Effect of Artificial Diet Modification with Dextrose on the Growth and Fatty Acid Composition of Tenebrio molitor Larvae for Biodiesel Production
Abstract
1. Introduction
2. Materials and Methods
2.1. Tenebrio molitor Rearing
2.2. Diet Modification
2.3. Oil Extraction
2.4. Chemical Characterization of Tenebrio molitor Oil
2.5. Oil Transesterification
2.6. Chemical Characterization of Biodiesel
2.7. Statistical Analysis
3. Results
3.1. Effect of the Diet Modification
3.2. Oil Yield of Tenebrio molitor
3.3. Tenebrio molitor Oil Characterization
3.4. Oil Transesterification
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Energy Agency (IEA). World Energy Outlook 2024; IEA: Paris, France, 2024. [Google Scholar]
- Leach, F.; Kalghatgi, G.; Stone, R.; Miles, P. The Scope for Improving the Efficiency and Environmental Impact of Internal Combustion Engines. Transp. Eng. 2020, 1, 100005. [Google Scholar] [CrossRef]
- Su, S.; Lv, T.; Lai, Y.; Mu, J.; Ge, Y.; Giechaskiel, B. Particulate Emissions of Heavy Duty Diesel Engines Measured from the Tailpipe and the Dilution Tunnel. J. Aerosol. Sci. 2021, 156, 105799. [Google Scholar] [CrossRef]
- Lindstad, E.; Ask, T.Ø.; Cariou, P.; Eskeland, G.S.; Rialland, A. Wise Use of Renewable Energy in Transport. Transp. Res. D Transp. Environ. 2023, 119, 103713. [Google Scholar] [CrossRef]
- Muślewski, Ł.; Markiewicz, M.; Pająk, M.; Kałaczyński, T.; Kolar, D. Analysis of the Use of Fatty Acid Methyl Esters as an Additive to Diesel Fuel for Internal Combustion Engines. Energies 2021, 14, 7057. [Google Scholar] [CrossRef]
- Verma, S.; Sahu, D.; Almutairi, B.O. Production and Characterization of Biodiesel Fuel Produced from Third-Generation Feedstock. Front. Mater. 2024, 11, 1454120. [Google Scholar] [CrossRef]
- Almady, S.S.; Moussa, A.I.; Deef, M.M.; Zayed, M.F.; Al-Sager, S.M.; Aboukarima, A.M. Biodiesel Production through the Transesterification of Non-Edible Plant Oils Using Glycerol Separation Technique with AC High Voltage. Sustainability 2024, 16, 2896. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, H.J.; Park, S.G.; Lim, S.R. Promising Insects for Sustainable Food and Biofuel. Int. J. Agric. Nat. Res. 2024, 51, 75–84. [Google Scholar] [CrossRef]
- Koyunoğlu, C. Biofuel Production Utilizing Tenebrio molitor: A Sustainable Approach for Organic Waste Management. Int. J. Thermofluids 2024, 22, 100603. [Google Scholar] [CrossRef]
- Syahrulawal, L.; Torske, M.O.; Sapkota, R.; Næss, G.; Khanal, P. Improving the Nutritional Values of Yellow Mealworm Tenebrio molitor (Coleoptera: Tenebrionidae) Larvae as an Animal Feed Ingredient: A Review. J. Anim. Sci. Biotechnol. 2023, 14, 146. [Google Scholar] [CrossRef]
- Moruzzo, R.; Riccioli, F.; Espinosa Diaz, S.; Secci, C.; Poli, G.; Mancini, S. Mealworm (Tenebrio molitor): Potential and Challenges to Promote Circular Economy. Animals 2021, 11, 2568. [Google Scholar] [CrossRef]
- Papastavropoulou, K.; Koupa, A.; Kritikou, E.; Kostakis, M.; Dervisoglou, S.; Roussos, A.; Perdikis, D.; Thomaidis, N.S.; Oz, E.; Oz, F.; et al. Study of the Effect of Feeding Tenebrio molitor Larvae during Their Rearing on Their Growth, Nutritional Profile, Value and Safety of the Produced Flour. Food Chem. X 2024, 24, 101838. [Google Scholar] [CrossRef] [PubMed]
- Kröncke, N.; Benning, R. Self-Selection of Feeding Substrates by Tenebrio molitor Larvae of Different Ages to Determine Optimal Macronutrient Intake and the Influence on Larval Growth and Protein Content. Insects 2022, 13, 657. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, N.; Abelho, M.; Costa, R. A Review of the Scientific Literature for Optimal Conditions for Mass Rearing Tenebrio molitor (Coleoptera: Tenebrionidae). J. Entomol. Sci. 2018, 53, 434–454. [Google Scholar] [CrossRef]
- Khanal, P.; Pandey, D.; Næss, G.; Cabrita, A.R.J.; Fonseca, A.J.M.; Maia, M.R.G.; Timilsina, B.; Veldkamp, T.; Sapkota, R.; Overrein, H. Yellow Mealworms (Tenebrio molitor) as an Alternative Animal Feed Source: A Comprehensive Characterization of Nutritional Values and the Larval Gut Microbiome. J. Clean. Prod. 2023, 389, 136104. [Google Scholar] [CrossRef]
- Toviho, O.A.; Bársony, P. Nutrient Composition and Growth of Yellow Mealworm (Tenebrio molitor) at Different Ages and Stages of the Life Cycle. Agriculture 2022, 12, 1924. [Google Scholar] [CrossRef]
- Muñoz-Seijas, N.; Fernandes, H.; Domínguez, J.M.; Salgado, J.M. Recent Advances in Biorefinery of Tenebrio molitor Adopting Green Technologies. Food Bioprocess Technol. 2025, 18, 1061–1078. [Google Scholar] [CrossRef]
- Dreassi, E.; Cito, A.; Zanfini, A.; Materozzi, L.; Botta, M.; Francardi, V. Dietary Fatty Acids Influence the Growth and Fatty Acid Composition of the Yellow Mealworm Tenebrio molitor (Coleoptera: Tenebrionidae). Lipids 2017, 52, 285–294. [Google Scholar] [CrossRef]
- Martínez-Pineda, M.; Juan, T.; Antoniewska-Krzeska, A.; Vercet, A.; Abenoza, M.; Yagüe-Ruiz, C.; Rutkowska, J. Exploring the Potential of Yellow Mealworm (Tenebrio molitor) Oil as a Nutraceutical Ingredient. Foods 2024, 13, 3867. [Google Scholar] [CrossRef]
- Abutaha, N.; Al-Mekhlafi, F.A. The Impact of Drying and Extraction Methods on Total Lipid, Fatty Acid Profile, and Cytotoxicity of Tenebrio molitor Larvae. Open Chem. 2024, 22, 20240110. [Google Scholar] [CrossRef]
- Kotsou, K.; Chatzimitakos, T.; Athanasiadis, V.; Bozinou, E.; Rumbos, C.I.; Athanassiou, C.G.; Lalas, S.I. Enhancing the Nutritional Profile of Tenebrio molitor Using the Leaves of Moringa oleifera. Foods 2023, 12, 2612. [Google Scholar] [CrossRef]
- Melis, R.; Braca, A.; Sanna, R.; Spada, S.; Mulas, G.; Fadda, M.L.; Sassu, M.M.; Serra, G.; Anedda, R. Metabolic Response of Yellow Mealworm Larvae to Two Alternative Rearing Substrates. Metabolomics 2019, 15, 113. [Google Scholar] [CrossRef]
- Montalbán, A.; Martínez-Miró, S.; Schiavone, A.; Madrid, J.; Hernández, F. Growth Performance, Diet Digestibility, and Chemical Composition of Mealworm (Tenebrio molitor L.) Fed Agricultural By-Products. Insects 2023, 14, 824. [Google Scholar] [CrossRef] [PubMed]
- Siow, H.S.; Sudesh, K.; Murugan, P.; Ganesan, S. Mealworm (Tenebrio molitor) Oil Characterization and Optimization of the Free Fatty Acid Pretreatment via Acid-Catalyzed Esterification. Fuel 2021, 299, 120905. [Google Scholar] [CrossRef]
- Zheng, L.; Hou, Y.; Li, W.; Yang, S.; Li, Q.; Yu, Z. Exploring the Potential of Grease from Yellow Mealworm Beetle (Tenebrio molitor) as a Novel Biodiesel Feedstock. Appl. Energy 2013, 101, 618–621. [Google Scholar] [CrossRef]
- Wang, C.; Qian, L.; Wang, W.; Wang, T.; Deng, Z.; Yang, F.; Xiong, J.; Feng, W. Exploring the Potential of Lipids from Black Soldier Fly: New Paradigm for Biodiesel Production (I). Renew. Energy 2017, 111, 749–756. [Google Scholar] [CrossRef]
- Karki, S.; Sanjel, N.; Poudel, J.; Choi, J.H.; Oh, S.C. Supercritical Transesterification of Waste Vegetable Oil: Characteristic Comparison of Ethanol and Methanol as Solvents. Appl. Sci. 2017, 7, 632. [Google Scholar] [CrossRef]
- Lin, C.Y.; Lin, Y.W. Engine Performance of High-Acid Oil-Biodiesel through Supercritical Transesterification. ACS Omega 2023, 9, 3445–3453. [Google Scholar] [CrossRef]
- ASTM D6751; Standard Specification for Biodiesel Fuel Blend Stock (B100) for Middle Distillate Fuels. ASTM International: West Conshohocken, PA, USA, 2023.
- EN 14214; Automotive Fuels — Fatty Acid Methyl Esters (FAME) for Diesel Engines — Requirements and Test Methods. European Committee for Standardization (CEN): Brussels, Belgium, 2012.
- Oonincx, D.G.A.B.; van Itterbeeck, J.; Heetkamp, M.J.W.; van den Brand, H.; van Loon, J.J.A.; van Huis, A. An Exploration on Greenhouse Gas and Ammonia Production by Insect Species Suitable for Animal or Human Consumption. PLoS ONE 2010, 5, e14445. [Google Scholar] [CrossRef]
- Riaz, K.; Iqbal, T.; Khan, S.; Usman, A.; Al-Ghamdi, M.S.; Shami, A.; El Hadi Mohamed, R.A.; Almadiy, A.A.; Al Galil, F.M.A.; Alfuhaid, N.A. Growth Optimization and Rearing of Mealworm (Tenebrio molitor L.) as a Sustainable Food Source. Foods 2023, 12, 1891. [Google Scholar] [CrossRef]
- Deladino, L.; Anbinder, P.S.; Navarro, A.S.; Martino, M.N. Encapsulation of Natural Antioxidants Extracted from Ilex paraguariensis. Carbohydr. Polym. 2008, 71, 126–134. [Google Scholar] [CrossRef]
- Meneguz, M.; Schiavone, A.; Gai, F.; Dama, A.; Lussiana, C.; Renna, M.; Gasco, L. Effect of Rearing Substrate on Growth Performance, Waste Reduction Efficiency and Chemical Composition of Black Soldier Fly (Hermetia illucens) Larvae. J. Sci. Food Agric. 2018, 98, 5776–5784. [Google Scholar] [CrossRef]
- Lenaerts, S.; Van Der Borght, M.; Callens, A.; Van Campenhout, L. Suitability of Microwave Drying for Mealworms (Tenebrio molitor) as Alternative to Freeze Drying: Impact on Nutritional Quality and Colour. Food Chem. 2018, 254, 129–136. [Google Scholar] [CrossRef]
- Lee, D.J.; Kim, M.; Jung, S.; Park, Y.K.; Jang, Y.N.; Tsang, Y.F.; Kim, H.; Park, K.H.; Kwon, E.E. Direct Conversion of Yellow Mealworm Larvae into Biodiesel via a Non-Catalytic Transesterification Platform. Chem. Eng. J. 2022, 427, 131782. [Google Scholar] [CrossRef]
- Ruschioni, S.; Loreto, N.; Foligni, R.; Mannozzi, C.; Raffaelli, N.; Zamporlini, F.; Pasquini, M.; Roncolini, A.; Cardinali, F.; Osimani, A. Addition of Olive Pomace to Feeding Substrate Affects Growth Performance and Nutritional Value of Mealworm (Tenebrio molitor L.) Larvae. Foods 2020, 9, 317. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.X.; Zhang, Y.R.; Yu, T.H.; Yuan, B.Q.; Huang, D.W.; Xiao, J.H. Productive Performance of Yellow Mealworm Larvae in Different Protein and Carbohydrate Levels in the Same Energy Substrate. Animal 2025, 19, 101555. [Google Scholar] [CrossRef] [PubMed]
- Hoc, B.; Genva, M.; Fauconnier, M.L.; Lognay, G.; Francis, F.; Caparros Megido, R. About Lipid Metabolism in Hermetia illucens (L. 1758): On the Origin of Fatty Acids in Prepupae. Sci. Rep. 2020, 10, 11916. [Google Scholar] [CrossRef] [PubMed]
- Rho, M.S.; Lee, K.P. Mapping the Nutritional Landscape in the Yellow Mealworm: Testing the Nutrient-Mediated Life-History Trade-Offs. J. Exp. Biol. 2023, 226, jeb245522. [Google Scholar] [CrossRef]
- Kröncke, N.; Benning, R. Influence of Dietary Protein Content on the Nutritional Composition of Mealworm Larvae (Tenebrio molitor L.). Insects 2023, 14, 261. [Google Scholar] [CrossRef]
- Mlček, J.; Adámek, M.; Adámková, A.; Matyáš, J.; Bučková, M.; Mrázková, M.; Vícha, R.; Vychodil, R.; Knížková, I.; Volek, Z. Feed Parameters Influencing the Breeding of Mealworms (Tenebrio molitor). Sustainability 2021, 13, 12992. [Google Scholar] [CrossRef]
- Khizar, F.; Hameed, S.; Yousaf, H.K.; Sarwar, M.S. Evaluating the Composition of Biodiesel Synthesized from Black Soldier Fly (Hermetia illucens) Larvae. Futur. Biotechnol. 2024, 4, 31–35. [Google Scholar] [CrossRef]
- Charoenchaitrakool, M.; Thienmethangkoon, J. Statistical Optimization for Biodiesel Production from Waste Frying Oil through Two-Step Catalyzed Process. Fuel Process. Technol. 2011, 92, 112–118. [Google Scholar] [CrossRef]
- Abid, M.; Touzani, A.; Benhima, R. Synthesis of Biodiesel from Chicken’s Skin Waste by Homogeneous Transesterification. Int. J. Sustain. Eng. 2019, 12, 272–280. [Google Scholar] [CrossRef]
- Pinzi, S.; Gandía, L.M.; Arzamendi, G.; Ruiz, J.J.; Dorado, M.P. Influence of Vegetable Oils Fatty Acid Composition on Reaction Temperature and Glycerides Conversion to Biodiesel during Transesterification. Bioresour. Technol. 2011, 102, 1044–1050. [Google Scholar] [CrossRef] [PubMed]
- Awad, S.; Paraschiv, M.; Geo, V.E.; Tazerout, M. Effect of Free Fatty Acids and Short Chain Alcohols on Conversion of Waste Cooking Oil to Biodiesel. Int. J. Green Energy 2014, 11, 441–453. [Google Scholar] [CrossRef]
- Hájek, M.; Vávra, A.; Skopal, F.; Měkotová, M.; Musil, M. Biodiesel: The Study of Methyl Esters Loss in the Glycerol Phase at Various Conditions. J. Clean. Prod. 2018, 197, 1573–1578. [Google Scholar] [CrossRef]
- He, S.; Lian, W.; Liu, X.; Xu, W.; Wang, W.; Qi, S. Transesterification Synthesis of High-Yield Biodiesel from Black Soldier Fly Larvae Using the Combination of Lipase Eversa Transform 2.0 and Lipase SMG1. Food Sci. Technol. 2022, 42, e103221. [Google Scholar] [CrossRef]
- Kowalski, A. Method of Planning and Scheduling the Production Process of Yellow Mealworm Larvae for a Small Enterprise. Appl. Sci. 2024, 14, 7051. [Google Scholar] [CrossRef]
- Safavi, A.; Thrastardottir, R.; Thorarinsdottir, R.I.; Unnthorsson, R. Insect Production: A Circular Economy Strategy in Iceland. Sustainability 2024, 16, 9063. [Google Scholar] [CrossRef]
- Salomone, R.; Saija, G.; Mondello, G.; Giannetto, A.; Fasulo, S.; Savastano, D. Environmental Impact of Food Waste Bioconversion by Insects: Application of Life Cycle Assessment to Process Using Hermetia illucens. J. Clean. Prod. 2017, 140, 890–905. [Google Scholar] [CrossRef]
Ingredient | % Weight | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Control | PS5 | PS9 | PS16 | PC5 | PC9 | PC16 | PD5 | PD9 | PD16 | |
Carrot | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 |
Wheat bran | 11.7 | 11.7 | 11.7 | 11.7 | 11.7 | 11.7 | 11.7 | 11.7 | 11.7 | 11.7 |
Brewer’s yeast | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 |
Ascorbic acid | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
Neomycin | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
Distilled water | 78.4 | 73.4 | 69.4 | 62.4 | 63.4 | 59.2 | 55.6 | 52 | 48.4 | 44.8 |
Sodium triphosphate | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
Methylparaben | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
Starch | 0 | 5 | 9 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
Cellulose | 0 | 0 | 0 | 0 | 5 | 9 | 16 | 0 | 0 | 0 |
Dextrose | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 9 | 16 |
Treatment | % Larval Survival | % Formed Pupae | % Accumulated Survival | Mean Individual Fresh Larval Weight (mg) |
---|---|---|---|---|
Control | 15.76 ± 2.93 F | 28.50 ± 4.46 A | 44.26 ± 5.33 A | 133.33 ± 5.24 A |
PS5 | 31.40 ± 3.36 DEF | 22.89 ± 3.96 ABC | 54.29 ± 2.03 A | 128.78 ± 7.48 A |
PS9 | 24.34 ± 2.87 EF | 27.11 ± 3.31 AB | 51.45 ± 1.31 A | 131.53 ± 5.03 A |
PS16 | 32.85 ± 1.87 DE | 12.86 ± 2.63 CD | 45.71 ± 4.29 A | 128.63 ± 7.67 A |
PC5 | 35.75 ± 1.32 DE | 7.19 ± 1.44 D | 42.94 ± 3.64 A | 128.77 ± 3.81 A |
PC9 | 21.44 ± 2.65 EF | 21.44 ± 2.65 ABC | 42.88 ± 1.32 A | 129.84 ± 8.27 A |
PC16 | 44.18 ± 3.54 CD | 7.13 ± 1.59 D | 48.49 ± 3.50 A | 131.58 ± 3.55 A |
PD5 | 65.76 ± 3.95 AB | 27.11 ± 2.02 AB | 92.87 ± 1.44 C | 114.47 ± 5.93 A |
PD9 | 54.35 ± 2.70 BC | 18.60 ± 1.39 ABCD | 72.95 ± 3.31 B | 123.1 ± 1.85 A |
PD16 | 78.68 ± 3.18 A | 15.70 ± 1.30 BCD | 94.38 ± 1.48 C | 132.94 ± 2.31 A |
Treatment | %Larval Survival | %Formed Pupae | % Accumulated Survival | Mean Individual Fresh Larval Weight (mg) |
---|---|---|---|---|
Control | 22.67 ± 1.76 B | 8 ± 1.15 D | 30.67 ± 1.33 A | 69.39 ± 2.23 D |
D6 | 41.16 ± 1.33 A | 10 ± 1.15 CD | 51.16 ± 1.76 B | 82.74 ± 2.76 CD |
D9 | 46.67 ± 1.76 A | 14.67 ± 1.76 BC | 61.34 ± 2.67 BC | 112.16 ± 0.98 BC |
D12 | 52.67 ± 1.76 A | 17.33 ± 1.33 AB | 70 ± 1.15 C | 128.93 ± 1.40 AB |
D15 | 53.33 ± 1.76 A | 21.33 ± 1.33 A | 74.66 ± 0.67 C | 150.76 ± 1.89 A |
Treatment | Survival Rate (%) | Total Fresh Weight (g) | Total Dry Weight (g) | Humidity (%) | Mean Individual Dry Weight (mg) | Oil Yield (%) |
---|---|---|---|---|---|---|
Control | 50 | 19.34 | 4.96 | 74.35 | 19.84 | 29.17 |
D15 | 64 | 28.58 | 8.04 | 71.87 | 25.12 | 29.07 |
Fatty Acid Content (%) | |||
---|---|---|---|
Carbon Chain | Common Name | Control Diet | D15 |
C11:0 | Undecylic acid | 8.15 | 27.49 |
C12:0 | Lauric acid | - | 0.65 |
C16:0 | Palmitic acid | 14.57 | 14.14 |
C18:1 | Oleic acid | 34.26 | 37.42 |
C18:2 | Linoleic acid | 30.37 | 20.30 |
C18:3 | α-Linoleic acid | 5.82 | - |
C19:0 | Nonadecanoic acid | 6.83 | - |
Saturated Fatty Acids (SFAs) | 29.55 | 42.28 | |
Unsaturated Fatty Acids (UFAs) | 70.45 | 57.72 | |
Monounsaturated Fatty Acids (MUFAs) | 34.26 | 37.42 | |
Polyunsaturated Fatty Acids (PUFAs) | 36.19 | 20.30 | |
PUFAs/SFAs | 1.22 | 0.48 | |
Oil yield (%) | 29.17 | 29.07 |
Carbon Chain | Common Name | Control Diet | D15 |
---|---|---|---|
C11:0 | Methyl undecanoate | - | 0.26 |
C12:0 | Methyl laurate | 0.47 | - |
C16:0 | Methyl palmitate | 21.25 | 22.77 |
C18:1 | Methyl oleate | 49.44 | 47.10 |
C18:2 | Methyl linoleate | 26.45 | 29.87 |
C18:3 | Methyl linolenate | 2.39 | - |
Saturated Fatty Acids (SFAs) | 21.71 | 23.03 | |
Unsaturated Fatty Acids (UFAs) | 78.29 | 76.97 | |
Monounsaturated Fatty Acids (MUFAs) | 49.44 | 47.70 | |
Polyunsaturated Fatty Acids (PUFAs) | 28.85 | 29.27 | |
PUFAs/SFAs | 1.33 | 1.27 | |
Biodiesel yield (%) | 80.4 | 85.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flores-Sánchez, M.A.; Rico-Chávez, A.K.; González-Chávez, M.M.; Figueroa-Brito, R.; Campos-Guillen, J.; Zavala-Gómez, C.E.; Amaro-Reyes, A.; Barba-Franco, J.d.J.; Ramos-López, M.A. Effect of Artificial Diet Modification with Dextrose on the Growth and Fatty Acid Composition of Tenebrio molitor Larvae for Biodiesel Production. Appl. Sci. 2025, 15, 10777. https://doi.org/10.3390/app151910777
Flores-Sánchez MA, Rico-Chávez AK, González-Chávez MM, Figueroa-Brito R, Campos-Guillen J, Zavala-Gómez CE, Amaro-Reyes A, Barba-Franco JdJ, Ramos-López MA. Effect of Artificial Diet Modification with Dextrose on the Growth and Fatty Acid Composition of Tenebrio molitor Larvae for Biodiesel Production. Applied Sciences. 2025; 15(19):10777. https://doi.org/10.3390/app151910777
Chicago/Turabian StyleFlores-Sánchez, Miguel Alejandro, Amanda Kim Rico-Chávez, Marco Martín González-Chávez, Rodolfo Figueroa-Brito, Juan Campos-Guillen, Carlos Eduardo Zavala-Gómez, Aldo Amaro-Reyes, Joel de Jesús Barba-Franco, and Miguel Angel Ramos-López. 2025. "Effect of Artificial Diet Modification with Dextrose on the Growth and Fatty Acid Composition of Tenebrio molitor Larvae for Biodiesel Production" Applied Sciences 15, no. 19: 10777. https://doi.org/10.3390/app151910777
APA StyleFlores-Sánchez, M. A., Rico-Chávez, A. K., González-Chávez, M. M., Figueroa-Brito, R., Campos-Guillen, J., Zavala-Gómez, C. E., Amaro-Reyes, A., Barba-Franco, J. d. J., & Ramos-López, M. A. (2025). Effect of Artificial Diet Modification with Dextrose on the Growth and Fatty Acid Composition of Tenebrio molitor Larvae for Biodiesel Production. Applied Sciences, 15(19), 10777. https://doi.org/10.3390/app151910777