Enhancing Pediatric Asthma Homecare Management: The Potential of Deep Learning Associated with Spirometry-Labelled Data
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Ethical Consideration
2.2. Participants
2.3. Data Collection
2.3.1. Digital Lung Auscultation
2.3.2. Collection of Demographic and Clinical Data
2.3.3. Spirometry Testing
2.4. Algorithm Development and Diagnostic Model
2.4.1. Preprocessing and Model Training Details
2.4.2. Preprocessing: Spectral Transformation
2.4.3. Model Architecture
2.4.4. Model Training
2.5. Statistical Analysis Plan
3. Results
3.1. Demographic and Clinical Data
3.2. Predictive Capacity of the Algorithm
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AI | Artificial Intelligence |
| ACTp | Asthma Control Test |
| AUROC | Area Under the Receiver Operating Characteristic Curve |
| IC | Inhaled corticosteroids |
| DL | Deep Learning |
| DLA | Digital lung auscultation |
| ERS | European Respiratory Society |
| FEF 25–75 | Forced Expiratory Flow between 25% and 75% of vital capacity |
| FEV1 | Forced expiratory volume in 1 s |
| FVC | Forced vital capacity |
| GLI | Global Lung Initiative |
| HUG | Geneva University Hospitals |
| LABA | Long-acting beta2-agonist |
| ML | Machine learning |
| PRAM | Pediatric Respiratory Assessment Measure |
| ROC | Receiver operating characteristic |
| WAV | Waveform Audio File |
References
- Holgate, S.T.; Price, D.; Valovirta, E. Asthma out of Control? A Structured Review of Recent Patient Surveys. BMC Pulm. Med. 2006, 6, S2. [Google Scholar] [CrossRef]
- Asher, I.; Pearce, N. Global Burden of Asthma among Children. Int. J. Tuberc. Lung Dis. 2014, 18, 1027–3719. [Google Scholar] [CrossRef] [PubMed]
- Aaron, S.; Boulet, L.; Reddel, H.; Gershon, A. Underdiagnosis and Overdiagnosis of Asthma. Am. J. Respir. Crit. Care Med. 2018, 198, 1012–1020. [Google Scholar] [CrossRef]
- Fleming, L.; Wilson, N.; Bush, A. Difficult to Control Asthma in Children. Curr. Opin. Allergy Clin. Immunol. 2007, 7, 190–195. [Google Scholar] [CrossRef]
- Garde, J.; Hervás, D.; Marco, N.; Manuel Milan, J.; Dolores Martos, M. Calculating the Prevalence of Atopy in Children. Allergol. Immunopathol. 2009, 37, 129–134. [Google Scholar] [CrossRef]
- Global Initiative for Asthma. Global Strategy for Asthma Managment and Prevention; Global Initiative for Asthma: Fontana, WI, USA, 2021. [Google Scholar]
- Pasterkamp, H.; Kraman, S.S.; Wodicka, G.R. Respiratory Sounds. Am. J. Respir. Crit. Care Med. 1997, 156, 974–987. [Google Scholar] [CrossRef]
- Chalut, D.S.; Ducharme, F.M.; Davis, G.M. The Preschool Respiratory Assessment Measure (PRAM): A Responsive Index of Acute Asthma Severity. J. Pediatr. 2000, 137, 762–768. [Google Scholar] [CrossRef] [PubMed]
- Kevat, A.C.; Kalirajah, A.; Roseby, R. Digital Stethoscopes Compared to Standard Auscultation for Detecting Abnormal Paediatric Breath Sounds. Eur. J. Pediatr. 2017, 176, 989–992. [Google Scholar] [CrossRef]
- Briganti, G.; Le Moine, O. Artificial Intelligence in Medicine: Today and Tomorrow. Front. Med. 2020, 7, 509744. [Google Scholar] [CrossRef] [PubMed]
- Topalovic, M.; Das, N.; Burgel, P.-R.; Daenen, M.; Derom, E.; Haenebalcke, C.; Janssen, R.; Kerstjens, H.A.M.; Liistro, G.; Louis, R.; et al. Artificial Intelligence Outperforms Pulmonologists in the Interpretation of Pulmonary Function Tests. Eur. Respir. J. 2019, 53, 1801660. [Google Scholar] [CrossRef]
- Bini, S.A. Artificial Intelligence, Machine Learning, Deep Learning, and Cognitive Computing: What Do These Terms Mean and How Will They Impact Health Care? J. Arthroplast. 2018, 33, 2358–2361. [Google Scholar] [CrossRef] [PubMed]
- Heitmann, J.; Glangetas, A.; Doenz, J.; Dervaux, J.; Shama, D.M.; Garcia, D.H.; Benissa, M.R.; Cantais, A.; Perez, A.; Müller, D.; et al. DeepBreath—Automated Detection of Respiratory Pathology from Lung Auscultation in 572 Pediatric Outpatients across 5 Countries. npj Digit. Med. 2023, 6, 104. [Google Scholar] [CrossRef]
- Grzywalski, T.; Piecuch, M.; Szajek, M.; Bręborowicz, A.; Hafke-Dys, H.; Kociński, J.; Pastusiak, A.; Belluzzo, R. Practical Implementation of Artificial Intelligence Algorithms in Pulmonary Auscultation Examination. Eur. J. Pediatr. 2019, 178, 883–890. [Google Scholar] [CrossRef]
- Exarchos, K.P.; Beltsiou, M.; Votti, C.-A.; Kostikas, K. Artificial Intelligence Techniques in Asthma: A Systematic Review and Critical Appraisal of the Existing Literature. Eur. Respir. J. 2020, 56, 2000521. [Google Scholar] [CrossRef]
- Gurung, A.; Scrafford, C.G.; Tielsch, J.M.; Levine, O.S.; Checkley, W. Computerized Lung Sound Analysis as Diagnostic Aid for the Detection of Abnormal Lung Sounds: A Systematic Review and Meta-Analysis. Respir. Med. 2011, 105, 1396–1403. [Google Scholar] [CrossRef]
- Nathan, R.A.; Sorkness, C.A.; Kosinski, M.; Schatz, M.; Li, J.T.; Marcus, P.; Murray, J.J.; Pendergraft, T.B. Development of the Asthma Control Test: A Survey for Assessing Asthma Control. J. Allergy Clin. Immunol. 2004, 113, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Harris, P.A.; Taylor, R.; Thielke, R.; Payne, J.; Gonzalez, N.; Conde, J.G. Research Electronic Data Capture (REDCap)—A Metadata-Driven Methodology and Workflow Process for Providing Translational Research Informatics Support. J. Biomed. Inform. 2009, 42, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Harris, P.A.; Taylor, R.; Minor, B.L.; Elliott, V.; Fernandez, M.; O’Neal, L.; McLeod, L.; Delacqua, G.; Delacqua, F.; Kirby, J.; et al. The REDCap Consortium: Building an International Community of Software Platform Partners. J. Biomed. Inform. 2019, 95, 103208. [Google Scholar] [CrossRef]
- Quanjer, P.H.; Stanojevic, S.; Cole, T.J.; Baur, X.; Hall, G.L.; Culver, B.H.; Enright, P.L.; Hankinson, J.L.; Ip, M.S.M.; Zheng, J.; et al. Multi-Ethnic Reference Values for Spirometry for the 3–95-Yr Age Range: The Global Lung Function 2012 Equations. Eur. Respir. J. 2012, 40, 1324–1343. [Google Scholar] [CrossRef]
- Stanojevic, S.; Kaminsky, D.A.; Miller, M.R.; Thompson, B.; Aliverti, A.; Barjaktarevic, I.; Cooper, B.G.; Culver, B.; Derom, E.; Hall, G.L.; et al. ERS/ATS Technical Standard on Interpretive Strategies for Routine Lung Function Tests. Eur. Respir. J. 2022, 60, 2101499. [Google Scholar] [CrossRef]
- Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In Proceedings of the 32nd International Conference on International Conference on Machine Learning, Lille, France, 7–9 July 2015; JMLR.org: Lille, France, 2015; Volume 37, pp. 448–456. [Google Scholar]
- Park, D.S.; Chan, W.; Zhang, Y.; Chiu, C.-C.; Zoph, B.; Cubuk, E.D.; Le, Q.V. SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition. In Proceedings of the Interspeech 2019, Graz, Austria, 15–19 September 2019; pp. 2613–2617. [Google Scholar]
- Kong, Q.; Cao, Y.; Iqbal, T.; Wang, Y.; Wang, W.; Plumbley, M.D. PANNs: Large-Scale Pretrained Audio Neural Networks for Audio Pattern Recognition. IEEE/ACM Trans. Audio Speech Lang. Proc. 2020, 28, 2880–2894. [Google Scholar] [CrossRef]
- Nair, V.; Hinton, G. Rectified Linear Units Improve Restricted Boltzmann Machines Vinod Nair. In Proceedings of the 27th International Conference on Machine Learning, Haifa, Israel, 21–24 June 2010; Volume 27, pp. 807–814. [Google Scholar]
- Python Software Foundation Python. Available online: https://www.python.org/psf-landing/ (accessed on 18 September 2025).
- Kevat, A.; Kalirajah, A. Artificial Intelligence Accuracy in Detecting Pathological Breath Sounds in Children Using Digital Stethoscopes. Respir. Res. 2020, 21, 235. [Google Scholar] [CrossRef] [PubMed]
- Arjoune, Y.; Nguyen, T.N.; Doroshow, R.W.; Shekhar, R. Technical Characterisation of Digital Stethoscopes: Towards Scalable Artificial Intelligence-Based Auscultation. J. Med. Eng. Technol. 2023, 47, 165–178. [Google Scholar] [CrossRef]
- Islam, M.A.; Bandyopadhyaya, I.; Bhattacharyya, P.; Saha, G. Multichannel Lung Sound Analysis for Asthma Detection. Comput. Methods Programs Biomed. 2018, 159, 111–123. [Google Scholar] [CrossRef] [PubMed]




| Patient Characteristics | Case Group (n = 50) | Control Group (n = 101) | Total (n = 151) |
|---|---|---|---|
| Demographic Characteristics | |||
| Total recording duration in min, n (%) | 214 (21.1) | 798 (78.9) | 1012 (100) |
| 14 (28) 36 (72) | 50 (49.5) 51 (50.5) | 64 (42.4) 87 (57.6) |
| 44 (88) 6 (12) | 87 (86.2) 14 (13.8) | 131 (86.7) 20 (13.3) |
| Age in years, m (SD) | 12.4 (2.5) | 10.9 (3.3) | 11.3 (3.2) |
| Height in cm, m (SD) | 155.4 (16.1) | 144.8 (18.8) | 147.6 (18.3) |
| Weight in kg, m (SD) | 47.2 (14.8) | 42.1 (16.3) | 43.8 (16.0) |
| BMI, m (SD) | 19.6 (3.8) | 19.2 (4.0) | 19.3 (3.9) |
| 47 (94) 36 (72) 21 (42) 24 (48) 11 (22) | 80 (79.2) 58 (57.4) 38 (37.6) 44 (43.6) 18 (17.8) | 127 (84.1) 94 (62.2) 59 (39.1) 68 (45) 29 (19.2) |
| Passive smoking exposure | 24 (48) | 33 (33) | 57 (38) |
| Limitation of physical activity | 26 (52) | 42 (41.6) | 68 (45) |
| 33 (66) 43 (86) 0 0 1 (2) | 36 (35.6) 79 (78) 1 (0.9) 1 (0.9) 1 (0.9) | 69 (45.7) 122 (80.8) 1 (0.6) 1 (0.6) 2 (1.3) |
| Use of Ventolin in the past 24 h, n (%) | 4 (8%) | 6 (5.9%) | 10 (6.6%) |
| Number of corticosteroid courses in the past 12 months, m (SD) | 0.3 (0.51) | 0.25 (0.68) | 0.26 (0.63) |
| Patient Characteristics | Case Group (n = 50) | Control Group (n = 101) | Total (n = 151) | p-Value |
|---|---|---|---|---|
| Clinical data | ||||
| Symptoms at follow-up, n (%) | ||||
| 32 (64) 11 (22) | 46 (45.5) 10 (9.9) | 78 (51.6) 21 (13.9) | <0.05 0.076 |
| Type of symptoms, n (%) | ||||
| 18 (36) 23 (46) | 29 (28.7) 13 (12.9) | 47 (31.1) 36 (23.8) | 0.469 <0.05 |
| Physical examination | ||||
| Heart rate in bpm, m (SD) | 88 (17.7) | 92 (15.1) | 91 (16.0) | 0.174 |
| Respiratory rate per min, m (SD) | 20.8 (5.2) | 20.4 (4.1) | 20.5 (4.5) | 0.636 |
| Oxygen saturation in %, m (SD) | 98 (1.2) | 98 (1.1) | 98 (1.1) | 1.000 |
| Clinical scores | ||||
| ACTp score, m (SD) | 22.83 (2.61) | 24.26 (2.36) | 23.77 (2.53) | <0.001 |
| PRAM score, m (SD) | 0.26 (0.68) | 0.07 (0.29) | 0.13 (0.45) | 0.06 |
| Spirometry tests results | ||||
| FEV1 before β2 inhalation (Z-score), m (SD) | −1.06 (1.17) | 0.16 (1.06) | - | <0.001 |
| FEV1 after β2 inhalation (Z-score), m (SD) | 0.02 (1.03) | 0.40 (1.07) | - | 0.038 |
| FEV1/FVC before β2 inhalation (Z-score), m (SD) | −1.4 (1.09) | −0.1 (1.11) | - | <0.001 |
| Relative change in FEV1 after β2 inhalation (%), m (SD) | 14.54 (7.32) | 3.00 (4.58) | - | <0.001 |
| FVC before β2 inhalation (Z-score), m (SD) | −0.13 (1.35) | 0.15 (1.27) | - | 0224 |
| FVC after β2 inhalation (Z-score), m (SD) | 0.01 (1.12) | 0.18 (1,14) | 0.41 | |
| FEF 25–75 β2 inhalation (Z-score), m (SD) | −1.35 (1,24) | −0.03 (0.99) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cleverley-Leblanc, H.; Siebert, J.N.; Doenz, J.; Hartley, M.-A.; Gervaix, A.; Barazzone-Argiroffo, C.; Lacroix, L.; Ruchonnet-Metrailler, I. Enhancing Pediatric Asthma Homecare Management: The Potential of Deep Learning Associated with Spirometry-Labelled Data. Appl. Sci. 2025, 15, 10662. https://doi.org/10.3390/app151910662
Cleverley-Leblanc H, Siebert JN, Doenz J, Hartley M-A, Gervaix A, Barazzone-Argiroffo C, Lacroix L, Ruchonnet-Metrailler I. Enhancing Pediatric Asthma Homecare Management: The Potential of Deep Learning Associated with Spirometry-Labelled Data. Applied Sciences. 2025; 15(19):10662. https://doi.org/10.3390/app151910662
Chicago/Turabian StyleCleverley-Leblanc, Heidi, Johan N. Siebert, Jonathan Doenz, Mary-Anne Hartley, Alain Gervaix, Constance Barazzone-Argiroffo, Laurence Lacroix, and Isabelle Ruchonnet-Metrailler. 2025. "Enhancing Pediatric Asthma Homecare Management: The Potential of Deep Learning Associated with Spirometry-Labelled Data" Applied Sciences 15, no. 19: 10662. https://doi.org/10.3390/app151910662
APA StyleCleverley-Leblanc, H., Siebert, J. N., Doenz, J., Hartley, M.-A., Gervaix, A., Barazzone-Argiroffo, C., Lacroix, L., & Ruchonnet-Metrailler, I. (2025). Enhancing Pediatric Asthma Homecare Management: The Potential of Deep Learning Associated with Spirometry-Labelled Data. Applied Sciences, 15(19), 10662. https://doi.org/10.3390/app151910662

