Vehicle Maintenance Demand Prediction: A Survey
Abstract
1. Introduction
2. Maintenance Costs
3. Predictive Maintenance in Vehicle Systems
3.1. Physics-Based Models
3.2. Knowledge-Based Models
3.3. Data-Driven Methods
3.3.1. Statistical and Stochastic Approaches
3.3.2. Machine Learning Algorithms
- Linear Regression (LR)
- Gaussian Process Regression (GPR)
- Artificial Neural Networks (ANN)
- Decision Trees (DT)
- Support Vector Machines (SVM)
- k-Nearest Neighbors (k-NN).
- Long Short-Term Memory (LSTM) [51]
- Autoencoder (AE)
- Convolutional Neural Network (CNN)
- Recurrent Neural Network (RNN)
- Generative Adversarial Network (GAN)
- Large Language Model (LLM)
- Deep Belief Networks (DBN)
- Deep Reinforcement Learning (DRL)
- Vision Transformer Applications (VTA).
3.4. Digital Twin Technology
4. Challenges and Future
4.1. Transitioning to Integrated Maintenance Demand of the Entire Vehicle
4.2. Technical Hurdles in Implementing Integrated Systems
5. Conclusions
Funding
Conflicts of Interest
Abbreviations
PdM | Predictive maintenance |
VHM | Vehicle health management |
ML | Machine learning |
ROI | Return on investment |
MSE | Mean squared error |
EEMD | Empirical mode decomposition |
DMD | Dynamic mode decomposition |
IMFs | Intrinsic mode functions |
GC | Granger causality |
IVN | In-vehicle network |
ECU | Electronic control units |
PCA | Principal component analysis |
LR | Linear regression |
MLR | Multiple linear regression |
ESC | Electronic stability control |
BLDC | Brushless direct current motor |
GPR | Gaussian process regression |
EV | Electric vehicle |
RUL | Remaining useful life |
SOC | State of charge |
SOH | State of health |
ANN | Artificial neural networks |
SVM | Support vector machines |
RFE | Recursive feature elimination |
RVM | Relevant vector machine |
K-NN | K-nearest neighbor |
DT | Decision tree |
CART | Classification and regression trees |
DL | Deep learning |
LSTM | Long short-term memory |
AE | Autoencoder |
CNN | Convolutional neural network |
GAN | Generative adversarial network |
RF | Random forest |
LLM | Large language model |
DBN | Deep belief network |
DRL | Deep reinforcement learning |
DT | Digital twin |
References
- Katreddi, S.; Kasani, S.; Thiruvengadam, A. A Review of Applications of Artificial Intelligence in Heavy Duty Trucks. Energies 2022, 15, 7457. [Google Scholar] [CrossRef]
- Sullivan, G.; Pugh, R.; Melendez, A.P.; Hunt, W.D. Operations & Maintenance Best Practices—A Guide to Achieving Operational Efficiency (Release 3). PNNL-19634; Pacific Northwest National Lab (PNNL): Richland, WA, USA, 2010.
- Sajid, S.; Haleem, A.; Bahl, S.; Javaid, M.; Goyal, T.; Mittal, M. Data science applications for predictive maintenance and materials science in context to Industry 4.0. Mater. Today Proc. 2021, 45, 4898–4905. [Google Scholar]
- Longo, N.; Serpi, V.; Jacazio, G.; Sorli, M. Model-based predictive maintenance techniques applied to vehicle industry. In Proceedings of the PHM Society European Conference, Utrecht, The Netherlands, 3–6 July 2018; Volume 4. [Google Scholar]
- Zhou, Y.; Zhu, L.; Yi, J.; Luan, T.; Li, C. On Vehicle Fault Diagnosis: A Low Complexity Onboard Method. In Proceedings of the GLOBECOM 2020—2020 IEEE Global Communications Conference, Taipei, Taiwan, 7–11 December 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–6. [Google Scholar]
- Ashok Raj, J.; Singampalli, R.S.; Manikumar, R. Application of EMD based statistical parameters for the prediction of fault severity in a spur gear through vibration signals. Adv. Mater. Process. Technol. 2021, 8, 2152–2170. [Google Scholar] [CrossRef]
- Shen, D.; Wu, L.; Kang, G.; Guan, Y.; Peng, Z. A novel online method for predicting the remaining useful life of lithium-ion batteries considering random variable discharge current. Energy 2021, 218, 119490. [Google Scholar] [CrossRef]
- Bhatti, G.; Mohan, H.; Singh, R.R. Towards the future of smart electric vehicles: Digital twin technology. Renew. Sustain. Energy Rev. 2021, 141, 110801. [Google Scholar] [CrossRef]
- Tinga, T.; Loendersloot, R. Physical model-based prognostics and health monitoring to enable predictive maintenance. In Predictive Maintenance in Dynamic Systems; Springer: Cham, Switzerland, 2019; pp. 313–353. [Google Scholar]
- Choi, C.; Lee, W. Fault diagnosis and tolerance on reliability of automotive motor control system: A review. Int. J. Automot. Technol. 2022, 23, 1163–1174. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, P.; Wang, Z.; Hong, J. Electric vehicle battery fault diagnosis based on statistical method. Energy Procedia 2017, 105, 2366–2371. [Google Scholar] [CrossRef]
- Ma, M.; Wang, Y.; Duan, Q.; Wu, T.; Sun, J.; Wang, Q. Fault detection of the connection of lithium-ion power batteries in series for electric vehicles based on statistical analysis. Energy 2018, 164, 745–756. [Google Scholar] [CrossRef]
- Zhang, Z.; Dong, S.; Li, D.; Liu, P.; Wang, Z. Prediction and Diagnosis of Electric Vehicle Battery Fault Based on Abnormal Voltage: Using Decision Tree Algorithm Theories and Isolated Forest. Processes 2024, 12, 136. [Google Scholar] [CrossRef]
- El-Sayed, E.I.; ElSayed, S.K.; Alsharef, M. Data-Driven Approaches for State-of-Charge Estimation in Battery Electric Vehicles Using Machine and Deep Learning Techniques. Sustainability 2024, 16, 9301. [Google Scholar]
- Garay, J.M.; Diedrich, C. Analysis of the applicability of fault detection and failure prediction based on unsupervised learning and monte carlo simulations for real devices in the industrial automobile production. In Proceedings of the 2019 IEEE 17th International Conference on Industrial Informatics (INDIN), Helsinki, Finland, 22–25 July 2019; IEEE: Piscataway, NJ, USA, 2019; Volume 1, pp. 1279–1284. [Google Scholar]
- Ahmed, U.; Ha, D.; Shin, S.; Shaukat, N.; Zahid, U.; Han, C. Estimation of disturbance propagation path using principal component analysis (PCA) and multivariate granger causality (MVGC) techniques. Ind. Eng. Chem. Res. 2017, 56, 7260–7272. [Google Scholar] [CrossRef]
- Phan, V.L.; Taniguchi, M.; Yabushita, H. A Forecasting Method Based on a Dynamical Approach and Time Series Data for Vehicle Service Parts Demand. Eng. Proc. 2025, 101, 3. [Google Scholar]
- Yuan, T.; Qin, S.J. Root cause diagnosis of plant-wide oscillations using Granger causality. J. Process. Control 2014, 24, 450–459. [Google Scholar] [CrossRef]
- Zuqui, G.C., Jr.; Munaro, C.J. Fault detection and isolation via Granger causality. In Proceedings of the XII Simpósio Brasileiro de Automação Inteligente (XII SBAI), Natal, Brazil, 25–28 October 2015. [Google Scholar]
- Rodriguez-Rivero, J.; Ramirez, J.; Martínez-Murcia, F.J.; Segovia, F.; Ortiz, A.; Salas, D.; Castillo-Barnes, D.; Illan, I.A.; Puntonet, C.G.; Jimenez-Mesa, C.; et al. Granger causality-based information fusion applied to electrical measurements from power transformers. Inf. Fusion 2020, 57, 59–70. [Google Scholar] [CrossRef]
- Bhat, P.; Thoduka, S.; Plöger, P. A Dependency Detection Method for Sensor-based Fault Detection. In Proceedings of the DX Workshop, Klagenfurt, Austria, 11–13 November 2019. [Google Scholar]
- Qiu, H.; Liu, Y.; Subrahmanya, N.A.; Li, W. Granger Causality for Time-Series Anomaly Detection. In Proceedings of the 2012 IEEE 12th International Conference on Data Mining, Brussels, Belgium, 10–13 December 2012; pp. 1074–1079. [Google Scholar]
- Kordes, A.; Wurm, S.; Hozhabrpour, H.; Wismüller, R. Automatic Fault Detection using Cause and Effect Rules for In-vehicle Networks. In Proceedings of the 4th International Conference on Vehicle Technology and Intelligent Transport Systems (VEHITS), Funchal, Portugal, 16–18 March 2018; pp. 537–544. [Google Scholar]
- Dehning, P.; Thiede, S.; Mennenga, M.; Herrmann, C. Factors influencing the energy intensity of automotive manufacturing plants. J. Clean. Prod. 2017, 142, 2305–2314. [Google Scholar] [CrossRef]
- Kong, Y.S.; Abdullah, S.; Schramm, D.; Omar, M.Z.; Haris, S.M. Development of multiple linear regression-based models for fatigue life evaluation of automotive coil springs. Mech. Syst. Signal Process. 2019, 118, 675–695. [Google Scholar] [CrossRef]
- Andrioaia, D.A. Predictive Maintenance System to RUL Prediction of Li-Ion Batteries and Identify the Fault Type of Brushless DC Electric Motor from UAVs. Sensors 2025, 25, 4782. [Google Scholar] [CrossRef]
- Khoshkangini, R.; Sheikholharam Mashhadi, P.; Berck, P.; Gholami Shahbandi, S.; Pashami, S.; Nowaczyk, S.; Niklasson, T. Early prediction of quality issues in automotive modern industry. Information 2020, 11, 354. [Google Scholar] [CrossRef]
- Aye, S.A.; Heyns, P.S. An integrated Gaussian process regression for prediction of remaining useful life of slow speed bearings based on acoustic emission. Mech. Syst. Signal Process. 2017, 84, 485–498. [Google Scholar] [CrossRef]
- Pan, H.; Chen, C.; Gu, M. A Method for Predicting the Remaining Useful Life of Lithium Batteries Considering Capacity Regeneration and Random Fluctuations. Energies 2022, 15, 2498. [Google Scholar] [CrossRef]
- Tosun, E.; Aydin, K.; Bilgili, M. Comparison of linear regression and artificial neural network model of a diesel engine fueled with biodiesel-alcohol mixtures. Alex. Eng. J. 2016, 55, 3081–3089. [Google Scholar] [CrossRef]
- Arslan, M.; Karamangil, M.İ. Comprehensive Optimization and Design of an Electric Vehicle Battery Box Side Profile for Lightweight and Crashworthiness Using a Novel Hybrid Structure. Appl. Sci. 2025, 15, 2037. [Google Scholar] [CrossRef]
- Chen, Y.; Shen, J.; Zhou, F.; Li, H.; Yang, K.; Wang, L. Multi-Sensor Fusion and Deep Learning for Predictive Lubricant Health Assessment. Lubricants 2025, 13, 364. [Google Scholar] [CrossRef]
- Jeong, K.; Choi, S. Model-based sensor fault diagnosis of vehicle suspensions with a support vector machine. Int. J. Automot. Technol. 2019, 20, 961–970. [Google Scholar] [CrossRef]
- Biddle, L.; Fallah, S. A Novel Fault Detection, Identification and Prediction Approach for Autonomous Vehicle Controllers Using SVM. Automot. Innov. 2021, 4, 301–314. [Google Scholar] [CrossRef]
- Raveendran, R.; Devika, K.B.; Subramanian, S.C. Learning-based fault diagnosis of air brake system using wheel speed data. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2022, 236, 2598–2609. [Google Scholar] [CrossRef]
- Alhazmi, R.M. State of Health Prediction in Electric Vehicle Batteries Using a Deep Learning Model. World Electr. Veh. J. 2024, 15, 385. [Google Scholar] [CrossRef]
- Xu, P.; Wei, G.; Song, K.; Chen, Y. High-accuracy health prediction of sensor systems using improved relevant vector-machine ensemble regression. Knowl.-Based Syst. 2021, 212, 106555. [Google Scholar] [CrossRef]
- Rubio, E.M.; Dionísio, R.P.; Torres, P.M.B. Predictive Maintenance of Induction motors in the context of Industry 4.0. Int. J. Mechatron. Appl. Mech. 2018, 4, 238–242. [Google Scholar]
- Vasavi, S.; Aswarth, K.; Pavan, T.S.D.; Gokhale, A.A. Predictive analytics as a service for vehicle health monitoring using edge computing and AK-NN algorithm. Mater. Today Proc. 2021, 46, 8645–8654. [Google Scholar] [CrossRef]
- Iadarola, G.; Mingotti, A.; Negri, V.; Spinsante, S. Fault Detection in MV Switchgears Through Unsupervised Learning of Temperature Conditions. Sensors 2025, 25, 4818. [Google Scholar] [CrossRef]
- Landgrebe, S.R.; Safavian, D. A survey of decision tree classifier methodology. IEEE Trans. Syst. Man Cybern. 1991, 21, 660–674. [Google Scholar]
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; Wadsworth, Inc.: Belmont, CA, USA, 1984. [Google Scholar]
- Chourasia, S. Survey paper on improved methods of ID3 decision tree classification. Int. J. Sci. Res. Publ. 2013, 3, 1–4. [Google Scholar]
- Quinlan, R.J. C4.5: Programs for Machine Learning; Morgan Kaufmann Publishers, Inc.: San Mateo, CA, USA, 1993. [Google Scholar]
- Singh, S.; Gupta, P. Comparative study ID3, cart and C4.5 decision tree algorithm: A survey. Int. J. Adv. Inf. Sci. Technol. 2014, 27, 97–103. [Google Scholar]
- Sathyadevan, S.; Nair, R.R. Comparative Analysis of Decision Tree Algorithms: ID3, C4.5 and Random Forest. In Computational Intelligence in Data Mining; Jain, L., Behera, H., Mandal, J., Mohapatra, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; Volume 31. [Google Scholar]
- Zhao, X.; Qin, Y.; Kou, L.; Liu, Z. Understanding real faults of axle box bearings based on vibration data using decision tree. In Proceedings of the 2018 IEEE International Conference on Prognostics and Health Management (ICPHM), Seattle, WA, USA, 11–13 June 2018; IEEE: Piscataway, NJ, USA; pp. 1–5. [Google Scholar]
- Arun Balaji, P.; Sugumaran, V. Fault detection of automobile suspension system using decision tree algorithms: A machine learning approach. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2024, 238, 1206–1217. [Google Scholar] [CrossRef]
- Shah, C.V. Machine learning algorithms for predictive maintenance in autonomous vehicles. Int. J. Eng. Comput. Sci. 2024, 13, 26015–26032. [Google Scholar] [CrossRef]
- Luckow, A.; Kennedy, K.; Ziolkowski, M.; Djerekarov, E.; Cook, M.; Duffy, E.; Schleiss, M.; Vorster, B.; Weill, E.; Kulshrestha, A.; et al. Artificial intelligence and deep learning applications for automotive manufacturing. In Proceedings of the 2018 IEEE International Conference on Big Data (Big Data), Seattle, WA, USA, 10–13 December 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 3144–3152. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Potvin, M.J.; Leblanc, S.P. Detecting Malicious Anomalies in Heavy-Duty Vehicular Networks Using Long Short-Term Memory Models. Sensors 2025, 25, 4430. [Google Scholar] [CrossRef]
- Hu, H.; Luo, H.; Deng, X. Health Monitoring of Automotive Suspensions: A LSTM Network Approach. Shock Vib. 2021, 2021, 6626024. [Google Scholar] [CrossRef]
- Chen, C. Deep Learning for Automobile Predictive Maintenance under Industry 4.0. Ph.D. Thesis, Cardiff University, Cardiff, UK, 2020. [Google Scholar]
- Sai, S.A.; Venkatesh, S.N.; Dhanasekaran, S.; Balaji, P.A.; Sugumaran, V.; Lakshmaiya, N.; Paramasivam, P. Transfer Learning Based Fault Detection for Suspension System Using Vibrational Analysis and Radar Plots. Machines 2023, 11, 778. [Google Scholar] [CrossRef]
- Al-Zeyadi, M.; Andreu-Perez, J.; Hagras, H.; Royce, C.; Smith, D.; Rzonsowski, P.; Malik, A. Deep Learning Towards Intelligent Vehicle Fault Diagnosis. In Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–7. [Google Scholar]
- Voronov, S.; Krysander, M.; Frisk, E. Predictive maintenance of lead-acid batteries with sparse vehicle operational data. Int. J. Progn. Health Manag. 2020, 11, 2608. [Google Scholar] [CrossRef]
- Chen, F.; Shang, D.; Zhou, G.; Ye, K.; Ren, F. Mileage-Aware for Vehicle Maintenance Demand Prediction. Appl. Sci. 2024, 14, 7341. [Google Scholar] [CrossRef]
- Chen, F.; Shang, D.; Zhou, G.; Xu, M.; Ye, K.; Ren, F.; Wu, G. Cooperative Static and Dynamic Correlation-Aware Learning for Vehicle Maintenance Demand Prediction. IEEE Access 2024, 13, 2970–2981. [Google Scholar] [CrossRef]
- Chen, F.; Shang, D.; Zhou, G.; Ye, K.; Ren, F.; Wu, G. Collaborative multiview time series modeling for vehicle maintenance demand prediction. Sci. Rep. 2025, 15, 13058. [Google Scholar] [CrossRef]
- Zhou, J.; Qin, Y.; Chen, D.; Liu, F.; Qian, Q. Remaining useful life prediction of bearings by a new reinforced memory GRU network. Adv. Eng. Inform. 2022, 53, 101682. [Google Scholar] [CrossRef]
- Fang, Y.; Dong, E.; Zhong, Z.; Zhang, W.; Cui, Y.; Ye, J. Remaining Useful Life Prediction of Electric Drive Bearings in New Energy Vehicles: Based on Degradation Assessment and Spatiotemporal Feature Fusion. Machines 2025, 13, 914. [Google Scholar] [CrossRef]
- Min, H.; Fang, Y.; Wu, X.; Wang, W.-Q.; Song, X.-P. Fault diagnosis research for intelligent vehicles based on autoencoder and LSTM. J. Sichuan Univ. (Nat. Sci. Ed.) 2021, 58, 73–81. [Google Scholar]
- Polikar, R. Ensemble learning. In Ensemble Machine Learning; Springer: Boston, MA, USA, 2012; pp. 1–34. [Google Scholar]
- Guo, J.; Lao, Z.; Hou, M.; Li, C.; Zhang, S. Mechanical fault time series prediction by using EFMSAE-LSTM neural network. Measurement 2021, 173, 108566. [Google Scholar] [CrossRef]
- Wang, H.; Peng, M.; Miao, Z.; Liu, Y.; Ayodeji, A.; Hao, C. Remaining useful life prediction techniques for electric valves based on convolution auto encoder and long short term memory. ISA Trans. 2021, 108, 333–342. [Google Scholar] [CrossRef]
- Chinta, V.S.; Reddi, S.K.; Yarramsetty, N. Optimal feature selection on Serial Cascaded deep learning for predictive maintenance system in automotive industry with fused optimization algorithm. Adv. Eng. Inform. 2023, 57, 102105. [Google Scholar] [CrossRef]
- Min, H.; Fang, Y.; Wu, X.; Lei, X.; Chen, S.; Teixeira, R.; Zhu, B.; Zhao, X.; Xu, Z. A fault diagnosis framework for autonomous vehicles with sensor self-diagnosis. Expert Syst. Appl. 2023, 224, 120002. [Google Scholar] [CrossRef]
- Safavi, S.; Safavi, M.A.; Hamid, H.; Fallah, S. Multi-Sensor Fault Detection, Identification, Isolation and Health Forecasting for Autonomous Vehicles. Sensors 2021, 21, 2547. [Google Scholar] [CrossRef] [PubMed]
- Shahid, S.M.; Ko, S.; Kwon, S. Real-time abnormality detection and classification in diesel engine operations with convolutional neural network. Expert Syst. Appl. 2022, 192, 116233. [Google Scholar] [CrossRef]
- Ren, D.; Huang, H.; Li, Y.; Jin, J. High-Risk Test Scenario Generation for Autonomous Vehicles at Roundabouts Using Naturalistic Driving Data. Appl. Sci. 2025, 15, 4505. [Google Scholar] [CrossRef]
- Zhang, D.; Li, S.; Hong, T.; Zhang, C.; Zhao, W. Enhanced Fault Prediction for Synchronous Condensers Using LLM-Optimized Wavelet Packet Transformation. Electronics 2025, 14, 308. [Google Scholar] [CrossRef]
- Huang, K.; Chen, Q. Motor Fault Diagnosis and Predictive Maintenance Based on a Fine-Tuned Qwen2.5-7B Model. Processes 2025, 13, 2051. [Google Scholar] [CrossRef]
- Veeramani, T.; Bhatia, S.; Hussain Memon, F. Design of fuzzy logic-based energy management and traffic predictive model for cyber physical systems. Comput. Electr. Eng. 2022, 102, 108135. [Google Scholar]
- Justin, S.; Saleh, W.; Lashin, M.M.A.; Albalawi, H.M. Design of Metaheuristic Optimization with Deep-Learning-Assisted Solar-Operated On-Board Smart Charging Station for Mass Transport Passenger Vehicle. Sustainability 2023, 15, 7845. [Google Scholar] [CrossRef]
- Cheng, C.; Lin, H.; Luo, Y. Research on Autonomous Vehicle Lane-Keeping and Navigation System Based on Deep Reinforcement Learning: From Simulation to Real-World Application. Electronics 2025, 14, 2738. [Google Scholar] [CrossRef]
- Andalibi, M.; Shourangizhaghighi, A.; Hajihosseini, M.; Madani, S.S.; Ziebert, C.; Boudjadar, J. Design and Simulation-Based Optimization of an Intelligent Autonomous Cruise Control System. Computers 2023, 12, 84. [Google Scholar] [CrossRef]
- Arun, B.; Venkatesh, N.S.; Sugumaran, V. Fault Diagnosis of Suspension System Based on Spectrogram Image and Vision Transformer. Eksploat. Niezawodn. 2024, 26, 174860. [Google Scholar]
- Singh, M.; Srivastava, R.; Fuenmayor, E.; Kuts, V.; Qiao, Y.; Murray, N.; Devine, D. Applications of Digital Twin across Industries: A Review. Appl. Sci. 2022, 12, 5727. [Google Scholar] [CrossRef]
- Madni, A.M.; Madni, C.C.; Lucero, S.D. Leveraging digital twin technology in model-based systems engineering. Systems 2019, 7, 7. [Google Scholar] [CrossRef]
- Ezhilarasu, C.M.; Skaf, Z.; Jennions, I.K. Understanding the role of a digital twin in integrated vehicle health management (IVHM). In Proceedings of the 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), Bari, Italy, 6–9 October 2019. [Google Scholar]
- Rajesh, P.K.; Manikandan, N.; Ramshankar, C.S.; Vishwanathan, T.; Sathishkumar, C. Digital twin of an automotive brake pad for predictive maintenance. Procedia Comput. Sci. 2019, 165, 18–24. [Google Scholar] [CrossRef]
- Magargle, R.; Johnson, L.; Mandloi, P.; Davoudabadi, P.; Kesarkar, O.; Krishnaswamy, S.; Pitchaikani, A. A simulation-based digital twin for model-driven health monitoring and predictive maintenance of an automotive braking system. In Proceedings of the 12th International Modelica Conference, Prague, Czech Republic, 15–17 May 2017; Linköping University Electronic Press: Linköping, Sweden, 2017. [Google Scholar]
- Yujun, L.; Zhichang, Z.; Wei, W.; Kui, Z. Digital twin product lifecycle system dedicated to the constant velocity joint. Comput. Electr. Eng. 2021, 93, 107264. [Google Scholar] [CrossRef]
- Iqbal, M.; Suhail, S.; Matulevičius, R.; Shah, F.A.; Malik, S.U.R.; McLaughlin, K. IoV-TwinChain: Predictive maintenance of vehicles in internet of vehicles through digital twin and blockchain. Internet Things 2025, 30, 101514. [Google Scholar] [CrossRef]
- Watts, B. Digital Twins in the Automotive Industry. Challenge Advisory. 2018. Available online: https://www.challenge.org/knowledgeitems/digital-twins-in-the-automotive-industry/ (accessed on 20 December 2021).
- Coors-Blankenship, J. Taking Digital Twins for a Test Drive with Tesla, Apple. Available online: https://www.industryweek.com/technology-and-iiot/article/21130033/how-digital-twins-are-raising-the-stakes-on-product-development (accessed on 20 December 2021).
- Rassõlkin, A.; Rjabtšikov, V.; Vaimann, T.; Kallaste, A.; Kuts, V.; Partyshev, A. Digital Twin of an Electrical Motor Based on Empirical Performance Model. In Proceedings of the 2020 XI International Conference on Electrical Power Drive Systems (ICEPDS), Saint Petersburg, Russia, 4–7 October 2020; pp. 1–4. [Google Scholar]
- Rassõlkin, A.; Rjabtšikov, V.; Vaimann, T.; Kallaste, A.; Kuts, V.; Demidova, G.L. Digital Twin Data Handling for Propulsion Drive System of Autonomous Electric Vehicle: Case Study. In Proceedings of the 2020 IEEE 61th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON), Rita, Latvia, 5–7 November 2020; pp. 1–5. [Google Scholar]
- Molaie, M.; Zippo, A.; Pellicano, F. Neural Network-Based Estimation of Gear Safety Factors from ISO-Based Simulations. Symmetry 2025, 17, 1312. [Google Scholar] [CrossRef]
- Chen, F.; Shang, D.; Zhou, G.; Ye, K.; Ren, F.; Wu, G. Collaborative multiple attention mechanisms for vehicle fault prediction. Eng. Appl. Artif. Intell. 2025, 160, 111896. [Google Scholar] [CrossRef]
- Chen, F.; Shang, D.; Zhou, G.; Ye, K.; Wu, G. Multi-Source Data Fusion for Vehicle Maintenance Project Prediction. Future Internet 2024, 16, 371. [Google Scholar] [CrossRef]
- Jia, H.; Qian, D.; Chen, F.; Zhou, W. Collaborative Fusion Attention Mechanism for Vehicle Fault Prediction. Future Internet 2025, 17, 428. [Google Scholar] [CrossRef]
- Bolat, Y.; Murray, I.; Ren, Y.; Ferdosian, N. Decentralized Distributed Sequential Neural Networks Inference on Low-Power Microcontrollers in Wireless Sensor Networks: A Predictive Maintenance Case Study. Sensors 2025, 25, 4595. [Google Scholar] [CrossRef] [PubMed]
- Ahmmed, M.S.; Khan, L.; Mahmood, M.A.; Liou, F. Digital Twins, AI, and Cybersecurity in Additive Manufacturing: A Comprehensive Review of Current Trends and Challenges. Machines 2025, 13, 691. [Google Scholar] [CrossRef]
Algorithm | Representative Paper | Performance Metrics | Advantages | Disadvantages |
---|---|---|---|---|
Linear Regression | Kong et al. [25] | RMSE: 0.12 (fatigue life prediction) | Computationally efficient, interpretable, suitable for linear relationships | Cannot capture nonlinearity, relies on statistical assumptions |
Gaussian Process Regression | Aye et al. [28] | RMSE: 0.08, R2: 0.94 (bearing RUL prediction) | Provides confidence intervals, no predefined function required | High computational cost, sensitive to kernel choice |
Artificial Neural Network | Chen et al. [32] | Accuracy: 92.3%, F1-score: 0.91 (lubrication system health prediction) | Automatic feature learning, handles complex patterns | Black-box model, high training cost, hyperparameter dependent |
Support Vector Machine | Raveendran et al. [35] | Accuracy: 96.54%, precision: 94.75%, recall: 99.15% (air brake system diagnosis) | Good generalization, works well with high-dimensional features | Memory-intensive, sensitive to kernel selection |
k-Nearest Neighbors | Rubio et al. [38] | Accuracy: 89.7% (vibration classification) | No training phase, adapts to dynamic data updates | Computational inefficiency with large data, noise-sensitive |
Decision Tree | Arun Balaji and Sugumaran [48] | Accuracy: 95.88% (no-load), 94.88% (half-load), 92.01% (full-load) (suspension system fault detection) | Highly interpretable, handles mixed data types | Prone to overfitting, unstable with small data changes |
Algorithm | Representative Paper | Performance Metrics | Advantages | Disadvantages |
---|---|---|---|---|
Long Short-Term Memory (LSTM) | Chen et al. [60] | Accuracy: 98.30% (fault classification) | Captures temporal dependencies, handles sequential data well | Requires large datasets, computationally intensive training |
Autoencoder (AE) | Min et al. [70] | AUC_ROC: 0.978, F1-score: 0.952 (sensor fault diagnosis) | Unsupervised feature learning, effective for anomaly detection | May miss subtle temporal patterns, requires careful architecture design |
Convolutional Neural Network (CNN) | Shahid et al. [72] | Accuracy: >99% (engine misfire detection) | Excellent for spatial feature extraction, real-time capability | Limited temporal modeling, requires structured input data |
Generative Adversarial Network (GAN) | Yoon et al. [73] | Not specified (TimeGAN for synthetic data generation) | Generates realistic synthetic data, addresses data scarcity | No direct performance metrics for maintenance prediction provided |
Large Language Models (LLMs) | Huang and Chen [75] | Accuracy: 96.5% (single dataset), 91.2% (cross-condition) | Automatic feature optimization, strong generalization | High computational requirements, large model size |
Deep Belief Networks (DBN) | Wang et al. [77] | Not specified (charging station optimization) | Probabilistic modeling, unsupervised pre-training | Complex training process, limited automotive maintenance applications |
Deep Reinforcement Learning (DRL) | Li et al. [78] | Not specified (autonomous driving performance) | Learns optimal strategies in complex environments | Requires extensive training, simulation-to-real gap challenges |
Vision Transformer (ViT) | Arun et al. [80] | Accuracy: 98.12% (suspension fault diagnosis) | Captures long-range dependencies, high accuracy | High computational resources required for real-time use |
Technical Challenge | Specific Manifestations | Potential Solutions |
---|---|---|
Data Heterogeneity | Multiple sensor formats and protocols; inconsistent data structures across different vehicle systems | Cross-modal fusion architectures; unified data preprocessing pipelines; standardized communication protocols |
Edge Computing Resource Constraints | Limited memory and computational power in vehicle ECUs; real-time processing requirements | Lightweight deep learning models; model quantization and pruning; hardware–software co-design approaches |
Cybersecurity Risks | Vulnerability to sensor data tampering; potential for malicious manipulation of maintenance predictions | Blockchain technology for data integrity; secure authentication protocols; encrypted communication channels |
Real-time Adaptability | Dynamic environmental changes; varying operational conditions; evolving component degradation patterns | Online learning frameworks; adaptive model updating; reinforcement learning for continuous optimization |
Scalability | Adaptation requirements across different vehicle models and configurations; fleet-wide deployment challenges | Modular AI architectures; transfer learning techniques; configurable model parameters for vehicle-specific tuning |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, F.; Jia, H.; Zhou, W. Vehicle Maintenance Demand Prediction: A Survey. Appl. Sci. 2025, 15, 11095. https://doi.org/10.3390/app152011095
Chen F, Jia H, Zhou W. Vehicle Maintenance Demand Prediction: A Survey. Applied Sciences. 2025; 15(20):11095. https://doi.org/10.3390/app152011095
Chicago/Turabian StyleChen, Fanghua, Hong Jia, and Wei Zhou. 2025. "Vehicle Maintenance Demand Prediction: A Survey" Applied Sciences 15, no. 20: 11095. https://doi.org/10.3390/app152011095
APA StyleChen, F., Jia, H., & Zhou, W. (2025). Vehicle Maintenance Demand Prediction: A Survey. Applied Sciences, 15(20), 11095. https://doi.org/10.3390/app152011095