Research on the Classification Method of Pinus Species Based on Generative Adversarial Networks and Convolutional Neural Networks
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation and Near-Infrared Spectral Collection
2.2. MAFNet
2.3. GAN
2.4. Model Training and Evaluation
3. Results
3.1. Comparison and Analysis of Model Performance
3.2. Performance of Dataset Augmentation Using GAN
3.3. Classification Performance of Different Surface Data
4. Discussion
4.1. Superior Performance of MAFNet in Pinus Species Classification
4.2. Enhanced Model Robustness Through GAN-Based Data Augmentation
4.3. Section-Dependent Classification Performance and Anatomical Influences
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zheng, C.; He, T.; Jiao, L.; Lu, Y.; Liu, S.; Li, T.; Miao, Y.; Feng, D.; Lin, J.; Feng, X.; et al. Deep Learning-Based Species Identification of Gymnosperm Xylem: The Practice in Digital Forestry. Comput. Electron. Agric. 2025, 237, 110581. [Google Scholar] [CrossRef]
- Dormontt, E.E.; Boner, M.; Braun, B.; Breulmann, G.; Degen, B.; Espinoza, E.; Gardner, S.; Guillery, P.; Hermanson, J.C.; Koch, G.; et al. Forensic Timber Identification: It’s Time to Integrate Disciplines to Combat Illegal Logging. Biol. Conserv. 2015, 191, 790–798. [Google Scholar] [CrossRef]
- Lin, C.; Lu, Y.; Liu, S.; Wang, Z.; Yao, L.; Yin, Y.; Jiao, L. Retrieving Complete Plastid Genomes of Endangered Guibourtia Timber Using Hybridization Capture for Forensic Identification and Phylogenetic Analysis. Forensic Sci. Int. Genet. 2024, 69, 103006. [Google Scholar] [CrossRef] [PubMed]
- National Forestry and Grassland Administration. List of National Key Protected Wild Plants in China. 2021. Available online: https://www.forestry.gov.cn/c/www/lczc/10746.jhtml (accessed on 24 May 2025).
- Richter, H.G.; Grosser, D.; Heinz, I.; Gasson, P.E. IAWA List of Microscopic Features for Softwood Identification. IAWA J. 2004, 25, 1–70. [Google Scholar] [CrossRef]
- Jiao, L.; Lu, Y.; He, T.; Guo, J.; Yin, Y. DNA Barcoding for Wood Identification: Global Review of the Last Decade and Future Perspective. IAWA J. 2020, 41, 620–643. [Google Scholar] [CrossRef]
- Guo, F.; Altaner, C.M. Molecular Deformation of Wood and Cellulose Studied by near Infrared Spectroscopy. Carbohydr. Polym. 2018, 197, 1–8. [Google Scholar] [CrossRef]
- Braga, J.W.B.; Pastore, T.C.M.; Coradin, V.T.R.; Camargos, J.A.A.; Da Silva, A.R. The Use of near Infrared Spectroscopy to Identify Solid Wood Specimens of Swietenia Macrophylla (Cites Appendix II). IAWA J. 2011, 32, 285–296. [Google Scholar] [CrossRef]
- Pastore, T.C.M.; Braga, J.W.B.; Coradin, V.T.R.; Magalhães, W.L.E.; Okino, E.Y.A.; Camargos, J.A.A.; De Muñiz, G.I.B.; Bressan, O.A.; Davrieux, F. Near Infrared Spectroscopy (NIRS) as a Potential Tool for Monitoring Trade of Similar Woods: Discrimination of True Mahogany, Cedar, Andiroba, and Curupixá. Holzforschung 2011, 65, 73–80. [Google Scholar] [CrossRef]
- Bergo, M.C.J.; Pastore, T.C.M.; Coradin, V.T.R.; Wiedenhoeft, A.C.; Braga, J.W.B. NIRS Identification of Swietenia Macrophylla Is Robust Across Specimens from 27 Countries. IAWA J. 2016, 37, 420–430. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, J. The Method of Identifying the Species of Coniferous Wood Based on GLCM. J. Coast. Res. 2020, 103, 570–574. [Google Scholar] [CrossRef]
- Pan, X.; Qiu, J.; Yang, Z. Identification of Five Similar Cinnamomum Wood Species Using Portable Near-Infrared Spectroscopy. Spectroscopy 2022, 37, 16–23, 49. [Google Scholar] [CrossRef]
- Pan, X.; Qiu, J.; Yang, Z. Identification of Softwood Species Using Convolutional Neural Networks and Raw Near-Infrared Spectroscopy. Wood Mater. Sci. Eng. 2023, 18, 1338–1348. [Google Scholar] [CrossRef]
- Yang, S.-Y.; Kwon, O.; Park, Y.; Chung, H.; Kim, H.; Park, S.-Y.; Choi, I.-G.; Yeo, H. Application of Neural Networks for Classifying Softwood Species Using near Infrared Spectroscopy. J. Near Infrared Spectrosc. 2020, 28, 298–307. [Google Scholar] [CrossRef]
- Zhao, P.; Wang, C.-K. Hardwood Species Classification with Hyperspectral Microscopic Images. J. Spectrosc. 2019, 2019, 2039453. [Google Scholar] [CrossRef]
- Zhao, P.; Li, Z.-Y.; Li, Y. An Incremental Self-Adaptive Wood Species Classification Prototype System. J. Spectrosc. 2019, 2019, 9247386. [Google Scholar] [CrossRef]
- Cheng, Y.; Fang, X.; Tang, Z.; Yu, Z.; Sun, L.; Zhu, L. SDR2Tr-GAN: A Novel Medical Image Fusion Pipeline Based on GAN with SDR2 Module and Transformer Optimization Strategy. Int. J. Imaging Syst. Technol. 2024, 34, e23208. [Google Scholar] [CrossRef]
- Bakht, A.B.; Jia, Z.; Din, M.U.; Akram, W.; Saoud, L.S.; Seneviratne, L.; Lin, D.; He, S.; Hussain, I. MuLA-GAN: Multi-Level Attention GAN for Enhanced Underwater Visibility. Ecol. Inform. 2024, 81, 102631. [Google Scholar] [CrossRef]
- Xu, J.; Lu, K.; Shi, X.; Qin, S.; Wang, H.; Ma, J. A DenseUnet Generative Adversarial Network for Near-Infrared Face Image Colorization. Signal Process. 2021, 183, 108007. [Google Scholar] [CrossRef]
- Qi, H.; Huang, Z.; Jin, B.; Tang, Q.; Jia, L.; Zhao, G.; Cao, D.; Sun, Z.; Zhang, C. SAM-GAN: An Improved DCGAN for Rice Seed Viability Determination Using near-Infrared Hyperspectral Imaging. Comput. Electron. Agric. 2024, 216, 108473. [Google Scholar] [CrossRef]
- Zhang, Z.; Gao, Q.; Liu, L.; He, Y. A High-Quality Rice Leaf Disease Image Data Augmentation Method Based on a Dual GAN. IEEE Access 2023, 11, 21176–21191. [Google Scholar] [CrossRef]
- Lopes, D.J.V.; Monti, G.F.; Burgreen, G.W.; Moulin, J.C.; Dos Santos Bobadilha, G.; Entsminger, E.D.; Oliveira, R.F. Creating High-Resolution Microscopic Cross-Section Images of Hardwood Species Using Generative Adversarial Networks. Front. Plant Sci. 2021, 12, 760139. [Google Scholar] [CrossRef]
- Bao, X.; Huang, D.; Yang, B.; Li, J.; Opeyemi, A.T.; Wu, R.; Weng, H.; Cheng, Z. Combining Deep Convolutional Generative Adversarial Networks with Visible-near Infrared Hyperspectral Reflectance to Improve Prediction Accuracy of Anthocyanin Content in Rice Seeds. Food Control 2025, 174, 111218. [Google Scholar] [CrossRef]
- Xue, X.; Chen, Z.; Wu, H.; Gao, H. Identification of Guiboutia Species by NIR-HSI Spectroscopy. Sci. Rep. 2022, 12, 11507. [Google Scholar] [CrossRef]
- Kanayama, H.; Ma, T.; Tsuchikawa, S.; Inagaki, T. Cognitive Spectroscopy for Wood Species Identification: Near Infrared Hyperspectral Imaging Combined with Convolutional Neural Networks. Analyst 2019, 144, 6438–6446. [Google Scholar] [CrossRef]
- He, C.; Wang, R.; Shan, S.; Chen, X. Introspective GAN: Learning to Grow a GAN for Incremental Generation and Classification. Pattern Recognit. 2024, 151, 110383. [Google Scholar] [CrossRef]
- Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein GAN. arXiv 2017, arXiv:1704.00028. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, Y.; Liu, X.; Fu, H.; Wang, C.; Han, Z. A CNN-BiGRU-Selfattention Model Combined with GAN Reconstruction and Reverse Feature Fusion for Apple Pesticide Residues Detecting. J. Food Compos. Anal. 2025, 140, 107264. [Google Scholar] [CrossRef]
- Liu, T.; Liu, Z.; Zhang, K.; Li, C.; Zhang, Y.; Mu, Z.; Mu, M.; Xu, M.; Zhang, Y.; Li, X. Research on the Generation and Annotation Method of Thin Section Images of Tight Oil Reservoir Based on Deep Learning. Sci. Rep. 2024, 14, 12805. [Google Scholar] [CrossRef]
Existing Work | Used Model | Dataset Characteristics | Performance |
---|---|---|---|
Yang et al. [14] | CNN | 5 species; NIR spectra (680–2500 nm, 1 nm resolution); | Validation accuracy: 100% |
Xue et al. [24] | SVM + Successive Projections Algorithm (SPA) | 5 Guiboutia species; NIR-HSI spectra (982–2005 nm); | Test set accuracy: 100%, sensitivity: 100%, specificity: 100% |
Pan et al. [12] | PLS-DA + SNV + First Derivative Preprocessing | 5 similar Cinnamomum wood species; portable NIR spectra (1595–2396 nm); | Species-level accuracy: 100% |
Pan et al. [13] | Wood-CNN | 21 Pinaceae species; NIR spectra (780–2440 nm); | Classification accuracy: 0.9912 |
Bao et al. [23] | SG-DCGAN-1D-CNN | 126 black rice lines; NIR spectra (425–1690 nm); | Prediction R2: 0.87 |
Zheng et al. [1] | RepLKNet-31B | 22 common species from 4 genera of Pinaceae family; 481 wood specimens, 38,953 transverse section macroscopic images | Genus-level Top-1 accuracy: 98.55%; species-level Top-1 accuracy: 80.11%; |
Label | Latin Name | Genus | Family |
---|---|---|---|
Larix | Larix gmelinii | Larix | Pinaceae |
Masson Pine | Pinus massoniana | Pinus | Pinaceae |
Scots Pine | Pinus sylvestris | Pinus | Pinaceae |
Radiata Pine | Pinus caribaea | Pinus | Pinaceae |
White Pine | Pinus bungeana | Pinus | Pinaceae |
Cedar | Cedrus deodara | Cedrus | Pinaceae |
Model | Accuracy (%) | Precision (%) | Recall (%) | F1-Score (%) | Train Time (s) | Model Size (MB) | Inference Time (ms/Sample) |
---|---|---|---|---|---|---|---|
KNN | 95.99 ± 0 | 96.08 ± 0 | 96.12 ± 0 | 96.01 ± 0 | 0.05 | 37.24 | 4.61 |
RF | 92.90 ± 0.52 | 92.92 ± 0.49 | 93.36 ± 0.49 | 93.02 ± 0.49 | 15.60 | 4.31 | 0.02 |
SVM | 96.91 ± 0 | 96.79 ± 0 | 97.19 ± 0 | 96.86 ± 0 | 66.20 | 22.33 | 1.23 |
GB | 92.22 ± 0.23 | 92.34 ± 0.20 | 92.65 ± 0.24 | 92.38 ± 0.23 | 2532.66 | 0.74 | 0.01 |
XGBoost | 94.14 ± 0 | 94.02 ± 0 | 94.14 ± 0 | 94.15 ± 0 | 58.70 | 0.76 | 0.02 |
1D-Net | 94.20 ± 1.29 | 94.22 ± 1.06 | 94.75 ± 1.06 | 94.22 ± 1.12 | 47.13 | 2.15 | 0.02 |
1D-Inception | 95.74 ± 1.37 | 95.65 ± 1.26 | 96.16 ± 1.25 | 95.70 ± 1.29 | 74.12 | 3.42 | 0.03 |
1D-ResNet | 97.53 ± 0.65 | 97.34 ± 0.65 | 97.74 ± 0.59 | 97.43 ± 0.67 | 61.67 | 2.89 | 0.02 |
MAFNet | 99.63 ± 0.36 | 99.57 ± 0.42 | 99.64 ± 0.34 | 99.60 ± 0.39 | 170.93 | 8.76 | 0.07 |
Species | Before Generation | After Generation | ||||
---|---|---|---|---|---|---|
Total Spectra | Training Set | Validation Set | Total Spectra | Training Set | Validation Set | |
Larix gmelinii | 180 | 120 | 60 | 820 | 760 | 60 |
Pinus massoniana | 180 | 132 | 48 | 820 | 772 | 48 |
Pinus sylvestris | 180 | 114 | 66 | 820 | 754 | 66 |
Pinus caribaea | 180 | 136 | 44 | 820 | 776 | 44 |
Pinus bungeana | 180 | 134 | 46 | 820 | 774 | 46 |
Cedrus deodara | 180 | 120 | 60 | 820 | 760 | 60 |
Total | 1080 | 756 | 324 | 4920 | 4596 | 324 |
Model | Before Generation | After Generation | |||||||
---|---|---|---|---|---|---|---|---|---|
Accuracy (%) | Precision (%) | Recall (%) | F1–Score (%) | Accuracy (%) | Precision (%) | Recall (%) | F1–Score (%) | ||
KNN | 95.99 ± 0 | 96.08 ± 0 | 96.12 ± 0 | 96.01 ± 0 | 96.91 ± 0 | 96.89 ± 0 | 96.97 ± 0 | 96.86 ± 0 | ↑ |
RF | 92.90 ± 0.52 | 92.92 ± 0.49 | 93.36 ± 0.49 | 93.02 ± 0.49 | 93.77 ± 0.23 | 93.77 ± 0.22 | 94.17 ± 0.2 | 93.88 ± 0.22 | ↑ |
SVM | 96.91 ± 0 | 96.79 ± 0 | 97.19 ± 0 | 96.86 ± 0 | 96.30 ± 0 | 96.30 ± 0 | 96.69 ± 0 | 96.28 ± 0 | ↓ |
GB | 92.22 ± 0.23 | 92.34 ± 0.20 | 92.65 ± 0.24 | 92.38 ± 0.23 | 91.85 ± 0.25 | 92.04 ± 0.24 | 92.54 ± 0.26 | 92.09 ± 0.23 | ↓ |
XGBoost | 94.14 ± 0 | 94.02 ± 0 | 94.14 ± 0 | 94.15 ± 0 | 94.44 ± 0 | 94.57 ± 0 | 94.81 ± 0 | 94.60 ± 0 | ↑ |
1D-Net | 94.20 ± 1.29 | 94.22 ± 1.06 | 94.75 ± 1.06 | 94.22 ± 1.12 | 98.95 ± 0.25 | 98.78 ± 0.27 | 99.04 ± 0.24 | 98.90 ± 0.27 | ↑ |
1D-Inception | 95.74 ± 1.37 | 95.65 ± 1.26 | 96.16 ± 1.25 | 95.70 ± 1.29 | 99.38 ± 0.28 | 99.28 ± 0.31 | 99.43 ± 0.26 | 99.34 ± 0.30 | ↑ |
1D-ResNet | 97.53 ± 0.65 | 97.34 ± 0.65 | 97.74 ± 0.59 | 97.43 ± 0.67 | 97.78 ± 0.71 | 97.58 ± 0.74 | 97.98 ± 0.67 | 97.69 ± 0.73 | ↑ |
MAFNet | 99.63 ± 0.36 | 99.57 ± 0.42 | 99.64 ± 0.34 | 99.60 ± 0.39 | 99.88 ± 0.15 | 99.86 ± 0.18 | 99.88 ± 0.15 | 99.86 ± 0.17 | ↑ |
Model | Accuracy (%) | Recall (%) | F1-Score (%) |
---|---|---|---|
Cross Section | 99.63 | 99.64 | 99.60 |
Radial Section | 99.38 | 99.38 | 99.38 |
Tangential Section | 98.77 | 98.77 | 98.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, S.; Su, H.; Zhao, L. Research on the Classification Method of Pinus Species Based on Generative Adversarial Networks and Convolutional Neural Networks. Appl. Sci. 2025, 15, 10942. https://doi.org/10.3390/app152010942
Xu S, Su H, Zhao L. Research on the Classification Method of Pinus Species Based on Generative Adversarial Networks and Convolutional Neural Networks. Applied Sciences. 2025; 15(20):10942. https://doi.org/10.3390/app152010942
Chicago/Turabian StyleXu, Shuo, Hang Su, and Lei Zhao. 2025. "Research on the Classification Method of Pinus Species Based on Generative Adversarial Networks and Convolutional Neural Networks" Applied Sciences 15, no. 20: 10942. https://doi.org/10.3390/app152010942
APA StyleXu, S., Su, H., & Zhao, L. (2025). Research on the Classification Method of Pinus Species Based on Generative Adversarial Networks and Convolutional Neural Networks. Applied Sciences, 15(20), 10942. https://doi.org/10.3390/app152010942