Waveform Design of a Cognitive MIMO Radar via an Improved Adaptive Gradient Descent Genetic Algorithm
Abstract
1. Introduction
2. Frequency-Domain Waveform Design
2.1. Development of an Optimization Model
2.2. Application of the WFM
3. Time-Domain Waveform Design
3.1. Development of an Optimization Model
3.2. Application of the GD-AGA
Algorithm 1. Flowchart of the GD-AGA |
Input:
, number of population individuals (), number of chromosomes (), , , , , , ,
and , , GD: step length , number of iterations Output: , , |
Step 1: Running the GA: Initializing , and then calculating , , , and Step 2: a. Running the GD algorithm, for : Calculate the gradient ; Update ; Calculate ; Check the mutated crosses the boundary and replace it with the boundary edge value if it crosses the boundary. Terminate the algorithm after convergence. Update and . b. Roulette wheel algorithm Calculate the probability according to the individual fitness function. As a general rule, the smaller the probability, the better the performance. c. Adaptive crossover Update ; , update according to Equation (18), end; Update . d. Adaptive mutation , update and according to Equations (19) and (20); Check the mutated crosses the boundary and replace it with the boundary edge value if it crosses the boundary; end; Update . e. Replace the worst individual Update . Step 3: Evaluate the algorithm convergence and return to Step 2 in the lack of convergence. |
3.3. Analysis of Algorithm Complexity
4. Simulation Analysis
4.1. Waveform Performance Analysis in the Frequency Domain
4.2. Performance Analysis of the GD-AGA
4.3. Waveform Comparison in the Presence of Constant Modulus and PAPR Constraints
5. Conclusions and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MIMO | multiple-input–multiple-output |
DMI | dual mutual information |
ESD | energy spectral density |
MMSE | minimum mean square error |
PAPR | peak-to-average power ratio |
GD-AGA | gradient descent genetic algorithm |
GA | genetic algorithm |
CR | cognitive radar |
SINR | signal-to-interference-plus-noise ratio |
SCNR | signal-to-clutter-plus-noise ratio |
MI | mutual information |
WFM | water-filling method |
MMA | maximum marginal allocation |
SNR | signal-to-noise ratio |
TIR | target impulse response |
CIR | clutter impulse response |
Appendix A
References
- Fishler, E.; Haimovich, A.; Blum, R.; Chizhik, D.; Cimini, L.; Valenzuela, R. MIMO radar: An idea whose time has come. In Proceedings of the IEEE Radar Conference, Philadelphia, PA, USA, 29 April 2004. [Google Scholar] [CrossRef]
- Haykin, S. Cognitive radar: A way of the future. IEEE Signal Process. Mag. 2006, 23, 30–40. [Google Scholar] [CrossRef]
- Shen, T.; Lu, J.; Zhang, Y.; Yu, G. Waveform Design of Cognitive MIMO Radar with Multiple Targets and Multiple Criterias. In Proceedings of the Sixth International Conference on Information Science, Electrical, and Automation Engineering, ISEAE 2024, Wuhan, China, 19–21 April 2024. [Google Scholar]
- Wang, Y.; Yu, X.; Yang, J.; Cui, G. Cognitive Radar Subpulses Waveform Design via Online Greedy Search. IEEE Trans. Signal Process. 2025, 73, 1122–1137. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, K.; Shen, T.; Peng, P. Joint Waveform Design of Cognitive MIMO Radar for Multi-Target Detection. Int. J. Pattern Recognit. Artif. Intell. 2025, 39, 2550015. [Google Scholar] [CrossRef]
- Stoica, P.; He, H.; Li, J. Optimization of the receive filter and transmit sequence for active sensing. IEEE Trans. Signal Process. 2012, 60, 1730–1740. [Google Scholar] [CrossRef]
- Li, J.; He, H.; Stoica, P. Waveform Design for Active Sensing Systems: A Computational Approach. Ph.D. Thesis, Cambridge University Press, Cambridge, UK, 2012. [Google Scholar] [CrossRef]
- Kay, S.M. Optimal signal design for detection of gaussian point targets in stationary gaussian clutter/reverberation. IEEE J. Sel. Top. Signal Process. 2007, 1, 31–41. [Google Scholar] [CrossRef]
- Chen, C.Y.; Vaidyanathan, P.P. MIMO radar waveform optimization with prior information of the extended target and clutter. IEEE Trans. Signal Process. 2009, 57, 3533–3544. [Google Scholar] [CrossRef]
- Cao, Y.; Li, M.; Qu, S. Waveform design of cognitive radar based on joint criteria. Syst. Eng. 2022, 44, 3364–3370. [Google Scholar] [CrossRef]
- Xin, F.M.; Wang, J.K.; Wang, B.; Li, M.M. Adaptive radar waveform design based on dual mutual information criterion. J. Northeast. Univ. Nat. Sci. 2019, 40, 1690–1694. [Google Scholar] [CrossRef]
- Jackson, L.; Kay, S.; Vankayalapati, N. Iterative method for nonlinear FM synthesis of radar signals. IEEE Trans. Aerosp. Electron. Syst. 2010, 46, 910–917. [Google Scholar] [CrossRef]
- Gong, X.; Meng, H.; Wei, Y.; Wang, X. Phase-modulated waveform design for extended target detection in the presence of clutter. Sensors 2011, 11, 7162–7177. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; He, Z.; Zeng, J.; Liu, B. Polyphase orthogonal code design for MIMO radar systems. In Proceedings of the International Conference on Radar, Shanghai, China, 16–19 October 2006. [Google Scholar] [CrossRef]
- Daoud, O.; Damati, A.; Alsawalmeh, W. Enhancing the MIMO-OFDM radar systems performance using GA. In Proceedings of the International Multi-Conference on Systems, Signals & Devices, Amman, Jordan, 27–30 June 2010. [Google Scholar] [CrossRef]
- D’Angelo, G.; Palmieri, F. GGA: A modified genetic algorithm with gradient-based local search for solving constrained optimization problems. Inf. Sci. 2021, 547, 136–162. [Google Scholar] [CrossRef]
- Zhang, T.; Xia, X.-G.; Kong, L. IRCI free range reconstruction for SAR imaging with arbitrary length OFDM pulse. IEEE Trans. Signal Process. 2014, 62, 4748–4759. [Google Scholar] [CrossRef]
- Cao, F.; Chen, Z.; Feng, X.; He, C.; Xu, J. Optimal design of anti-interrupted sampling repeater jamming waveform for missile-borne radar based on an improved genetic algorithm. IET Signal Process. 2021, 15, 622–632. [Google Scholar] [CrossRef]
- Wu, L.; Cheng, X.; Huang, H.; Ciuonzo, D.; Shankar, B.; Ottersten, B. Constant-modulus waveform design with polarization-adaptive power allocation in polarimetric radar. IEEE Trans. Signal Process. 2023, 71, 2146–2161. [Google Scholar] [CrossRef]
Related Studies | Contributions | Shortages |
---|---|---|
Kay [8] | Originally applied the water-filling method (WFM) to address the optimal waveform. | Using the WFM to derive the analytical solution is hard when the model is complex. |
C.Y. Chen [9] | Improved an iterative algorithm to jointly optimize the transmitted waveforms and receiving filters of the MIMO radar for the case of an extended target in clutter. | The statistical characteristic of the clutter should be precisely known. |
Y. Cao et al. [10] F.M. Xin et al. [11] | Applied the maximum marginal allocation (MMA) algorithm to address the complex waveform design problem. | The frequency-domain waveform cannot be directly applied to MIMO radar transmitters. |
Jackson et al. [12] | Presented a constant phase method for optimizing the phase of constant modulus waveforms. | PAPR constraint cannot be used for the method. |
Gong et al. [13] | Presented a phase recursive optimization method for optimizing the phase of constant modulus waveforms. | |
Daoud et al. [15] | Presented a GD-GA for waveform that can avoid the problem of “premature convergence”. | PARP constraint cannot be applied in the waveform. |
D’Angelo and Palmieri [16] | Presented a GA for the waveform with a comparable PAPR. | Has the problem of “premature convergence”. |
AGA paper [18] | Dynamically adjusted the algorithm parameters to improve the search efficiency. | The selection method for mapping functions lacks a systematically established optimal design principle and relies heavily on existing empirical knowledge. |
Criterion | Detection Performance (dB) | Parameter Estimation Performance (bit) |
---|---|---|
DMI | 19.25 | 23.76 |
MI | 18.89 | 24.57 |
SCNR | 19.60 | 19.47 |
Parameters | Value | GD-AGA | GD-GA | AGA | GA | ||||
---|---|---|---|---|---|---|---|---|---|
100 | 96.7614 | 0.3237 | 184.7883 | 7.0183 | 244.0837 | 4.7839 | 327.1806 | 7.7672 | |
300 | 42.6567 | 0.1006 | 173.0316 | 7.0054 | 189.8556 | 4.5413 | 292.2732 | 6.1038 | |
500 | 30.9443 | 0.0347 | 169.6139 | 5.4724 | 170.8922 | 2.6475 | 280.7527 | 4.8605 | |
0.9 | 37.5163 | 0.2064 | 169.8239 | 9.1472 | 185.6456 | 4.4057 | 302.1408 | 4.9721 | |
0.8 | 42.6567 | 0.1006 | 173.0316 | 7.0054 | 189.8556 | 4.5413 | 292.2732 | 6.1038 | |
0.7 | 44.1954 | 0.4825 | 170.9422 | 7.1613 | 191.37 | 4.0084 | 294.3374 | 5.0932 | |
0.15 | 45.5350 | 0.1752 | 167.8338 | 6.2851 | 244.2554 | 4.7060 | 357.6697 | 6.0365 | |
0.1 | 42.6567 | 0.1006 | 173.0316 | 7.00536 | 189.8556 | 4.5413 | 292.2732 | 6.1038 | |
0.05 | 29.1029 | 0.1593 | 176.7611 | 3.4770 | 100.5259 | 1.6423 | 193.9559 | 4.5253 | |
0.01 | 54.3055 | 0.3353 | 176.7021 | 4.7403 | 100.8837 | 1.5971 | 200.3443 | 3.2394 | |
0.005 | 40.6515 | 0.1006 | 173.0316 | 7.0053 | 189.8556 | 4.5413 | 292.2732 | 6.1038 | |
0.001 | 43.2392 | 0.2725 | 92.49853 | 5.1537 | 98.70791 | 1.8120 | 196.6820 | 2.7392 |
Factor | |||||||
---|---|---|---|---|---|---|---|
67.9807 | 65.2190 | 66.0581 | 65.8337 | 65.8430 | 65.0253 | 66.0908 | |
0.1650 | 0.1645 | 0.1624 | 0.1642 | 0.1619 | 0.1648 | 0.1617 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, T.; Lu, J.; Zhang, Y.; Wu, P.; Li, K. Waveform Design of a Cognitive MIMO Radar via an Improved Adaptive Gradient Descent Genetic Algorithm. Appl. Sci. 2025, 15, 10893. https://doi.org/10.3390/app152010893
Shen T, Lu J, Zhang Y, Wu P, Li K. Waveform Design of a Cognitive MIMO Radar via an Improved Adaptive Gradient Descent Genetic Algorithm. Applied Sciences. 2025; 15(20):10893. https://doi.org/10.3390/app152010893
Chicago/Turabian StyleShen, Tingli, Jianbin Lu, Yunlei Zhang, Peng Wu, and Ke Li. 2025. "Waveform Design of a Cognitive MIMO Radar via an Improved Adaptive Gradient Descent Genetic Algorithm" Applied Sciences 15, no. 20: 10893. https://doi.org/10.3390/app152010893
APA StyleShen, T., Lu, J., Zhang, Y., Wu, P., & Li, K. (2025). Waveform Design of a Cognitive MIMO Radar via an Improved Adaptive Gradient Descent Genetic Algorithm. Applied Sciences, 15(20), 10893. https://doi.org/10.3390/app152010893