Implementation Aspects in Simulation Extrapolation-Based Stocking–Lord Linking
Abstract
1. Introduction
2. Stocking–Lord Linking
3. Proposed Computational Shortcuts in SIMEX-Based Linking
3.1. A Glimpse of the SIMEX Technique
3.2. Applying the SIMEX Approach to Linking Methods
3.3. Replication Method to SIMEX-Based Linking
3.4. Approximate Estimation in SIMEX-Based Linking
4. Simulation Study
4.1. Method
4.2. Results
5. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| 2PL | Two-parameter logistic |
| DIF | Differential item functioning |
| IRF | Item response function |
| IRT | Item response theory |
| RMSE | Root-mean-square error |
| SD | Standard deviation |
| SIMEX | Simulation extrapolation |
| SL | Stocking–Lord |
| TCF | Test characteristic function |
References
- Chen, Y.; Li, X.; Liu, J.; Ying, Z. Item response theory—A statistical framework for educational and psychological measurement. Stat. Sci. 2024. Epub ahead of print. Available online: https://rb.gy/1yic0e (accessed on 3 October 2024).
- Bock, R.D.; Moustaki, I. Item response theory in a general framework. In Handbook of Statistics, Volume 26: Psychometrics; Rao, C.R., Sinharay, S., Eds.; Elservier: Amsterdam, The Netherlands, 2007; pp. 469–513. [Google Scholar] [CrossRef]
- van der Linden, W.J. Unidimensional logistic response models. In Handbook of Item Response Theory, Volume 1: Models; van der Linden, W.J., Ed.; CRC Press: Boca Raton, FL, USA, 2016; pp. 11–30. [Google Scholar] [CrossRef]
- Birnbaum, A. Some latent trait models and their use in inferring an examinee’s ability. In Statistical Theories of Mental Test Scores; Lord, F.M., Novick, M.R., Eds.; MIT Press: Reading, MA, USA, 1968; pp. 397–479. [Google Scholar]
- Aitkin, M. Expectation maximization algorithm and extensions. In Handbook of Item Response Theory, Volume 2: Statistical Tools; van der Linden, W.J., Ed.; CRC Press: Boca Raton, FL, USA, 2016; pp. 217–236. [Google Scholar] [CrossRef]
- Bock, R.D.; Aitkin, M. Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm. Psychometrika 1981, 46, 443–459. [Google Scholar] [CrossRef]
- Glas, C.A.W. Maximum-likelihood estimation. In Handbook of Item Response Theory, Volume 2: Statistical Tools; van der Linden, W.J., Ed.; CRC Press: Boca Raton, FL, USA, 2016; pp. 197–216. [Google Scholar] [CrossRef]
- San Martin, E. Identification of item response theory models. In Handbook of Item Response Theory, Volume 2: Statistical Tools; van der Linden, W.J., Ed.; CRC Press: Boca Raton, FL, USA, 2016; pp. 127–150. [Google Scholar] [CrossRef]
- Kolen, M.J.; Brennan, R.L. Test Equating, Scaling, and Linking; Springer: New York, NY, USA, 2014. [Google Scholar] [CrossRef]
- Battauz, M. equateMultiple: Equating of Multiple Forms, R Package Version 1.0.0; 2024. Available online: https://cran.r-project.org/web/packages/equateMultiple/index.html (accessed on 13 September 2024).
- Battauz, M. Multiple equating of separate IRT calibrations. Psychometrika 2017, 82, 610–636. [Google Scholar] [CrossRef] [PubMed]
- González, J.; Wiberg, M. Applying Test Equating Methods. Using R; Springer: New York, NY, USA, 2017. [Google Scholar] [CrossRef]
- Lee, W.C.; Lee, G. IRT linking and equating. In The Wiley Handbook of Psychometric Testing: A Multidisciplinary Reference on Survey, Scale and Test; Irwing, P., Booth, T., Hughes, D.J., Eds.; Wiley: New York, NY, USA, 2018; pp. 639–673. [Google Scholar] [CrossRef]
- Sansivieri, V.; Wiberg, M.; Matteucci, M. A review of test equating methods with a special focus on IRT-based approaches. Statistica 2017, 77, 329–352. [Google Scholar] [CrossRef]
- Holland, P.W.; Wainer, H. (Eds.) Differential Item Functioning: Theory and Practice; Routledge: London, UK, 1993. [Google Scholar] [CrossRef]
- Millsap, R.E. Statistical Approaches to Measurement Invariance; Routledge: New York, NY, USA, 2011. [Google Scholar] [CrossRef]
- Penfield, R.D.; Camilli, G. Differential item functioning and item bias. In Handbook of Statistics, Volume 26: Psychometrics; Rao, C.R., Sinharay, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 125–167. [Google Scholar] [CrossRef]
- De Boeck, P. Random item IRT models. Psychometrika 2008, 73, 533–559. [Google Scholar] [CrossRef]
- Fox, J.P.; Verhagen, A.J. Random item effects modeling for cross-national survey data. In Cross-Cultural Analysis: Methods and Applications; Davidov, E., Schmidt, P., Billiet, J., Eds.; Routledge: London, UK, 2010; pp. 461–482. [Google Scholar] [CrossRef]
- Robitzsch, A. Bias-reduced Haebara and Stocking-Lord linking. J 2024, 7, 373–384. [Google Scholar] [CrossRef]
- Stocking, M.L.; Lord, F.M. Developing a common metric in item response theory. Appl. Psychol. Meas. 1983, 7, 201–210. [Google Scholar] [CrossRef]
- Carroll, R.J.; Küchenhoff, H.; Lombard, F.; Stefanski, L.A. Asymptotics for the SIMEX estimator in nonlinear measurement error models. J. Am. Stat. Assoc. 1996, 91, 242–250. [Google Scholar] [CrossRef]
- Robitzsch, A. SIMEX-based and analytical bias corrections in Stocking-Lord linking. Analytics 2024, 3, 368–388. [Google Scholar] [CrossRef]
- Longford, N.T.; Holland, P.W.; Thayer, D.T. Stability of the MH D-DIF statistics across populations. In Differential Item Functioning; Holland, P.W., Wainer, H., Eds.; Routledge: London, UK, 1993; pp. 171–196. [Google Scholar]
- Cook, J.R.; Stefanski, L.A. Simulation-extrapolation estimation in parametric measurement error models. J. Am. Stat. Assoc. 1994, 89, 1314–1328. [Google Scholar] [CrossRef]
- Stefanski, L.A.; Cook, J.R. Simulation-extrapolation: The measurement error jackknife. J. Am. Stat. Assoc. 1995, 90, 1247–1256. [Google Scholar] [CrossRef]
- Carroll, R.J.; Ruppert, D.; Stefanski, L.A.; Crainiceanu, C.M. Measurement Error in Nonlinear Models: A Modern Perspective; Chapman and Hall/CRC: Boca Raton, FL, USA, 2006. [Google Scholar] [CrossRef]
- Lederer, W.; Küchenhoff, H. A short introduction to the SIMEX and MCSIMEX. R News 2006, 6, 26–31. Available online: https://journal.r-project.org/articles/RN-2006-031/ (accessed on 3 October 2024).
- Buonaccorsi, J.P. Measurement Error: Models, Methods, and Applications; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar] [CrossRef]
- Robitzsch, A. Does random differential item functioning occur in one or two groups? Implications for bias and variance in asymmetric and symmetric Haebara and Stocking-Lord linking. Asymmetry 2024, 1, 0005. [Google Scholar] [CrossRef]
- Niederreiter, H. Random Number Generation and Quasi-Monte Carlo Methods; SIAM: Philadelphia, PA, USA, 1992. [Google Scholar] [CrossRef]
- Robitzsch, A. sirt: Supplementary Item Response Theory Models, R Package Version 4.2-73; 2024. Available online: https://github.com/alexanderrobitzsch/sirt (accessed on 7 September 2024).
- Maechler, M. sfsmisc: Utilities from ’Seminar fuer Statistik’ ETH Zurich, R package version 1.1-19; 2024. Available online: https://cran.r-project.org/web/packages/sfsmisc/index.html (accessed on 13 September 2024).
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2024; Available online: https://www.R-project.org (accessed on 15 June 2024).
- Rutkowski, L.; Svetina, D. Assessing the hypothesis of measurement invariance in the context of large-scale international surveys. Educ. Psychol. Meas. 2014, 74, 31–57. [Google Scholar] [CrossRef]
- Andersson, B. Asymptotic variance of linking coefficient estimators for polytomous IRT models. Appl. Psychol. Meas. 2018, 42, 192–205. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z. Asymptotic standard errors of generalized partial credit model true score equating using characteristic curve methods. Appl. Psychol. Meas. 2021, 45, 331–345. [Google Scholar] [CrossRef] [PubMed]
- Muraki, E. A generalized partial credit model: Application of an EM algorithm. Appl. Psychol. Meas. 1992, 16, 159–176. [Google Scholar] [CrossRef]
- Engels, O.; Lüdtke, O.; Robitzsch, A. A comparison of linking methods for longitudinal designs with the 2PL model under item parameter drift. PsyArXiv 2024. [Google Scholar] [CrossRef]
- Robitzsch, A. Bias and linking error in fixed item parameter calibration. AppliedMath 2024, 4, 1181–1191. [Google Scholar] [CrossRef]
| SL | RE | RA | SE | SA | SL | RE | RA | SE | SA | |||
| No DIF (DIF SD ) | ||||||||||||
| 10 | 500 | 0.005 | 0.005 | 0.005 | 0.004 | 0.004 | 0.007 | 0.008 | 0.008 | 0.008 | 0.008 | |
| 1000 | 0.001 | 0.001 | 0.001 | 0.000 | 0.000 | 0.003 | 0.004 | 0.004 | 0.004 | 0.004 | ||
| 2000 | −0.001 | −0.001 | −0.001 | −0.001 | −0.001 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | ||
| 4000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | −0.001 | −0.001 | −0.001 | −0.001 | −0.001 | ||
| 20 | 500 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.005 | 0.006 | 0.006 | 0.006 | 0.006 | |
| 1000 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | ||
| 2000 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | ||
| 4000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | ||
| 30 | 500 | −0.001 | −0.001 | −0.001 | −0.002 | −0.002 | 0.007 | 0.008 | 0.008 | 0.008 | 0.008 | |
| 1000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | ||
| 2000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.002 | 0.002 | 0.002 | 0.002 | ||
| 4000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | ||
| Small DIF (DIF SD ) | ||||||||||||
| 10 | 500 | 0.001 | 0.003 | 0.003 | −0.004 | −0.004 | −0.002 | 0.006 | 0.006 | 0.004 | 0.004 | |
| 1000 | 0.002 | 0.004 | 0.004 | −0.004 | −0.004 | −0.005 | 0.003 | 0.003 | 0.001 | 0.001 | ||
| 2000 | −0.001 | 0.001 | 0.001 | −0.006 | −0.007 | −0.008 | 0.000 | 0.000 | −0.001 | −0.001 | ||
| 4000 | −0.001 | 0.001 | 0.001 | −0.006 | −0.007 | −0.008 | 0.000 | 0.000 | −0.001 | −0.001 | ||
| 20 | 500 | −0.001 | 0.001 | 0.001 | 0.003 | 0.003 | −0.004 | 0.004 | 0.004 | 0.004 | 0.004 | |
| 1000 | −0.001 | 0.001 | 0.001 | 0.002 | 0.003 | −0.006 | 0.003 | 0.003 | 0.003 | 0.003 | ||
| 2000 | −0.001 | 0.001 | 0.001 | 0.003 | 0.003 | −0.009 | 0.001 | 0.001 | 0.000 | 0.000 | ||
| 4000 | −0.003 | 0.000 | 0.000 | 0.001 | 0.001 | −0.009 | 0.000 | 0.000 | 0.000 | 0.000 | ||
| 30 | 500 | −0.003 | 0.000 | 0.000 | −0.002 | −0.002 | −0.007 | 0.002 | 0.002 | 0.002 | 0.002 | |
| 1000 | −0.003 | −0.001 | −0.001 | −0.002 | −0.002 | −0.009 | 0.001 | 0.001 | 0.000 | 0.000 | ||
| 2000 | −0.003 | 0.000 | 0.000 | −0.002 | −0.002 | −0.009 | 0.001 | 0.001 | 0.001 | 0.001 | ||
| 4000 | −0.004 | −0.002 | −0.002 | −0.003 | −0.003 | −0.009 | 0.001 | 0.001 | 0.000 | 0.000 | ||
| Large DIF (DIF SD ) | ||||||||||||
| 10 | 500 | −0.005 | 0.003 | 0.003 | −0.012 | −0.013 | −0.027 | 0.005 | 0.005 | −0.001 | 0.000 | |
| 1000 | −0.007 | 0.001 | 0.001 | −0.014 | −0.015 | −0.031 | 0.001 | 0.001 | −0.005 | −0.004 | ||
| 2000 | −0.007 | 0.001 | 0.001 | −0.015 | −0.015 | −0.033 | −0.001 | −0.001 | −0.007 | −0.006 | ||
| 4000 | −0.010 | −0.002 | −0.002 | −0.018 | −0.019 | −0.035 | −0.002 | −0.003 | −0.009 | −0.008 | ||
| 20 | 500 | −0.008 | 0.001 | 0.000 | 0.002 | 0.003 | −0.036 | 0.000 | −0.001 | −0.003 | −0.003 | |
| 1000 | −0.011 | −0.002 | −0.003 | −0.001 | 0.000 | −0.036 | −0.001 | −0.002 | −0.003 | −0.003 | ||
| 2000 | −0.010 | −0.001 | −0.001 | 0.001 | 0.001 | −0.037 | −0.001 | −0.002 | −0.004 | −0.004 | ||
| 4000 | −0.009 | 0.000 | 0.000 | 0.001 | 0.002 | −0.037 | −0.001 | −0.002 | −0.004 | −0.004 | ||
| 30 | 500 | −0.011 | −0.002 | −0.002 | −0.004 | −0.005 | −0.034 | 0.003 | 0.002 | 0.002 | 0.001 | |
| 1000 | −0.010 | 0.000 | −0.001 | −0.003 | −0.003 | −0.034 | 0.002 | 0.001 | 0.001 | 0.001 | ||
| 2000 | −0.010 | 0.000 | −0.001 | −0.003 | −0.004 | −0.039 | −0.002 | −0.003 | −0.004 | −0.004 | ||
| 4000 | −0.011 | −0.002 | −0.002 | −0.005 | −0.005 | −0.038 | −0.001 | −0.002 | −0.003 | −0.003 | ||
| SL | RE | RA | SE | SA | SL | RE | RA | SE | SA | |||
| No DIF (DIF SD ) | ||||||||||||
| 10 | 500 | 100.0 | 100.0 | 100.0 | 100.0 | 100 | 99.7 | 100.0 | 100.0 | 100.0 | 100 | |
| 1000 | 100.0 | 100.0 | 100.0 | 100.0 | 100 | 99.9 | 100.0 | 100.0 | 100.0 | 100 | ||
| 2000 | 100.0 | 100.0 | 100.0 | 100.0 | 100 | 99.9 | 100.0 | 100.0 | 100.0 | 100 | ||
| 4000 | 100.0 | 100.0 | 100.0 | 100.0 | 100 | 100.0 | 100.0 | 100.0 | 100.0 | 100 | ||
| 20 | 500 | 99.9 | 100.0 | 100.0 | 100.0 | 100 | 99.7 | 100.0 | 100.0 | 100.0 | 100 | |
| 1000 | 99.9 | 100.0 | 100.0 | 100.0 | 100 | 99.9 | 100.0 | 100.0 | 100.0 | 100 | ||
| 2000 | 100.0 | 100.0 | 100.0 | 100.0 | 100 | 100.0 | 100.0 | 100.0 | 100.0 | 100 | ||
| 4000 | 100.0 | 100.0 | 100.0 | 100.0 | 100 | 100.0 | 100.0 | 100.0 | 100.0 | 100 | ||
| 30 | 500 | 100.0 | 100.0 | 100.0 | 100.0 | 100 | 99.8 | 100.0 | 100.0 | 100.0 | 100 | |
| 1000 | 100.0 | 100.0 | 100.0 | 100.0 | 100 | 99.9 | 100.0 | 100.0 | 100.0 | 100 | ||
| 2000 | 100.0 | 100.0 | 100.0 | 100.0 | 100 | 100.0 | 100.0 | 100.0 | 100.0 | 100 | ||
| 4000 | 100.0 | 100.0 | 100.0 | 100.0 | 100 | 100.0 | 100.0 | 100.0 | 100.0 | 100 | ||
| Small DIF (DIF SD ) | ||||||||||||
| 10 | 500 | 99.4 | 99.9 | 99.9 | 100.0 | 100 | 99.3 | 100.3 | 100.2 | 100.0 | 100 | |
| 1000 | 99.4 | 100.1 | 100.1 | 100.0 | 100 | 99.4 | 100.3 | 100.3 | 100.0 | 100 | ||
| 2000 | 99.2 | 99.8 | 99.8 | 100.0 | 100 | 100.4 | 100.3 | 100.2 | 100.1 | 100 | ||
| 4000 | 99.1 | 99.8 | 99.8 | 99.9 | 100 | 100.8 | 100.3 | 100.3 | 100.1 | 100 | ||
| 20 | 500 | 99.4 | 100.0 | 100.0 | 100.0 | 100 | 99.4 | 100.1 | 100.1 | 100.0 | 100 | |
| 1000 | 99.3 | 100.0 | 100.0 | 100.0 | 100 | 99.5 | 100.1 | 100.1 | 100.0 | 100 | ||
| 2000 | 99.2 | 100.0 | 100.0 | 100.0 | 100 | 101.1 | 100.1 | 100.1 | 100.0 | 100 | ||
| 4000 | 99.4 | 100.0 | 100.0 | 100.0 | 100 | 102.3 | 100.1 | 100.0 | 100.0 | 100 | ||
| 30 | 500 | 99.5 | 100.0 | 100.0 | 100.0 | 100 | 99.4 | 100.1 | 100.1 | 100.0 | 100 | |
| 1000 | 99.5 | 100.0 | 100.0 | 100.0 | 100 | 100.5 | 100.0 | 100.0 | 100.0 | 100 | ||
| 2000 | 99.4 | 100.0 | 100.0 | 100.0 | 100 | 101.6 | 100.1 | 100.1 | 100.0 | 100 | ||
| 4000 | 99.4 | 99.9 | 99.9 | 100.0 | 100 | 103.5 | 100.1 | 100.1 | 100.1 | 100 | ||
| Large DIF (DIF SD ) | ||||||||||||
| 10 | 500 | 97.8 | 100.3 | 100.2 | 99.9 | 100 | 99.8 | 101.0 | 100.9 | 100.0 | 100 | |
| 1000 | 97.6 | 100.1 | 100.1 | 99.9 | 100 | 102.4 | 100.8 | 100.6 | 100.0 | 100 | ||
| 2000 | 97.4 | 100.0 | 99.9 | 99.9 | 100 | 104.7 | 101.0 | 100.8 | 100.3 | 100 | ||
| 4000 | 97.2 | 99.8 | 99.8 | 99.8 | 100 | 108.5 | 100.8 | 100.6 | 100.6 | 100 | ||
| 20 | 500 | 97.8 | 100.2 | 100.1 | 100.1 | 100 | 105.2 | 100.4 | 100.2 | 100.1 | 100 | |
| 1000 | 97.9 | 100.2 | 100.1 | 100.0 | 100 | 111.1 | 100.3 | 100.1 | 100.2 | 100 | ||
| 2000 | 97.6 | 100.2 | 100.2 | 100.0 | 100 | 117.5 | 100.4 | 100.3 | 100.4 | 100 | ||
| 4000 | 97.5 | 100.2 | 100.2 | 100.0 | 100 | 125.0 | 100.3 | 100.1 | 100.3 | 100 | ||
| 30 | 500 | 98.0 | 100.0 | 100.0 | 100.0 | 100 | 105.6 | 100.3 | 100.1 | 100.1 | 100 | |
| 1000 | 97.7 | 100.1 | 100.0 | 100.0 | 100 | 111.9 | 100.3 | 100.0 | 100.1 | 100 | ||
| 2000 | 97.6 | 100.1 | 100.0 | 100.0 | 100 | 126.3 | 100.1 | 100.0 | 100.2 | 100 | ||
| 4000 | 97.7 | 100.0 | 99.9 | 100.0 | 100 | 132.4 | 100.2 | 100.0 | 100.3 | 100 | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Robitzsch, A. Implementation Aspects in Simulation Extrapolation-Based Stocking–Lord Linking. Appl. Sci. 2025, 15, 901. https://doi.org/10.3390/app15020901
Robitzsch A. Implementation Aspects in Simulation Extrapolation-Based Stocking–Lord Linking. Applied Sciences. 2025; 15(2):901. https://doi.org/10.3390/app15020901
Chicago/Turabian StyleRobitzsch, Alexander. 2025. "Implementation Aspects in Simulation Extrapolation-Based Stocking–Lord Linking" Applied Sciences 15, no. 2: 901. https://doi.org/10.3390/app15020901
APA StyleRobitzsch, A. (2025). Implementation Aspects in Simulation Extrapolation-Based Stocking–Lord Linking. Applied Sciences, 15(2), 901. https://doi.org/10.3390/app15020901
