Assessment of Heavy Metal Concentrations in Urban Soil of Novi Sad: Correlation Analysis and Leaching Potential
Abstract
1. Introduction
- Define the total amounts of heavy metals in the soils and their interrelationships.
- Determine the availability and mobility of potentially toxic elements, including Cr, Pb, Cu, Zn, As, Co, Cd, and Ni, through leaching studies.
- Apply statistical tools to classify and differentiate the observed samples.
- Calculate the pollution indices.
2. Materials and Methods
2.1. Sampling Locations and Sample Preparation
- Near oil refinery (S13–S16).
- Near road in Avijatičarsko quarter (S2, S3)
- Bistrica quarter (S8, S11, S12)
- Detelinara quarter (S5, S7)
- Jugovićevo quarter (S1, S4, S6)
- Liman quarter (S9)
- The city center (S17)
- Southwest of the city center, along the road to Veternik settlement (S19)
- Danube Park (S21) and Futog Park (S18).
- Sunny Quay located in the forest (S10) and Sunny Quay next to the river (S20).
2.2. X-Ray Fluorescence Spectroscopy (XRF)
2.3. Statistical Evaluation
2.4. Pollution Indices
2.5. Mobility and Bioavailability of Elements of Interest
- CEN 12457-2—Milli-Q deionized leaching procedure [14]: 10 g of each soil sample with an accuracy of ±0.0001 g and a particle size < 4 mm were shaken with 100 mL of Milli-Q deionized water (without pH adjustment) at room temperature on a rotary shaker at 10 rpm for 24 h. Deionized water was prepared by Barnstead GenPure water purification system (Thermo Fisher Scientific, USA).
- ISO/TS 21268-2—CaCl2 leaching procedure [15]: 10 g of each soil sample with an accuracy of ±0.0001 g and a particle size < 4 mm were shaken with 100 mL of 0.001 M calcium chloride (p.a. Merck, Darmstadt, Germany) solution (without pH adjustment) at room temperature on a rotary shaker at 10 rpm for 24 h.
3. Results and Discussion
3.1. Total Concentrations of Metals
3.2. Statistical Analysis
3.3. Pollution Indices
3.4. Mobility and Bioavailability of Elements of Interest
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015.
- Miletić, A.; Lučić, M.; Onjia, A. Exposure Factors in Health Risk Assessment of Heavy Metal(Loid)s in Soil and Sediment. Metals 2023, 13, 1266. [Google Scholar] [CrossRef]
- Parvez, M.S.; Nawshin, S.; Sultana, S.; Hossain, M.S.; Rashid Khan, M.H.; Habib, M.A.; Nijhum, Z.T.; Khan, R. Evaluation of Heavy Metal Contamination in Soil Samples around Rampal, Bangladesh. ACS Omega 2023, 8, 15990–15999. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Kang, H.; Zhang, X.; Shao, H.; Chu, L.; Ruan, C. A Critical Review on the Bio-Removal of Hazardous Heavy Metals from Contaminated Soils: Issues, Progress, Eco-Environmental Concerns and Opportunities. J. Hazard. Mater. 2010, 174, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Zhou, W.; Liu, X.; Guo, G.; He, Y.; Zhu, L.; Chen, D.; Miao, R. Machine Learning Combined with Geodetector to Predict the Spatial Distribution of Soil Heavy Metals in Mining Areas. Sci. Total Environ. 2025, 959, 178281. [Google Scholar] [CrossRef]
- Sun, J.; Chen, M.; Xiao, J.; Xu, G.; Zhang, H.; Zhang, G.; Yang, F.; Zhao, C.; Guo, L. Exploring the Spatial Distribution Characteristics of Urban Soil Heavy Metals in Different Levels of Urbanization. Agronomy 2025, 15, 418. [Google Scholar] [CrossRef]
- Han, Z.; Wang, J.; Liao, X.; Yang, J. Accurate Prediction of Spatial Distribution of Soil Heavy Metal in Complex Mining Terrain Using an Improved Machine Learning Method. J. Hazard. Mater. 2025, 491, 137994. [Google Scholar] [CrossRef]
- Semenkov, I.N.; Koroleva, T.V. Guideline Values for the Content of Chemical Elements in Soils of Urban Functional Zones: A Review. Eurasian Soil Sci. 2022, 55, 81–89. [Google Scholar] [CrossRef]
- Kim, R.Y.; Yoon, J.K.; Kim, T.S.; Yang, J.E.; Owens, G.; Kim, K.R. Bioavailability of Heavy Metals in Soils: Definitions and Practical Implementation—A Critical Review. Environ. Geochem. Health 2015, 37, 1041–1061. [Google Scholar] [CrossRef] [PubMed]
- Wieczorek, J.; Baran, A.; Bubak, A. Mobility, Bioaccumulation in Plants, and Risk Assessment of Metals in Soils. Sci. Total Environ. 2023, 882, 163574. [Google Scholar] [CrossRef]
- Khan, S.; Naushad, M.; Lima, E.C.; Zhang, S.; Shaheen, S.M.; Rinklebe, J. Global Soil Pollution by Toxic Elements: Current Status and Future Perspectives on the Risk Assessment and Remediation Strategies—A Review. J. Hazard. Mater. 2021, 417, 126039. [Google Scholar] [CrossRef] [PubMed]
- Bolan, N.; Kunhikrishnan, A.; Thangarajan, R.; Kumpiene, J.; Park, J.; Makino, T.; Kirkham, M.B.; Scheckel, K. Remediation of Heavy Metal(Loid)s Contaminated Soils—To Mobilize or to Immobilize? J. Hazard. Mater. 2014, 266, 141–166. [Google Scholar] [CrossRef]
- Zaidi, A.; Wani, P.A.; Khan, M.S. (Eds.) Toxicity of Heavy Metals to Legumes and Bioremediation; Springer: Vienna, Austria, 2012; ISBN 978-3-7091-0729-4. [Google Scholar]
- SIST EN 12457-2:2004; Characterisation of Waste—Leaching—Compliance Test for Leaching of Granular Waste Materials and Sludges—Part 2: One Stage Batch Test at a Liquid to Solid Ratio of 10 l/Kg for Materials with Particle Size Below 4 Mm (Without or with Size Reduction). European Committee for Standardization: Brussels, Belgium, 2002.
- ISO/TS 21268-2:2007(E); Soil Quality—Leaching Procedures for Subsequent Chemical and Ecotoxicological Testing of Soil and Soil Materials—Part 2: Batch Test Using a Liquid to Solid Ratio of 10 L/Kg Dry Matter. ISO: Geneva, Switzerland, 2007.
- Nazzal, Y.; Bărbulescu, A.; Howari, F.; Al-Taani, A.A.; Iqbal, J.; Xavier, C.M.; Sharma, M.; Dumitriu, C. Ștefan Assessment of Metals Concentrations in Soils of Abu Dhabi Emirate Using Pollution Indices and Multivariate Statistics. Toxics 2021, 9, 95. [Google Scholar] [CrossRef]
- Everitt, B.S.; Dunn, G. Applied Multivariate Data Analysis; Wiley: Hoboken, NJ, USA, 2001; ISBN 9780470711170. [Google Scholar]
- Kowalska, J.; Mazurek, R.; Gąsiorek, M.; Setlak, M.; Zaleski, T.; Waroszewski, J. Soil Pollution Indices Conditioned by Medieval Metallurgical Activity—A Case Study from Krakow (Poland). Environ. Pollut. 2016, 218, 1023–1036. [Google Scholar] [CrossRef]
- Nannoni, F.; Protano, G. Chemical and Biological Methods to Evaluate the Availability of Heavy Metals in Soils of the Siena Urban Area (Italy). Sci. Total Environ. 2016, 568, 1–10. [Google Scholar] [CrossRef]
- Caeiro, S.; Costa, M.H.; Ramos, T.B.; Fernandes, F.; Silveira, N.; Coimbra, A.; Medeiros, G.; Painho, M. Assessing Heavy Metal Contamination in Sado Estuary Sediment: An Index Analysis Approach. Ecol. Indic. 2005, 5, 151–169. [Google Scholar] [CrossRef]
- Kowalska, J.B.; Mazurek, R.; Gąsiorek, M.; Zaleski, T. Pollution Indices as Useful Tools for the Comprehensive Evaluation of the Degree of Soil Contamination–A Review. Environ. Geochem. Health 2018, 40, 2395–2420. [Google Scholar] [CrossRef] [PubMed]
- Mazurek, R.; Kowalska, J.; Gasiorek, M.; Setlak, M. Micromorphological and Physico-Chemical Analyses of Cultural Layers in the Urban Soil of a Medieval City—A Case Study from Krakow, Poland. CATENA 2016, 141, 73–84. [Google Scholar] [CrossRef]
- Nganje, T.N.; Adamu, C.I.; Ukpong, E.E. Heavy Metal Concentrations in Soils and Plants in the Vicinity of Arufu Lead-Zinc Mine, Middle Benue Trough, Nigeria. Chin. J. Geochem. 2010, 29, 167–174. [Google Scholar] [CrossRef]
- Yuanan, H.; He, K.; Sun, Z.; Chen, G.; Cheng, H. Quantitative Source Apportionment of Heavy Metal(Loid)s in the Agricultural Soils of an Industrializing Region and Associated Model Uncertainty. J. Hazard. Mater. 2020, 391, 122244. [Google Scholar] [CrossRef]
- Qiao, P.; Lei, M.; Yang, S.; Yang, J.; Guo, G.; Zhou, X. Comparing Ordinary Kriging and Inverse Distance Weighting for Soil as Pollution in Beijing. Environ. Sci. Pollut. Res. 2018, 25, 15597–15608. [Google Scholar] [CrossRef] [PubMed]
- Gök, G.; Tulun, Ş.; Çelebi, H. Mapping of Heavy Metal Pollution Density and Source Distribution of Campus Soil Using Geographical Information System. Sci. Rep. 2024, 14, 29918. [Google Scholar] [CrossRef]
- Tešić, M.; Stojanović, N.; Knežević, M.; Đunisijević-Bojović, D.; Petrović, J.; Pavlović, P. The Impact of the Degree of Urbanization on Spatial Distribution, Sources and Levels of Heavy Metals Pollution in Urban Soils—A Case Study of the City of Belgrade (Serbia). Sustainability 2022, 14, 13126. [Google Scholar] [CrossRef]
- Ding, Q.; Cheng, G.; Wang, Y.; Zhuang, D. Effects of Natural Factors on the Spatial Distribution of Heavy Metals in Soils Surrounding Mining Regions. Sci. Total Environ. 2017, 578, 577–585. [Google Scholar] [CrossRef]
- Atibu, E.K.; Lacroix, P.; Sivalingam, P.; Ray, N.; Giuliani, G.; Mulaji, C.K.; Otamonga, J.P.; Mpiana, P.T.; Slaveykova, V.I.; Poté, J. High Contamination in the Areas Surrounding Abandoned Mines and Mining Activities: An Impact Assessment of the Dilala, Luilu and Mpingiri Rivers, Democratic Republic of the Congo. Chemosphere 2018, 191, 1008–1020. [Google Scholar] [CrossRef]
- Sako, A.; Semdé, S.; Wenmenga, U. Geochemical Evaluation of Soil, Surface Water and Groundwater around the Tongon Gold Mining Area, Northern Côte d’Ivoire, West Africa. J. Afr. Earth Sci. 2018, 145, 297–316. [Google Scholar] [CrossRef]
- Johnson, A.W.; Gutiérrez, M.; Gouzie, D.; McAliley, L.R. State of Remediation and Metal Toxicity in the Tri-State Mining District, USA. Chemosphere 2016, 144, 1132–1141. [Google Scholar] [CrossRef]
- Zhang, R.; Chen, T.; Pu, L.; Qie, L.; Huang, S.; Chen, D. Current Situation of Agricultural Soil Pollution in Jiangsu Province: A Meta-Analysis. Land 2023, 12, 455. [Google Scholar] [CrossRef]
- Hou, D.; O’Connor, D.; Igalavithana, A.D.; Alessi, D.S.; Luo, J.; Tsang, D.C.W.; Sparks, D.L.; Yamauchi, Y.; Rinklebe, J.; Ok, Y.S. Metal Contamination and Bioremediation of Agricultural Soils for Food Safety and Sustainability. Nat. Rev. Earth Environ. 2020, 1, 366–381. [Google Scholar] [CrossRef]
- Wan, Y.; Liu, J.; Zhuang, Z.; Wang, Q.; Li, H. Heavy Metals in Agricultural Soils: Sources, Influencing Factors, and Remediation Strategies. Toxics 2024, 12, 63. [Google Scholar] [CrossRef]
- Sharmin, S.; Wang, Q.; Islam, M.R.; Isobe, Y.; Enyoh, C.E.; Shangrong, W. Unveiling Heavy Metal Distribution in Different Agricultural Soils and Associated Health Risks Among Farming Communities of Bangladesh. Environments 2025, 12, 198. [Google Scholar] [CrossRef]
- Islam, M.S.; Nur-E-Alam, M.; Iqbal, M.A.; Khan, M.B.; Al Mamun, S.; Miah, M.Y.; Rasheduzzaman, M.; Appalasamy, S.; Salam, M.A. Spatial Distribution of Heavy Metal Abundance at Distance Gradients of Roadside Agricultural Soil from the Busiest Highway in Bangladesh: A Multi-Index Integration Approach. Environ. Res. 2024, 250, 118551. [Google Scholar] [CrossRef]
- Wang, C.; Hu, J.; Zhang, Y.; Di, Y.; Wu, X. Spatial Distribution Characteristic, Source Apportionment, and Risk Assessment of Heavy Metals in the Soil of an Urban Riparian Zone. Ecotoxicol. Environ. Saf. 2025, 298, 118271. [Google Scholar] [CrossRef]
- Arias-Navarro, C.; Vidojevic, D.; Zdruli, P.; Mezquita, F.Y.; Jones, A.; Wojda, P. Soil Pollution in the Western Balkans; Publications Office of the European Union: Luxembourg, 2024; ISBN 9789268200957. [Google Scholar]
- Janković, M.; Jelić, I.; Rajačić, M.; Krneta Nikolić, J.; Vukanac, I.; Dimović, S.; Sarap, N.; Šljivić-Ivanović, M. Distribution of Natural Radionuclides and 137Cs in Urban Soil Samples from the City of Novi Sad, Serbia-Radiological Risk Assessment. Toxics 2023, 11, 345. [Google Scholar] [CrossRef]
- Mihailović, A.; Budinski-Petković, L.; Popov, S.; Ninkov, J.; Vasin, J.; Ralević, N.M.; Vučinić Vasić, M. Spatial Distribution of Metals in Urban Soil of Novi Sad, Serbia: GIS Based Approach. J. Geochem. Explor. 2015, 150, 104–114. [Google Scholar] [CrossRef]
- EPA 200.7; Determination of Metals and Trace Elements in Water and Wastes by Inductively Coupled Plasma-Atomic Emission Spectrometry, Selected Analytical Methods for Environmental Remediation and Recovery (SAM). EPA: Washington, DC, USA, 2017.
- ISO 10523:2008(En); Water Quality—Determination of PH. International Organization for Standardization (ISO): Geneva, Switzerland, 2008.
- BS EN 27888:1993; Water Quality. Method for the Determination of Electrical Conductivity. European Standards: Plzen, Czech Republic, 1993.
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; CRC Press: Boca Raton, FL, USA, 2010; ISBN 9780429192036. [Google Scholar]
- Regulation on Limit Values of Pollutants, Harmful, and Dangerous Substances in Soil. Official Gazette of the Republic of Serbia 30/2018 and 64/2019. Available online: https://www.paragraf.rs/propisi/uredba-granicnim-vrednostima-zagadjujucih-stetnih-opasnih-materija-zemljistu.html (accessed on 5 August 2025). (In Serbian).
- Škrbić, B.; Đurišić-Mladenović, N. Distribution of Heavy Elements in Urban and Rural Surface Soils: The Novi Sad City and the Surrounding Settlements, Serbia. Environ. Monit. Assess. 2013, 185, 457–471. [Google Scholar] [CrossRef]
- Provincial Secretariat for Urban Planning and Environmental Protection Republic of Serbia Autonomous Province of Vojvodina. Study on the Assessment of Quality and Evaluation of the Degree of Threat Toland Monitoring of Non-Agricultural Land in the AP Vojvodina JN OP 11/2022; Provincial Secretariat for Urban Planning and Environmental Protection: Novi Sad, Serbia, 2022. [Google Scholar]
- Stajic, J.M.; Milenkovic, B.; Pucarevic, M.; Stojic, N.; Vasiljevic, I.; Nikezic, D. Exposure of School Children to Polycyclic Aromatic Hydrocarbons, Heavy Metals and Radionuclides in the Urban Soil of Kragujevac City, Central Serbia. Chemosphere 2016, 146, 68–74. [Google Scholar] [CrossRef]
- Cakmak, D.; Perovic, V.; Kresovic, M.; Jaramaz, D.; Mrvic, V.; Belanovic Simic, S.; Saljnikov, E.; Trivan, G. Spatial Distribution of Soil Pollutants in Urban Green Areas (a Case Study in Belgrade). J. Geochem. Explor. 2018, 188, 308–317. [Google Scholar] [CrossRef]
- Enviro Engineering. Soil Remediation Circular 2013 1 Soil Remediation Circular 2013, Version of 1 July 2013; Enviro Engineering: Barcelona, Spain, 2013. [Google Scholar]
- Ministry of the Environment. NB: Unofficial Translation; Legally Binding Texts Are Those in Finnish and Swedish Ministry of the Environment, Finland Government Decree on the Assessment of Soil Contamination and Remediation Needs; Ministry of the Environment: Helsinki, Finland, 2007. [Google Scholar]
- FAS China Staff. National Standard Soil Environmental Quality Risk Standard for Soil Contamination of Agricultural Land; USDA: Washington, DC, USA, 2024. [Google Scholar]
- European Union. Council of European Communities Council Directive 86/278/EEC of 12 June 1986 on the Protection of the Environment, and in Particular of the Soil, When Sewage Sludge Is Used in Agriculture. Off. J. Eur. Communities 1986, 4, 6–12. [Google Scholar]
- Dong, B.; Zhang, R.; Gan, Y.; Cai, L.; Freidenreich, A.; Wang, K.; Guo, T.; Wang, H. Multiple Methods for the Identification of Heavy Metal Sources in Cropland Soils from a Resource-Based Region. Sci. Total Environ. 2019, 651, 3127–3138. [Google Scholar] [CrossRef]
- Jolliffe, I.T.; Cadima, J. Principal Component Analysis: A Review and Recent Developments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef]
- Marukatat, S. Tutorial on PCA and Approximate PCA and Approximate Kernel PCA. Artif. Intell. Rev. 2023, 56, 5445–5477. [Google Scholar] [CrossRef]
- Kherif, F.; Latypova, A. Principal Component Analysis. In Machine Learning; Elsevier: Amsterdam, The Netherlands, 2020; pp. 209–225. [Google Scholar]
- Bernard, D.T.K.; Munasinghe, A.A.S.N.; Premarathne, I.K.R.J.; Wijayarathne, S. The Influence Of Facebook Marketing On Consumer Buying Intention Of Clothing: Evidence From Young Adults. Arch. Bus. Res. 2020, 8, 37–51. [Google Scholar] [CrossRef]
- Shrestha, N. Factor Analysis as a Tool for Survey Analysis. Am. J. Appl. Math. Stat. 2021, 9, 4–11. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, G.; Zhang, D.; Lei, M. An Integrated Method for Source Apportionment of Heavy Metal(Loid)s in Agricultural Soils and Model Uncertainty Analysis. Environ. Pollut. 2021, 276, 116666. [Google Scholar] [CrossRef]
- Republic Hydrometeorological Service of Serbia Meteorological Yearbook 2024. Available online: https://www.hidmet.gov.rs/data/meteo_godisnjaci/Republika%20Srbija%20-%20Meteorolo%C5%A1ki%20godisnjak%201%20-%20klimatoloki%20podaci%20-%202024.pdf (accessed on 1 August 2025). (In Serbian)
- Papadopoulos, I.; Golia, E.E.; Kantzou, O.-D.; Papadimou, S.G.; Bourliva, A. Exploring Heavy Metals Exposure in Urban Green Zones of Thessaloniki (Northern Greece): Risks to Soil and People’s Health. Toxics 2025, 13, 632. [Google Scholar] [CrossRef]
- Tessier, A.; Campbell, P.G.C.; Bisson, M. Sequential Extraction Procedure for the Speciation of Particulate Trace Metals. Anal. Chem. 1979, 51, 844–851. [Google Scholar] [CrossRef]
Variable | Mean | SE Mean | StDev | CoefVar | Minimum | Maximum |
---|---|---|---|---|---|---|
Cr | 30.2 | 2.999 | 13.74 | 45.4 | 15.0 | 54.5 |
Pb | 24.3 | 3.904 | 17.89 | 73.72 | 10.96 | 84.2 |
Cu | 28.0 | 4.246 | 19.46 | 69.59 | 8.67 | 83.6 |
Zn | 29.5 | 8.306 | 38.10 | 129.13 | 6.94 | 120 |
As | 8.43 | 0.4756 | 2.179 | 25.84 | 5.24 | 13.1 |
Mn | 406 | 25.04 | 114.7 | 28.26 | 256 | 705 |
Ni | 26.9 | 2.700 | 12.37 | 45.97 | 17.3 | 56.6 |
Fe | 18,936 | 736.3 | 3374 | 17.82 | 14,473 | 26,193 |
Serbia [45] | Dutch [50] | Finland [51] | China [52] | EU [53] | ||
---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | |
Cr | 100 | 380 | 180 Cr (III) 78 Cr (VI) | 200 | 250 | - |
Pb | 85 | 530 | 530 | 200 | 170 | 50–300 |
Cu | 36 | 190 | 190 | 150 | 100 | 50–140 |
Zn | 140 | 720 | 720 | 250 | 300 | 150–300 |
As | 29 | 55 | 76 | 50 | 25 | - |
Ni | 35 | 210 | 100 | 100 | 190 | 30–75 |
Cd | 0.8 | 12 | 13 | 10 | 0.6 | 1–3 |
Co | 9 | 240 | 190 | 100 | - | - |
Cr | Pb | Cu | Zn | As | Mn | Ni | |
Pb | 0.538 ** p = 0.012 | ||||||
Cu | 0.779 * p < 0.001 | 0.434 p = 0.049 | |||||
Zn | 0.618 ** p = 0.003 | 0.890 ** p < 0.001 | 0.419 p = 0.058 | ||||
As | 0.563 ** p = 0.008 | 0.289 p = 0.204 | 0.699 ** p < 0.001 | 0.310 p = 0.172 | |||
Mn | 0.787 ** p < 0.001 | 0.385 p = 0.085 | 0.809 ** p < 0.001 | 0.523 * p = 0.015 | 0.766 * p < 0.001 | ||
Ni | 0.697 ** p < 0.001 | 0.571 ** p = 0.007 | 0.720 ** p < 0.001 | 0.620 ** p = 0.003 | 0.536 ** p = 0.012 | 0.682 * p = 0.001 | |
Fe | 0.573 ** p = 0.007 | 0.005 p = 0.984 | 0.644 ** p = 0.002 | 0.181 p = 0.431 | 0.860 * p < 0.001 | 0.820 * p < 0.001 | 0.481 p = 0.027 |
Variable | PC1 | PC2 |
---|---|---|
Fe | 0.959 | 0.063 |
As | 0.886 | −0.140 |
Mn | 0.872 | −0.364 |
Cu | 0.794 | −0.403 |
Cr | 0.664 | −0.580 |
Pb | 0.063 | −0.956 |
Zn | 0.175 | −0.929 |
Ni | 0.572 | −0.631 |
Variable | Minimum | Maximum | Mean | Standard Deviation | Limit Value for Inert Waste [14] |
---|---|---|---|---|---|
Cr | 0.010 | 0.010 | 0.010 | 0 | 0.5 |
Pb | 0.010 | 0.010 | 0.010 | 0 | 0.5 |
Cu | 0.070 | 0.580 | 0.210 | 0.105 | 2.0 |
Zn | 0.025 | 0.080 | 0.027 | 0.012 | 4.0 |
As | 0.005 | 0.620 | 0.097 | 0.158 | 0.5 |
Mn | 0.005 | 9.73 | 3.05 | 3.268 | - |
Co | 0.010 | 0.010 | 0.010 | 0 | - |
Cd | 0.005 | 0.005 | 0.005 | 0 | 0.02 |
Ni | 0.010 | 0.080 | 0.038 | 0.030 | 0.40 |
Variable | Minimum | Maximum | Mean | StDev |
---|---|---|---|---|
Cr | 0.010 | 0.010 | 0.010 | 0 |
Pb | 0.010 | 0.010 | 0.010 | 0 |
Cu | 0.200 | 1.37 | 0.411 | 0.297 |
Zn | 0.025 | 0.120 | 0.036 | 0.030 |
As | 0.015 | 0.660 | 0.232 | 0.223 |
Mn | 0.130 | 36.4 | 10.4 | 8.53 |
Co | 0.005 | 0.005 | 0.005 | 0 |
Cd | 0.005 | 0.005 | 0.005 | 0 |
Ni | 0.010 | 0.230 | 0.088 | 0.059 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jelić, I.; Topalović, D.; Rajković, M.; Jovašević, D.; Pavićević, K.; Janković, M.; Šljivić-Ivanović, M. Assessment of Heavy Metal Concentrations in Urban Soil of Novi Sad: Correlation Analysis and Leaching Potential. Appl. Sci. 2025, 15, 10842. https://doi.org/10.3390/app151910842
Jelić I, Topalović D, Rajković M, Jovašević D, Pavićević K, Janković M, Šljivić-Ivanović M. Assessment of Heavy Metal Concentrations in Urban Soil of Novi Sad: Correlation Analysis and Leaching Potential. Applied Sciences. 2025; 15(19):10842. https://doi.org/10.3390/app151910842
Chicago/Turabian StyleJelić, Ivana, Dušan Topalović, Maja Rajković, Danica Jovašević, Kristina Pavićević, Marija Janković, and Marija Šljivić-Ivanović. 2025. "Assessment of Heavy Metal Concentrations in Urban Soil of Novi Sad: Correlation Analysis and Leaching Potential" Applied Sciences 15, no. 19: 10842. https://doi.org/10.3390/app151910842
APA StyleJelić, I., Topalović, D., Rajković, M., Jovašević, D., Pavićević, K., Janković, M., & Šljivić-Ivanović, M. (2025). Assessment of Heavy Metal Concentrations in Urban Soil of Novi Sad: Correlation Analysis and Leaching Potential. Applied Sciences, 15(19), 10842. https://doi.org/10.3390/app151910842