Toward Transparent Modeling: A Scoping Review of Explainability for Arabic Sentiment Analysis
Abstract
1. Introduction
- To examine the AI methods and XAI techniques that have been applied to enhance explainability in ASA models.
- To identify the key challenges in this area and explore future research directions aimed at improving both the explainability and overall performance of ASA systems.
- Foundations and Early Developments in Arabic Sentiment Analysis:
- Deep Learning Breakthroughs and the Rise of Transformer Models:
- Enhancing Performance Through Preprocessing Methods, Hybrid Models, and Domain Adaptation Techniques:
2. Materials and Methods
- The datasets and domain used for sentiment analysis (e.g., tweets, reviews, and specific topics).
- The AI methodology or model employed (e.g., traditional ML classifier, deep neural network, transformer-based model, and hybrid ensemble).
- The explainability techniques applied (e.g., LIME, SHAP, attention visualization, and rule-based explanations).
- Key performance results (e.g., accuracy and F1 score).
- Advantages or limitations concerning explainability or model performance.
3. Results
3.1. Dataset Diversity and Domain Coverage
3.2. AI Methods for ASA on Explainability
3.3. Explainability Techniques in ASA
4. Discussion
4.1. Trends and Insights
4.2. Challenges in ASA Explainability
4.3. Limitations
4.4. Future Directions
- Development of richer datasets and benchmarks:
- Integration of hybrid XAI frameworks:
- Addressing the accuracy–explainability trade-off
- Explainability beyond individual predictions:
- User-centric evaluation of ASA systems:
- Broader adoption in real-world applications:
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kumar, P. Large Language Models (LLMs): Survey, Technical Frameworks, and Future Challenges. Artif. Intell. Rev. 2024, 57, 260. [Google Scholar] [CrossRef]
- Pang, B.; Lee, L. Opinion Mining and Sentiment Analysis. Found. Trends. Inf. Retr. 2008, 2, 148. [Google Scholar] [CrossRef]
- Främling, K. Decision Theory Meets Explainable AI. In Proceedings of the International Workshop on Explainable, Transparent Autonomous Agents and Multi-Agent Systems, Auckland, New Zealand, 9–13 May 2020; pp. 57–74. [Google Scholar]
- Salih, A.M.; Galazzo, I.B.; Gkontra, P.; Rauseo, E.; Lee, A.M.; Lekadir, K.; Radeva, P.; Petersen, S.E.; Menegaz, G. A Review of Evaluation Approaches for Explainable AI with Applications in Cardiology. Artif. Intell. Rev. 2024, 57, 240. [Google Scholar] [CrossRef]
- Nabil, M.; Aly, M.; Atiya, A. Astd: Arabic Sentiment Tweets Dataset. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, Lisbon, Portugal, 17–21 September 2015; pp. 2515–2519. [Google Scholar]
- Aly, M.; Atiya, A. Labr: A Large Scale Arabic Book Reviews Dataset. In Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, Sofia, Bulgaria, 4–9 August 2013; (Volume 2: Short Papers). pp. 494–498. [Google Scholar]
- Antoun, W.; Baly, F.; Hajj, H. Arabert: Transformer-Based Model for Arabic Language Understanding. arXiv 2020, arXiv:2003.00104. [Google Scholar]
- Aladeemy, A.A.; Aldhyani, T.H.H.; Alzahrani, A.; Alzahrani, E.M.; Khalaf, O.I.; Alsubari, S.N.; Deshmukh, S.N.; Al-Adhaileh, M.H. Machine Learning Algorithms for Predicting and Analyzing Arabic Sentiment. SN Comput. Sci. 2024, 5, 1132. [Google Scholar] [CrossRef]
- Gharaibeh, H.; Al Mamlook, R.E.; Samara, G.; Nasayreh, A.; Smadi, S.; Nahar, K.M.O.; Aljaidi, M.; Al-Daoud, E.; Gharaibeh, M.; Abualigah, L. Arabic Sentiment Analysis of Monkeypox Using Deep Neural Network and Optimized Hyperparameters of Machine Learning Algorithms. Soc. Netw. Anal. Min. 2024, 14, 30. [Google Scholar] [CrossRef]
- Abdelhady, N.; Hassan, A.; Soliman, T.; Farghally, M.F. Stacked-CNN-BiLSTM-COVID: An Effective Stacked Ensemble Deep Learning Framework for Sentiment Analysis of Arabic COVID-19 Tweets. J. Cloud Comput. 2024, 13, 85. [Google Scholar]
- Alsehaimi, A.A.A.; Abi Sen, A.A.; Srinivas, R.; Bahbouh, N.M.; Alsubhy, A.M.; al Masabi, M.M.M. A Smart Framework to Analyze Hotel Services after COVID-19. In Proceedings of the 2022 9th International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India, 23–25 March 2022; pp. 415–419. [Google Scholar]
- Diwali, A.; Dashtipour, K.; Saeedi, K.; Gogate, M.; Cambria, E.; Hussain, A. Arabic Sentiment Analysis Using Dependency-Based Rules and Deep Neural Networks. Appl Soft Comput. 2022, 127, 109377. [Google Scholar] [CrossRef]
- Aftan, S.; Zhuang, Y.; Aseeri, A.O.; Shah, H. Steering a Standard Arab Language Processing Model Towards Accurate Saudi Dialect Sentiment Analysis Using Generative AI. In Proceedings of the 2024 IEEE International Conference on Big Data (BigData), Washington, DC, USA, 15–18 December 2024; pp. 5891–5900. [Google Scholar]
- Azzem, Y.C.H.; Harrag, F.; Bellatreche, L. Exploring Explainability in Arabic Language Models: An Empirical Analysis of Techniques. Procedia Comput. Sci. 2024, 244, 212–219. [Google Scholar] [CrossRef]
- Saxena, A.; Santhanavijayan, A.; Shakya, H.K.; Kumar, G.; Balusamy, B.; Benedetto, F. Nested Sentiment Analysis for ESG Impact: Leveraging FinBERT to Predict Market Dynamics Based on Eco-Friendly and Non-Eco-Friendly Product Perceptions with Explainable AI. Mathematics 2024, 12, 3332. [Google Scholar] [CrossRef]
- Abdelaty, M.; Lazem, S. Investigating the Robustness of Arabic Offensive Language Transformer-Based Classifiers to Adversarial Attacks. In Proceedings of the 2024 Intelligent Methods, Systems, and Applications (IMSA), Giza, Egypt, 13–14 July 2024; pp. 109–114. [Google Scholar]
- Campbell, F.; Tricco, A.C.; Munn, Z.; Pollock, D.; Saran, A.; Sutton, A.; White, H.; Khalil, H. Mapping Reviews, Scoping Reviews, and Evidence and Gap Maps (EGMs): The Same but Different the “Big Picture” Review Family. Syst. Rev. 2023, 12, 45. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Awadallah, M.S.; de Arriba-Pérez, F.; Costa-Montenegro, E.; Kholief, M.; El-Bendary, N. Investigation of Local Interpretable Model-Agnostic Explanations (LIME) Framework with Multi-Dialect Arabic Text Sentiment Classification. In Proceedings of the 2022 32nd International Conference on Computer Theory and Applications (ICCTA), Alexandria, Egypt, 17–19 December 2022; pp. 116–121. [Google Scholar]
- Sweidan, A.H.; El-Bendary, N.; Taie, S.A.; Idrees, A.M.; Elhariri, E. Explainable Deep Learning for COVID-19 Vaccine Sentiment in Arabic Tweets Using Multi-Self-Attention BiLSTM with XLNet. Big Data Cogn. Comput. 2025, 9, 37. [Google Scholar] [CrossRef]
- Hossain, M.M.; Hossain, M.S.; Hossain, M.S.; Mridha, M.F.; Safran, M.; Alfarhood, S. TransNet: Deep Attentional Hybrid Transformer for Arabic Posts Classification. IEEE Access 2024, 12, 111070–111096. [Google Scholar] [CrossRef]
- Abdelwahab, Y.; Kholief, M.; Sedky, A.A.H. Justifying Arabic Text Sentiment Analysis Using Explainable Ai (Xai): Lasik Surgeries Case Study. Information 2022, 13, 536. [Google Scholar] [CrossRef]
- Ibrahim Aboulola, O.; Umer, M. Novel Approach for Arabic Fake News Classification Using Embedding from Large Language Features with CNN-LSTM Ensemble Model and Explainable AI. Sci. Rep. 2024, 14, 30463. [Google Scholar] [CrossRef]
- Shehata, A.; Al-Suqri, M.N.; Elshaiekh, N.E.; Hamad, F.; Alhusaini, Y.N.; Mahfouz, A. ArabFake: A Multitask Deep Learning Framework for Arabic Fake News Detection, Categorization, and Risk Prediction. IEEE Access 2024, 12, 191345–191360. [Google Scholar] [CrossRef]
- Elbasiony, A.; El-Hasnony, I.M.; Abdelrazek, S. Xai-Based Sentiment Analysis Using Machine Learning Approaches. Mansoura J. Comput. Inf. Sci. 2024, 19, 23–42. [Google Scholar] [CrossRef]
- Berrimi, M.; Oussalah, M.; Moussaoui, A.; Saidi, M. Attention Mechanism Architecture for Arabic Sentiment Analysis. ACM Trans. Asian Low-Resour. Lang. Inf. Process. 2023, 22, 1–26. [Google Scholar] [CrossRef]
- Atabuzzaman, M.; Shajalal, M.; Baby, M.B.; Boden, A. Arabic Sentiment Analysis with Noisy Deep Explainable Model. In Proceedings of the 2023 7th International Conference on Natural Language Processing and Information Retrieval, Seoul, Republic of Korea, 15–17 December 2023; pp. 185–189. [Google Scholar]
- Hossain, M.M.; Hossain, M.S.; Safran, M.; Alfarhood, S.; Alfarhood, M.; Mridha, M.F. A Hybrid Attention-Based Transformer Model for Arabic News Classification Using Text Embedding and Deep Learning. IEEE Access 2024, 12, 198046–198066. [Google Scholar] [CrossRef]
- Rahab, H.; Haouassi, H.; Laouid, A. Rule-Based Arabic Sentiment Analysis Using Binary Equilibrium Optimization Algorithm. Arab. J. Sci. Eng. 2023, 48, 2359–2374. [Google Scholar] [CrossRef]
- Azzeh, M.; Alhijawi, B.; Tabbaza, A.; Alabboshi, O.; Hamdan, N.; Jaser, D. Arabic Cyberbullying Detection System Using Convolutional Neural Network and Multi-Head Attention. Int. J. Speech Technol. 2024, 27, 521–537. [Google Scholar] [CrossRef]
- Alhumoud, S.O. CNN-BiGRU-Focus: A Hybrid Deep Learning Classifier for Sentiment and Hate Speech Analysis of Ashura-Arabic Content for Policy Makers. Int. J. Adv. Comput. Sci. Appl. 2024, 15, 11. [Google Scholar] [CrossRef]
- Alayba, A.M.; Palade, V.; England, M.; Iqbal, R. Arabic Language Sentiment Analysis on Health Services. In Proceedings of the 2017 1st International Workshop on Arabic Script Analysis and Recognition (ASAR), Nancy, France, 3–5 April 2017; pp. 114–118. [Google Scholar]
- Elnagar, A.; Khalifa, Y.S.; Einea, A. Hotel Arabic-Reviews Dataset Construction for Sentiment Analysis Applications. In Intelligent Natural Language Processing: Trends and Applications; Springer International Publishing: Cham, Switzerland, 2017; pp. 35–52. [Google Scholar]
- Khalil, A.; Jarrah, M.; Aldwairi, M.; Jaradat, M. AFND: Arabic Fake News Dataset for the Detection and Classification of Articles Credibility. Data Brief 2022, 42, 108141. [Google Scholar] [CrossRef] [PubMed]
- Elnagar, A.; Einea, O. BRAD 1.0: Book Reviews in Arabic Dataset. In Proceedings of the 2016 IEEE/ACS 13th International Conference of Computer Systems and Applications (AICCSA), Agadir, Morocco, 29 November–2 December 2016; pp. 1–8. [Google Scholar]
- ElSahar, H.; El-Beltagy, S.R. Building Large Arabic Multi-Domain Resources for Sentiment Analysis. In Proceedings of the International Conference on Intelligent Text Processing and Computational Linguistics, Cairo, Egypt, 15–21 March 2015; Springer: Cham, Switzerland; pp. 23–34. [Google Scholar]
- Marseille, F. Arabic Hate Speech 2022 Shared Task! Available online: https://sites.google.com/view/arabichate2022/home (accessed on 21 February 2025).
- Shannag, F.; Hammo, B.H.; Faris, H. The Design, Construction and Evaluation of Annotated Arabic Cyberbullying Corpus. Educ. Inf. Technol. (Dordr.) 2022, 27, 10977–11023. [Google Scholar] [CrossRef]
- Rushdi-Saleh, M.; Martin-Valdivia, M.T.; Ureña-López, L.A.; Perea-Ortega, J.M. OCA: Opinion Corpus for Arabic. J. Am. Soc. Inf. Sci. Technol. 2011, 62, 2045–2054. [Google Scholar] [CrossRef]
- Alhumoud, S.; Al Wazrah, A.; Alhussain, L.; Alrushud, L.; Aldosari, A.; Altammami, R.N.; Almukirsh, N.; Alharbi, H.; Alshahrani, W. ASAVACT: Arabic Sentiment Analysis for Vaccine-Related COVID-19 Tweets Using Deep Learning. PeerJ Comput. Sci 2023, 9, e1507. [Google Scholar] [CrossRef]
- Almamlouk, M. Data Tweet-s. Available online: https://www.kaggle.com/datasets/mahdimahdi55/data-tweet-s?resource=download (accessed on 22 January 2025).
- Alyami, S. Arabic Sentiment Analysis Dataset SS2030 Dataset. Available online: https://www.kaggle.com/datasets/snalyami3/arabic-sentiment-analysis-dataset-ss2030-dataset (accessed on 15 February 2025).
- Khooli, A. Arabic 100k Reviews. Available online: https://www.kaggle.com/datasets/abedkhooli/arabic-100k-reviews (accessed on 1 February 2025).
- Abdelfattah, Y. Lasik Surgery Arabic Text Dataset. Available online: https://www.kaggle.com/datasets/youmnahabdelfattah/lasik-surgery-arabic-text-dataset (accessed on 3 January 2025).
- Mohamed, B. DataSet for Arabic Classification. Available online: https://data.mendeley.com/datasets/v524p5dhpj/2 (accessed on 2 February 2025).
- Alotaibi, M.; Ahmed, O. An Investigation of Asthma Experiences in Arabic Communities through Twitter Discourse. Int. J. Adv. Comput. Sci. Appl. 2023, 14, 5. [Google Scholar] [CrossRef]
- Almani, N.M.; Tang, L.H. Deep Attention-Based Review Level Sentiment Analysis for Arabic Reviews. In Proceedings of the 2020 6th Conference on Data Science and Machine Learning Applications (CDMA), Riyadh, Saudi Arabia, 4–5 March 2020; pp. 47–53. [Google Scholar]
- Aljrees, T. Improving Prediction of Arabic Fake News Using ELMO’s Features-Based Tri-Ensemble Model and LIME XAI. IEEE Access 2024, 12, 63066–63076. [Google Scholar] [CrossRef]
- Ali, S.; Abuhmed, T.; El-Sappagh, S.; Muhammad, K.; Alonso-Moral, J.M.; Confalonieri, R.; Guidotti, R.; Del Ser, J.; Díaz-Rodríguez, N.; Herrera, F. Explainable Artificial Intelligence (XAI): What We Know and What Is Left to Attain Trustworthy Artificial Intelligence. Inf. Fusion 2023, 99, 101805. [Google Scholar] [CrossRef]
- El Beggar, O.; Ramdani, M.; Kissi, M. Design and Development of a Fuzzy Explainable Expert System for a Diagnostic Robot of COVID-19. Int. J. Electr. Comput. Eng. 2023, 13, 6940–6951. [Google Scholar] [CrossRef]
Reference | Dataset Name | Shortcut |
---|---|---|
[15] | Environmental, Social, and Governance | ESG |
[32] | Arabic health services dataset | AHS |
[33] | Hotel Arabic Reviews dataset | HARD |
[34] | Arabic fake news detection | AFND |
[6] | Large-scale Arabic Book Reviews dataset | LABR |
[35] | Book reviews in Arabic dataset | BRAD |
[36] | Hotel Review dataset | HTL |
[13] | Saudi Twitter Dataset | STD |
[37] | Open-Source Arabic Corpora and shared task | OSACT5 |
[38] | Arabic cyber bullying tweets dataset | ArCybC |
[39] | Opinion corpus for Arabic dataset | OCA |
[40] | Arabic sentiment analysis for the vaccine-related COVID-19 tweet dataset | ASAVACT |
[41] | COVID-19 vaccine tweets | N/A 1 |
[42] | SS2030 Saudi Twitter commentary | N/A |
[43] | 100k reviews dataset | N/A |
[31] | Arabic hate speech-Ashura event posts | N/A |
[44] | LASIK surgery feedback | N/A |
[24] | ArabFake | N/A |
[45] | News articles from (Assabah, Hespress, and Akhbarona) | N/A |
[46] | Asthma tweets | N/A |
Reference | ASA Model | ASA Model Type | Additional Techniques | Dataset Name (Size) | Dataset Type | Performance Measures | Best Results |
---|---|---|---|---|---|---|---|
[19] | RF, DT | ML | Combined n-gram (UniGram, Bigram, Trigram) | HARD (105,698), AHS (2026) | Reviews, Tweets | Accuracy, F1-Score, Recall, Precision | 93.40%, 97.20%, 95.00%, 97.50% |
[25] | SVM, LR, DT, RF | ML | With FastText Embeddings | Arabic COVID-19 vaccine (32,476), 100k reviews dataset (100,000), SS2030 (4252) | Reviews, Tweets | Accuracy, F1-Score, Recall, Precision | 91.10%, N/A 1, 89.50%, 89.00% |
[29] | Rule-based classifier | ML | Using 13 rules | OCA (500) | Reviews | Accuracy, F1-Score, Recall, Precision | 84.0%, N/A, N/A 100% |
[20] | BiLSTM | DL | With XLNet embeddings, multi-self-attention mechanism | ASAVACT (32,476) | Tweets | Accuracy, F1-Score, Recall, Precision | 93.20%, 92.00%, 92.30%, 92.00% |
[22] | LSTM | DL | N/A | LASIK surgery feedback (4202) | Tweets | Accuracy, F1-Score, Recall, Precision | 79.10%, 71.00%, 76.00%, 71.00% |
[23] | Voting ensemble (CNN-LSTM) | DL | With ELMo embeddings | AFND (606,912) | News | Accuracy, F1-Score, Recall, Precision | 98.42%, 98.93%, 99.50%, 98.54% |
[26] | BiGRU -BiLSTM | DL | FastText, trainable embeddings | LABR (63,257), HARD (105,698), BRAD (510,600) | Reviews | Accuracy, F1-Score, Recall, Precision | 96.29%, 96.28%, 96.14%, 97.03% |
[27] | BiLSTM, CNN-BiLSTM | DL | With noise layer (to regularize) | LABR (63,257), HTL (15,572) | Reviews | Accuracy, F1-Score, Recall, Precision | 88.00%, 93.00%, 95.00%, 91.00% |
[30] | ArCB | DL | CNN, Multi-Head Attention, ResNet (Word2Vec) | ArCybC (4.5000) | Tweets | Accuracy, F1-Score, Recall, Precision, AUC | 82.60%, 74.40%, 72.50%, 76.40%, 88.50% |
[31] | CNN-BiGRU-Focus model | DL | N/A | Arabic hate speech-Ashura event posts (428,210) | Tweets | Accuracy, F1-Score, Recall, Precision, AUC 2, | 99.89%, 98.00%, 98.00%, 96.00%, 99.00%, |
[47] | DARLSA | DL | GRU with Transfer Learning, and additive attention | LABR (16,486) | Reviews | Accuracy, F1-Score, Recall, Precision | 92.0%, 85.0%, N/A, N/A |
[13] | AraBERT | LLM | Fine-tuned with GPT-augmented Saudi tweets | STD (50,000), GPTsynth (19,251) | Tweets | Accuracy, F1-Score, Recall, Precision, | 97.00%, 98.00%, 98.00% 98.00% |
[14] | AraGPT2, AraBERT | LLM | Fine-tuned per task | HARD (490,587) | Reviews | Accuracy, F1-Score Recall, Precision | 96.00%, 95.90%, N/A, N/A |
[15] | FinBERT | LLM | BERT-based with nested sentiment classification | ESG | Reviews | Accuracy, F1-Score, Recall, Precision, AUC | 99.00%, 91.00%, 94.00%, 94.00%, 98.00% |
[16] | Transformer-based offensive language classifier | LLM | N/A | OSACT5 (10,540) | Tweets | N/A | 30% success rate in fooling the model |
[21] | TransNet | DL, LLM | Hybrid Transformer, BiLSTM, GRU | Asthma tweets | Tweets | Accuracy, F1-Score, Recall, Precision, | 97.87%, 97.86%, 97.86%, 97.86%, |
[24] | ArabFake on MARBERTv2 | DL, LLM | Multitask learning (fake news detection, topic, risk) | ArabFake, (2495) | News | Accuracy, F1-Score, Recall, Precision | 94.07%, 94.12%, 94.08%, 94.17% |
[28] | ABTM (Attention-Based Transformer Model) | DL, LLM | Transformer encoder, TF-IDF/BOW features | (Assabah + Hespress + Akhbarona) (111,728) | News | Accuracy, F1-Score, Recall, Precision | 97.69%, 97.11%, 97.13%, 97.10% |
[48] | Tri-ensemble stacking (bagging, boosting, baseline) | ML, DL | ELMO embeddings, textual feature extraction | AFND (606,000) | News | Accuracy, F1-Score, Recall, Precision | 99.00%, 99.00%, 99.00%, 99.00% |
Reference | ASA Model Type | Study Domain | XAI Method | XAI Aim | Results |
---|---|---|---|---|---|
[22] | DL | Health | LIME | Highlight key emotion/symptom words in LASIK reviews | Boosted trust in health monitoring applications. |
[21] | DL, LLM | Health | LIME | Clarify TransNet’s predictions on Arabic asthma posts | Clarified model behavior, revealing asthma-related terms. |
[20] | DL | Health | LIME, SHAP, Attention | COVID-19 vaccine sentiment analysis & interpreted model focus | Attention revealed emotion-bearing phrases. |
[25] | ML | Health/Social Media | LIME, Coef./Gini | Blend global/local feature importance | Aided bias detection and stop-word pruning. |
[23] | DL | Cybersecurity | LIME | Arabic fake news detection & identified key dialectal cues | Helped refine data. |
[24] | DL, LLM | Cybersecurity | Valence, Expert Annotations | Fake news/ risk assessment | Matched model decisions to emotional scoring and human annotations. |
[48] | ML, DL | Cybersecurity | LIME | Fake news detection | Validated ensemble consistency, highlighted deceptive language. |
[16] | LLM | Cybersecurity | LIME | Vulnerability detection | Revealed impactful adversarial tokens. |
[19] | ML | Social media | LIME | Improve transparency in ASA | Identified influential n-grams, and validated polarity cues. |
[28] | Dl, LLM | Social media | LIME, Attention | Improve Arabic news classification | LIME and attention clarified misclassifications. |
[31] | DL | Social media | Attention mechanism (intrinsic) | Hate speech detection | Highlighted emojis and hate-indicative terms. |
[30] | DL | Social media | Attention mechanism (intrinsic) | Bullying detection | Attention revealed abusive terms in tweets. |
[29] | ML | Social media | Attention mechanism (intrinsic) | Improve transparency in ASA | Fully interpretable but lower accuracy. |
[27] | DL | Linguistics | LIME | Enhance transparency in ASA | Noise layer and LIME boosted interpretability. |
[13] | LLM | Linguistics | LIME | Improve ASA transparency | Heatmaps validated dialect features. |
[14] | LLM | Linguistics | Saliency, InputGrad, IG, LIME, SHAP_VS, Random | Transparency in Arabic models | Gradient methods were more faithful, SHAP more human-friendly. |
[26] | DL | Linguistics | Attention mechanism (intrinsic) | Explain BiGRU-BiLSTM decisions | Attention revealed key sentences. |
[47] | DL | Business | Attention mechanism (intrinsic) | Visualize attention weight. | Showed sentiment-driving words. |
[15] | LLM | ESG | LIME | Improve transparency for investment sentiment | Explained sentiment–ESG links for stakeholders. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsehaimi, A.; Babour, A.; Alahmadi, D. Toward Transparent Modeling: A Scoping Review of Explainability for Arabic Sentiment Analysis. Appl. Sci. 2025, 15, 10659. https://doi.org/10.3390/app151910659
Alsehaimi A, Babour A, Alahmadi D. Toward Transparent Modeling: A Scoping Review of Explainability for Arabic Sentiment Analysis. Applied Sciences. 2025; 15(19):10659. https://doi.org/10.3390/app151910659
Chicago/Turabian StyleAlsehaimi, Afnan, Amal Babour, and Dimah Alahmadi. 2025. "Toward Transparent Modeling: A Scoping Review of Explainability for Arabic Sentiment Analysis" Applied Sciences 15, no. 19: 10659. https://doi.org/10.3390/app151910659
APA StyleAlsehaimi, A., Babour, A., & Alahmadi, D. (2025). Toward Transparent Modeling: A Scoping Review of Explainability for Arabic Sentiment Analysis. Applied Sciences, 15(19), 10659. https://doi.org/10.3390/app151910659