. 2022, 16, 2353–2374. [Google Scholar] [CrossRef]
- Piai, V.; Roelofs, A.; Acheson, D.J.; Takashima, A. Attention for speaking: Domain-general control from the anterior cingulate cortex in spoken word production. Front. Hum. Neurosci. 2013, 7, 832. [Google Scholar] [CrossRef]
- Epstein, R.A. Parahippocampal and retrosplenial contributions to human spatial navigation. Trends Cogn. Sci. 2008, 12, 388–396. [Google Scholar] [CrossRef]
- Jackson, R.L.; Hoffman, P.; Pobric, G.; Ralph, M.A.L. The semantic network at work and rest: Differential connectivity of anterior temporal lobe subregions. J. Neurosci. 2016, 36, 1490–1501. [Google Scholar] [CrossRef]
- Gennari, S.P.; Millman, R.E.; Hymers, M.; Mattys, S.L. Anterior paracingulate and cingulate cortex mediates the effects of cognitive load on speech sound discrimination. Neuroimage 2018, 178, 735–743. [Google Scholar] [CrossRef]
- Ballotta, D.; Maramotti, R.; Borelli, E.; Lui, F.; Pagnoni, G. Neural correlates of emotional valence for faces and words. Front. Psychol. 2023, 14, 1055054. [Google Scholar] [CrossRef]
- Hauk, O.; Johnsrude, I.; Pulvermüller, F. Somatotopic representation of action words in human motor and premotor cortex. Neuron 2004, 41, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Citron, F.M.M. Neural correlates of written emotion word processing: A review of recent electrophysiological and hemodynamic neuroimaging studies. Brain Lang. 2012, 122, 211–226. [Google Scholar] [CrossRef] [PubMed]
- Ritchey, M.; Dolcos, F.; Eddington, K.M.; Strauman, T.J.; Cabeza, R. Neural correlates of emotional processing in depression: Changes with cognitive behavioral therapy and predictors of treatment response. J. Psychiatr. Res. 2011, 45, 577–587. [Google Scholar] [CrossRef] [PubMed]
- van Ackeren, M.J.; Rueschemeyer, S.A. Cross-modal integration of lexical-semantic features during word processing: Evidence from oscillatory dynamics during EEG. PLoS ONE 2014, 9, e101042. [Google Scholar] [CrossRef]
- Davey, J.; Thompson, H.E.; Hallam, G.; Karapanagiotidis, T.; Murphy, C.; De Caso, I.; Krieger-Redwood, K.; Bernhardt, B.C.; Smallwood, J.; Jefferies, E. Exploring the role of the posterior middle temporal gyrus in semantic cognition: Integration of anterior temporal lobe with executive processes. Neuroimage 2016, 137, 165–177. [Google Scholar] [CrossRef]
- Poeppel, D.; Idsardi, W.J.; Van Wassenhove, V. Speech perception at the interface of neurobiology and linguistics. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 1071–1086. [Google Scholar] [CrossRef]
- Eysenck, M.W.; Moser, J.S.; Derakshan, N.; Hepsomali, P.; Allen, P. A neurocognitive account of attentional control theory: How does trait anxiety affect the brain’s attentional networks? Cogn. Emot. 2023, 37, 220–237. [Google Scholar] [CrossRef]
- Xue, G.; Dong, Q.; Jin, Z.; Chen, C. Mapping of verbal working memory in nonfluent Chinese–English bilinguals with functional MRI. Neuroimage 2004, 22, 1–10. [Google Scholar] [CrossRef]
- Wu, C.Y.; Ho, M.H.R.; Chen, S.H.A. A meta-analysis of fMRI studies on Chinese orthographic, phonological, and semantic processing. Neuroimage 2012, 63, 381–391. [Google Scholar] [CrossRef]
- Booth, J.R.; Burman, D.D.; Meyer, J.R.; Gitelman, D.R.; Parrish, T.B.; Mesulam, M.M. Development of brain mechanisms for processing orthographic and phonologic representations. J. Cogn. Neurosci. 2004, 16, 1234–1249. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, X.; Yang, Y.; Lin, N. How context features modulate the involvement of the working memory system during discourse comprehension. Neuropsychologia 2018, 111, 36–44. [Google Scholar] [CrossRef]
- Perfetti, C.A.; Frishkoff, G.A. The neural bases of text and discourse processing. In Handbook of the Neuroscience of Language; Elsevier: Amsterdam, The Netherlands, 2008; Volume 2, pp. 165–174. [Google Scholar]
- Lavallé, L.; Brunelin, J.; Jardri, R.; Haesebaert, F.; Mondino, M. The neural signature of reality-monitoring: A meta-analysis of functional neuroimaging studies. Hum. Brain Mapp. 2023, 44, 4372–4389. [Google Scholar] [CrossRef] [PubMed]
- Shackman, A.J.; Salomons, T.V.; Slagter, H.A.; Fox, A.S.; Winter, J.J.; Davidson, R.J. The integration of negative affect, pain and cognitive control in the cingulate cortex. Nat. Rev. Neurosci. 2011, 12, 154–167. [Google Scholar] [CrossRef] [PubMed]
- Craig, A.D. How do you feel—Now? The anterior insula and human awareness. Nat. Rev. Neurosci. 2009, 10, 59–70. [Google Scholar] [CrossRef]
- Simony, E.; Honey, C.J.; Chen, J.; Lositsky, O.; Yeshurun, Y.; Wiesel, A.; Hasson, U. Dynamic reconfiguration of the default mode network during narrative comprehension. Nat. Commun. 2016, 7, 12141. [Google Scholar] [CrossRef]
- Vaccaro, A.G.; Scott, B.; Gimbel, S.I.; Kaplan, J.T. Functional brain connectivity during narrative processing relates to transportation and story influence. Front. Hum. Neurosci. 2021, 15, 665319. [Google Scholar] [CrossRef]
- Sabatinelli, D.; Fortune, E.E.; Li, Q.; Siddiqui, A.; Krafft, C.; Oliver, W.T.; Beck, S.; Jeffries, J. Emotional perception: Meta-analyses of face and natural scene processing. Neuroimage 2011, 54, 2524–2533. [Google Scholar] [CrossRef]
- Immordino-Yang, M.H.; McColl, A.; Damasio, H.; Damasio, A. Neural correlates of admiration and compassion. Proc. Natl. Acad. Sci. USA 2009, 106, 8021–8026. [Google Scholar] [CrossRef]
- Anticevic, A.; Cole, M.W.; Murray, J.D.; Corlett, P.R.; Wang, X.-J.; Krystal, J.H. The role of default network deactivation in cognition and disease. Trends Cogn. Sci. 2012, 16, 584–592. [Google Scholar] [CrossRef]
- Wicker, B.; Keysers, C.; Plailly, J.; Royet, J.-P.; Gallese, V.; Rizzolatti, G. Both of us disgusted in my insula: The common neural basis of seeing and feeling disgust. Neuron 2003, 40, 655–664. [Google Scholar] [CrossRef]
- Maddock, R.J. The retrosplenial cortex and emotion: New insights from functional neuroimaging of the human brain. Trends Neurosci. 1999, 22, 310–316. [Google Scholar] [CrossRef]
- Baumeister, R.F.; Bratslavsky, E.; Finkenauer, C.; Vohs, K.D. Bad is stronger than good. Rev. Gen. Psychol. 2001, 5, 323–370. [Google Scholar] [CrossRef]
ID | Age | Sex | ID | Age | Sex |
---|---|---|---|---|---|
01 | 26 | M | 07 | 26 | F |
02 | 30 | F | 08 | 23 | M |
05 | 26 | M | 10 | 25 | M |
06 | 25 | M | 12 | 24 | M |
Subject | Runs |
---|---|
Sub01 | 09, 23, 31 |
Sub02 | 28, 29, 38, 40, 41 |
Sub05 | 19, 29, 51, 53 |
Sub06 | 13, 22, 25, 50 |
Sub07 | 03, 15, 32, 42, 46 |
Sub08 | 25, 52, 56 |
Sub10 | 12, 28, 44, 47 |
Sub12 | 02, 27 |
Regions | x | y | z | Z-Peak | Size |
---|---|---|---|---|---|
Activated brain regions | |||||
FP | −26 | 62 | −8 | 6.15 | 2225 |
STGpd | −60 | −10 | 8 | 7.26 | 990 |
STGpd | 56 | 4 | −2 | 7.89 | 880 |
FP | 26 | 68 | −2 | 5.26 | 520 |
MFG | 52 | 18 | 24 | 6.20 | 180 |
FP | −56 | 4 | −2 | 6.41 | 112 |
Deactivated brain regions | |||||
FP | 36 | 10 | 34 | −3.09 | 730 |
SPL | 30 | −40 | 78 | −3.09 | 346 |
PCunC | 0 | −38 | 52 | −3.09 | 280 |
PoCG | −34 | −48 | 76 | −3.09 | 269 |
ParaCG | 0 | 44 | 14 | −3.10 | 249 |
PreCG | −52 | −14 | 50 | −3.09 | 236 |
Index | Regions | Index | Regions | Index | Regions |
---|---|---|---|---|---|
0 | FMC, ParaCG | 27 | PreCG | 54 | IFGpt |
1 | MTG, PoCG, STG | 28 | LOCsup | 55 | ACC |
2 | PCG | 29 | MFG | 56 | IFGoper |
3 | FP | 30 | FOC, SFG | 57 | FP |
4 | FP | 31 | PCunC | 58 | COC, PreCG |
5 | TP | 32 | PreCG | 59 | FOC, SFG |
6 | PoCG | 33 | PCC | 60 | MTGto |
7 | SPL | 34 | PoCG | 61 | ITGpd, MTGpd |
8 | PreCG | 35 | PreCG | 62 | MFG |
9 | LOCsup | 36 | FOC, MFG | 63 | IFGoper |
10 | PreCG | 37 | IFGpt | 64 | OP |
11 | SCC, PoCG | 38 | ITGto | 65 | LOCsup |
12 | PoCG | 39 | FP | 66 | FP |
13 | PCunC | 40 | MFG | 67 | FP |
14 | PoCG | 41 | FP | 68 | IC, PoCG |
15 | COC, FP | 42 | AG | 69 | OP |
16 | PCG, PreCG | 43 | ParaCG | 70 | SCC |
17 | ACC, ParaCG | 44 | SFG | 71 | IC |
18 | SMA | 45 | pITG, pSMG | 72 | FOC |
19 | SPL | 46 | SPL | 73 | ACC, ParaCG |
20 | PCunC | 47 | FP | 74 | COC |
21 | FP, SFG | 48 | FP | 75 | MTGpd |
22 | SFG | 49 | PoCG | 76 | LOCsup |
23 | PoCG | 50 | ACC | 77 | PoCG |
24 | PoCG | 51 | MTGad, PreCG | 78 | FP |
25 | FP | 52 | FP, ParaCG | ||
26 | ParaCG, SFG | 53 | PoCG |
Metrics | EXP | RM | U | p |
---|---|---|---|---|
BERT | 0.650 ± 0.151 | 0.326 ± 0.074 | 5872 | p < 0.001 |
ED | 12.432 ± 2.896 | 14.528 ± 0.673 | 1767 | p < 0.001 |
WER | 0.924 ± 0.028 | 0.989 ± 0.051 | 862 | p < 0.001 |
Metrics | EXP | Chinese LLM | U | p |
---|---|---|---|---|
BERT | 0.650 ± 0.151 | 0.529 ± 0.009 | 749 | p < 0.001 |
ED | 12.432 ± 2.896 | 14.224 ± 0.512 | 410 | p = 0.559 |
WER | 0.924 ± 0.028 | 0.958 ± 0.045 | 224 | p < 0.001 |
Metrics | EXP | RM | U | p |
---|---|---|---|---|
CS | 0.504 ± 0.348 | 0.233 ± 0.248 | 645 | p < 0.05 |
JSS | 0.469 ± 0.227 | 0.323 ± 0.148 | 620 | p < 0.05 |
Emotions | EXP | RM | U | p |
---|---|---|---|---|
admiration | 0.128 ± 0.208 | 0.313 ± 0.299 | 238 | p < 0.05 |
amusement | 0.311 ± 0.244 | 0.211 ± 0.154 | 539 | p = 0.191 |
anger | 0.246 ± 0.277 | 0.060 ± 0.117 | 654 | p < 0.05 |
annoyance | 0.429 ± 0.312 | 0.381 ± 0.325 | 488 | p = 0.579 |
approval | 0.323 ± 0.317 | 0.399 ± 0.255 | 352 | p = 0.149 |
caring | 0.260 ± 0.273 | 0.088 ± 0.098 | 589.5 | p < 0.05 |
confusion | 0.527 ± 0.304 | 0.335 ± 0.220 | 609 | p < 0.05 |
curiosity | 0.201 ± 0.258 | 0.175 ± 0.165 | 388 | p = 0.363 |
desire | 0.350 ± 0.255 | 0.213 ± 0.215 | 623 | p < 0.05 |
disappointment | 0.200 ± 0.212 | 0.146 ± 0.245 | 539 | p = 0.191 |
disapproval | 0.293 ± 0.232 | 0.322 ± 0.289 | 470.5 | p = 0.767 |
disgust | 0.506 ± 0.277 | 0.233 ± 0.242 | 699 | p < 0.001 |
embarrassment | 0.442 ± 0.302 | 0.175 ± 0.152 | 672.5 | p < 0.001 |
excitement | 0.354 ± 0.217 | 0.291 ± 0.171 | 531 | p = 0.234 |
fear | 0.420 ± 0.292 | 0.119 ± 0.150 | 732 | p < 0.001 |
gratitude | 0.271 ± 0.302 | 0.232 ± 0.241 | 456 | p = 0.935 |
grief | 0.302 ± 0.287 | 0.052 ± 0.091 | 772.5 | p < 0.001 |
joy | 0.344 ± 0.324 | 0.145 ± 0.187 | 646 | p < 0.01 |
love | 0.212 ± 0.256 | 0.061 ± 0.098 | 622 | p < 0.05 |
nervousness | 0.107 ± 0.107 | 0.028 ± 0.033 | 760 | p < 0.001 |
neutral | 0.358 ± 0.308 | 0.096 ± 0.174 | 733 | p < 0.001 |
optimism | 0.236 ± 0.242 | 0.231 ± 0.228 | 429 | p = 0.762 |
pride | 0.192 ± 0.176 | 0.199 ± 0.244 | 471 | p = 0.762 |
realization | 0.035 ± 0.059 | 0.039 ± 0.060 | 450.5 | p = 0.997 |
relief | 0.331 ± 0.284 | 0.255 ± 0.219 | 497 | p = 0.492 |
remorse | 0.276 ± 0.226 | 0.120 ± 0.153 | 659 | p < 0.01 |
sadness | 0.345 ± 0.362 | 0.078 ± 0.186 | 699.5 | p < 0.001 |
surprise | 0.370 ± 0.303 | 0.208 ± 0.210 | 579 | p = 0.057 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, W.; Wang, Z.; Ma, L. SED-GPT: A Non-Invasive Method for Long-Sequence Fine-Grained Semantics and Emotions Decoding. Appl. Sci. 2025, 15, 11100. https://doi.org/10.3390/app152011100
Cui W, Wang Z, Ma L. SED-GPT: A Non-Invasive Method for Long-Sequence Fine-Grained Semantics and Emotions Decoding. Applied Sciences. 2025; 15(20):11100. https://doi.org/10.3390/app152011100
Chicago/Turabian StyleCui, Wenhao, Zhaoxin Wang, and Lei Ma. 2025. "SED-GPT: A Non-Invasive Method for Long-Sequence Fine-Grained Semantics and Emotions Decoding" Applied Sciences 15, no. 20: 11100. https://doi.org/10.3390/app152011100
APA StyleCui, W., Wang, Z., & Ma, L. (2025). SED-GPT: A Non-Invasive Method for Long-Sequence Fine-Grained Semantics and Emotions Decoding. Applied Sciences, 15(20), 11100. https://doi.org/10.3390/app152011100