Balancing Privacy and Accuracy in Healthcare AI: Federated Learning with AutoML for Blood Pressure Prediction
Abstract
1. Introduction
2. Background
2.1. Privacy-Preserving AutoML
2.2. Personalized Federated Learning Strategy
2.3. AMPER Approach for Privacy-Preserving AutoML
3. Model Design
3.1. Digital Me Context and Privacy Preserving Approach
“An AI-based product–service system (PSS) that enables real-time management of an individual’s state (e.g., health, beauty, memory, knowledge, finance, happiness). It is grounded in a hardware product that the user consistently carries, supported by a platform integrating services connected to the hardware, data cloud services, AI systems, and both hardware and software services.”
3.2. Hypertension Management in AI-Based Personal Healthcare
3.3. LLM for Sequential Data Processing in Hypertension Prediction
3.4. Federated Learning for Privacy-Preserving Personalized AI
4. Applying AMPER
4.1. Data
4.2. Aim
4.3. Measure
4.4. Predict
“<CLS> 1 69 32.78 <SEP> 147.0 <SEP> 152.0 <SEP> 124.0 <SEP> 118.0 <SEP> 151.0 <SEP> 143.0 <SEP> 158.0 <SEP>…”
| Sequence | Subject ID | Gender | Age | SBP | BMI |
|---|---|---|---|---|---|
| 0 | 36 | 1 | 69 | 147 | 32.78 |
| 1 | 36 | 1 | 69 | 152 | 32.78 |
| 2 | 36 | 1 | 69 | 124 | 32.78 |
| 3 | 36 | 1 | 69 | 118 | 32.78 |
| … | … | … | … | … | … |
| 10 | 36 | 1 | 69 | 158 | 32.78 |
| Algorithm 1: Pre-FedAvg Algorithm [37,38] |
| Input: Initial iterate , fraction of active users . for to do Server chooses a subset of users uniformly at random and with size ; Server sends to all users in ; for all do Set ; for to do Compute the stochastic gradient using dataset ; Set ; Set ; end for Agent sends back to server; end for Server updates its model by averaging over received models: ; end for |
4.5. Evaluation
4.6. Recommendations for Service Implementaion
5. Concluding Remark
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Karmaker, S.K.; Hassan, M.M.; Smith, M.J.; Xu, L.; Zhai, C.; Veeramachaneni, K. AutoML to Date and Beyond: Challenges and Opportunities. ACM Comput. Surv. 2021, 54, 175. [Google Scholar] [CrossRef]
- Yuan, H.; Yu, K.; Xie, F.; Liu, M.; Sun, S. Automated Machine Learning with Interpretation: A Systematic Review of Methodologies and Applications in Healthcare. Med. Adv. 2024, 2, 205–237. [Google Scholar] [CrossRef]
- Raj, R.; Kannath, S.K.; Mathew, J.; Sylaja, P. AutoML Accurately Predicts Endovascular Mechanical Thrombectomy in Acute Large Vessel Ischemic Stroke. Front. Neurol. 2023, 14, 1259958. [Google Scholar] [CrossRef] [PubMed]
- Musigmann, M.; Nacul, N.G.; Kasap, D.N.G.; Heindel, W.; Mannil, M. Use Test of Automated Machine Learning in Cancer Diagnostics. Diagnostics 2023, 13, 2315. [Google Scholar] [CrossRef]
- Ma, J.; Jiang, S.; Liu, Z.; Ren, Z.; Lei, D.; Tan, C.; Guo, H. Machine Learning Models for Slope Stability Classification of Circular Mode Failure: An Updated Database and Automated Machine Learning (AutoML) Approach. Sensors 2022, 22, 9166. [Google Scholar] [CrossRef]
- Koren, O.; Hallin, C.A.; Koren, M.; Issa, A.A. AutoML Classifier Clustering Procedure. Int. J. Intell. Syst. 2021, 37, 4214–4232. [Google Scholar] [CrossRef]
- Narkar, S.; Zhang, Y.; Liao, Q.V.; Wang, D.; Weisz, J.D. Model LineUpper: Supporting Interactive Model Comparison at Multiple Levels for AutoML. In Proceedings of the 26th International Conference on Intelligent User Interfaces (IUI ’21), College Station, TX, USA, 14–17 April 2021; pp. 170–174. [Google Scholar] [CrossRef]
- Wever, M.; Tornede, A.; Mohr, F.; Hüllermeier, E. AutoML for Multi-Label Classification: Overview and Empirical Evaluation. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 3037–3054. [Google Scholar] [CrossRef]
- Thirunavukarasu, A.J.; Elangovan, K.; Gutiérrez, L.; Hassan, R.; Li, Y.; Tan, T.F.; Cheng, H.; Teo, Z.L.; Lim, G.; Ting, D.S.W. Clinical Performance of Automated Machine Learning: A Systematic Review. Ann. Acad. Med. Singap. 2023, 53, 187–207. [Google Scholar] [CrossRef]
- Price, W.N.; Cohen, I.G. Privacy in the Age of Medical Big Data. Nat. Med. 2019, 25, 37–43. [Google Scholar] [CrossRef]
- Preuveneers, D. AutoFL: Towards AutoML in a Federated Learning Context. Appl. Sci. 2023, 13, 8019. [Google Scholar] [CrossRef]
- Karras, A.; Karras, C.; Giotopoulos, K.C.; Tsolis, D.; Oικονόμου, Κ.; Sioutas, S. Federated Edge Intelligence and Edge Caching Mechanisms. Information 2023, 14, 414. [Google Scholar] [CrossRef]
- Elangovan, K.; Lim, G.; Ting, D.S.W. Medical Image Classification with On-Premise AutoML: Unveiling Insights through Comparative Analysis. Res. Sq. 2023. [Google Scholar] [CrossRef]
- Elangovan, K.; Lim, G.; Ting, D.S.W. A Comparative Study of an On-Premise AutoML Solution for Medical Image Classification. Sci. Rep. 2024, 14, 10483. [Google Scholar] [CrossRef] [PubMed]
- Alardawi, A.S.; Odeh, A.; Aboshgifa, A.; Belhaj, N. Challenges and Opportunities in Federated Learning. Int. Sci. Technol. J. 2022, 35, 1–15. [Google Scholar] [CrossRef]
- Duggirala, J. Federated Learning on Mobile Devices: Challenges, Opportunities, and Future Directions. Int. Sci. J. Eng. Manag. 2024, 3, 1–7. [Google Scholar] [CrossRef]
- Seo, J.H. Results of the Life Table Created in 2022. Available online: https://kostat.go.kr/board.es?mid=a10301060900&bid=208&act=view&list_no=428312&tag=&nPage=1&ref_bid= (accessed on 12 August 2025).
- Bengio, Y.; Simard, P.; Frasconi, P. Learning Long-Term Dependencies with Gradient Descent Is Difficult. IEEE Trans. Neural Netw. 1994, 5, 157–166. [Google Scholar]
- Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning Phrase Representations Using RNN Encoder–Decoder for Statistical Machine Translation. arXiv 2014, arXiv:1406.1078. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long. Short-Term. Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Panetta, K. 5 Trends Drive the Gartner Hype Cycle for Emerging Technologies. 2020. Available online: https://www.gartner.com/smarterwithgartner/5-trends-drive-the-gartner-hype-cycle-for-emerging-technologies-2020 (accessed on 12 August 2025).
- Lee, K.J.; Jeong, B.; Kim, Y.; Kim, S. Towards Minimally Domain-Dependent and Privacy-Preserving Architecture and Algorithms for Digital Me Services: EdNet and MIMIC-III Experiments. In Proceedings of the 58th Hawaii International Conference on System Sciences (HICSS 2025), Waikoloa Village, HI, USA, 7–10 January 2025; pp. 1348–1356. [Google Scholar]
- Hypertension. Available online: https://hqcenter.snu.ac.kr/archives/jiphyunjeon/%EA%B3%A0%ED%98%88%EC%95%95 (accessed on 12 August 2025).
- 2022 Hypertension Treatment Guidelines. Available online: https://www.koreanhypertension.org/reference/guide?mode=read&idno=10081 (accessed on 12 August 2025).
- Whelton, P.K.; Carey, R.M.; Aronow, W.S.; Casey, D.E.; Collins, K.J.; Dennison Himmelfarb, C.; DePalma, S.M.; Gidding, S.; Jamerson, K.A.; Jones, D.W.; et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2018, 71, e127–e248. [Google Scholar]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; Simone, G.; Desormais, A.; et al. 2018 ESC/ESH Guidelines for the Management of Arterial Hypertension: The Task Force for the Management of Arterial Hypertension of the European Society of Cardiology (ESC) and the European Society of Hypertension (ESH). Eur. Heart J. 2018, 39, 3021–3104. [Google Scholar] [CrossRef]
- Hypertensive Heart Disease. Available online: https://hqcenter.snu.ac.kr/archives/jiphyunjeon/%EA%B3%A0%ED%98%88%EC%95%95%EC%84%B1-%EC%8B%AC%EC%A7%88%ED%99%98?cat=194 (accessed on 12 August 2025).
- Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding. arXiv 2018, arXiv:1810.04805. [Google Scholar]
- McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; y Arcas, B.A. Communication-Efficient Learning of Deep Networks from Decentralized Data. In Proceedings of the Artificial Intelligence and Statistics (AISTATS 2017), Fort Lauderdale, FL, USA, 20–22 April 2017; pp. 1273–1282. [Google Scholar]
- Kairouz, P.; McMahan, H.B.; Avent, B.; Bellet, A.; Bennis, M.; Bhagoji, A.N.; Bonawitz, K.; Charles, Z.; Cormode, G.; Cummings, R.; et al. Advances and Open Problems in Federated Learning. Found. Trends Mach. Learn. 2021, 14, 1–210. [Google Scholar] [CrossRef]
- Johnson, A.; Pollard, T.; Mark, R. MIMIC-III Clinical Database. Available online: https://physionet.org/content/mimiciii/1.4/ (accessed on 12 August 2025).
- Johnson, A.E.W.; Pollard, T.J.; Shen, L.; Lehman, L.H.; Feng, M.; Ghassemi, M.; Moody, B.; Szolovits, P.; Celi, L.A.; Mark, R.G. MIMIC-III, a Freely Accessible Critical Care Database. Sci. Data 2016, 3, 160035. [Google Scholar] [CrossRef]
- Comorbidities of Obesity. Korean Society for the Study of Obesity. Available online: https://general.kosso.or.kr/html/?pmode=obesityDisease (accessed on 12 August 2025).
- Wang, S.; McDermott, M.B.; Chauhan, G.; Ghassemi, M.; Hughes, M.C.; Naumann, T. MIMIC-Extract: A Data Extraction, Preprocessing, and Representation Pipeline for MIMIC-III. In Proceedings of the ACM Conference on Health, Inference, and Learning (CHIL ’20), Toronto, ON, Canada, 2–4 April 2020; pp. 222–235. [Google Scholar]
- Kazemi, S.M.; Goel, R.; Eghbali, S.; Ramanan, J.; Sahota, J.; Thakur, S.; Wu, S.; Smyth, C.; Poupart, P.; Brubaker, M. Time2Vec: Learning a Vector Representation of Time. arXiv 2019, arXiv:1907.05321. [Google Scholar]
- Box, G.E.P.; Jenkins, G.M. Time Series Analysis: Forecasting and Control; Holden-Day: San Francisco, CA, USA, 1970. [Google Scholar]
- Wang, H.; Kaplan, Z.; Niu, D.; Li, B. Optimizing Federated Learning on Non-IID Data with Reinforcement Learning. In Proceedings of the IEEE INFOCOM 2020—IEEE Conference on Computer Communications, Toronto, ON, Canada, 6–9 July 2020; pp. 1698–1707. [Google Scholar]
- Fallah, A.; Mokhtari, A.; Ozdaglar, A. Personalized Federated Learning with Theoretical Guarantees: A Model-Agnostic Meta-Learning Approach. Adv. Neural Inf. Process. Syst. 2020, 33, 3557–3568. [Google Scholar]
- Ahmed, S.T.; Kaladevi, A.C.; Kumar, V.V.; Shankar, A.; Alqahtani, F. Privacy Enhanced Edge-AI Healthcare Devices Authentication: A Federated Learning Approach. IEEE Trans. Consum. Electron. 2025, 71, 5676–5682. [Google Scholar] [CrossRef]




| BP Category | SBP (mmHg) | Condition | DBP (mmHg) |
|---|---|---|---|
| Normal | <120 | and | <80 |
| 120~129 | and | <80 | |
| High Normal | 130~139 | or | 80~89 |
| Hypertension Stage 1 | 140~159 | or | 90~99 |
| Hypertension Stage 2 | 160 | or | 100 |
| Isolated Systolic Hypertension | 140 | or | <90 |
| ItemID | Label |
|---|---|
| 442 | Manual BP [systolic] |
| 227243 | Manual blood pressure systolic right |
| 224167 | Manual blood pressure systolic left |
| 220179 | Noninvasive blood pressure systolic |
| 225309 | ART BP systolic |
| 6701 | Arterial BP #2 [Systolic] |
| 220050 | Arterial blood pressure systolic |
| 51 | Arterial BP [Systolic] |
| 455 | NBP [Systolic] |
| Category | ItemID | Label |
|---|---|---|
| Weight | 226531 | Admission weight (lbs) |
| 226512 | Admission weight (kg) | |
| 763 | Daily weight | |
| 224639 | ||
| Height | 226707 | Height |
| 226730 | Height (cm) | |
| 1394 | Height inches |
| Time Interval | Model | MAE (mmHg) | MSE (mmHg) | RMSE (mmHg) |
|---|---|---|---|---|
| 7-day | BERT | 13.68 | 197.83 | 14.06 |
| BERT + MA | 8.21 | 61.78 | 7.86 | |
| BERT + ARIMA | 7.95 | 55.68 | 7.46 | |
| 30-day | BERT | 12.76 | 168.99 | 13.00 |
| BERT + MA | 4.95 | 25.56 | 5.06 | |
| BERT + ARIMA | 4.24 | 18.76 | 4.33 |
| Assumption | Weight | MAE (mmHg) | MSE (mmHg) | RMSE (mmHg) |
|---|---|---|---|---|
| Personal data sharing allowed | - | 4.24 | 18.76 | 4.33 |
| Personal data sharing not allowed | Local weighted PFL | 7.95 | 95.11 | 9.75 |
| Global weighted PFL | 7.77 | 64.65 | 8.04 |
| Group | MAE (mmHg) | MSE (mmHg) | RMSE (mmHg) |
|---|---|---|---|
| All | 7.77 | 64.65 | 8.04 |
| Small | 8.23 | 65.88 | 8.67 |
| Large | 6.96 | 50.23 | 6.77 |
| Subject ID | Gender | Age | SBP | BMI | Score | Drug Type | |
|---|---|---|---|---|---|---|---|
| 0 | 1 | 0 | 54 | 141 | 28.25 | 75 | A |
| 1 | 1 | 0 | 54 | 135 | 28.25 | 81 | B |
| 2 | 2 | 1 | 35 | 125 | 25.36 | 93 | C |
| 3 | 2 | 1 | 35 | 123 | 25.36 | 95 | D |
| 4 | 3 | 0 | 52 | 141 | 30.89 | 75 | E |
| 5 | 3 | 0 | 52 | 147 | 30.89 | 69 | F |
| … | … | … | … | … | … | … | … |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Lee, K.J.; Kim, T.; Park, A. Balancing Privacy and Accuracy in Healthcare AI: Federated Learning with AutoML for Blood Pressure Prediction. Appl. Sci. 2025, 15, 10624. https://doi.org/10.3390/app151910624
Kim S, Lee KJ, Kim T, Park A. Balancing Privacy and Accuracy in Healthcare AI: Federated Learning with AutoML for Blood Pressure Prediction. Applied Sciences. 2025; 15(19):10624. https://doi.org/10.3390/app151910624
Chicago/Turabian StyleKim, Suhyeon, Kyoung Jun Lee, Taekyung Kim, and Arum Park. 2025. "Balancing Privacy and Accuracy in Healthcare AI: Federated Learning with AutoML for Blood Pressure Prediction" Applied Sciences 15, no. 19: 10624. https://doi.org/10.3390/app151910624
APA StyleKim, S., Lee, K. J., Kim, T., & Park, A. (2025). Balancing Privacy and Accuracy in Healthcare AI: Federated Learning with AutoML for Blood Pressure Prediction. Applied Sciences, 15(19), 10624. https://doi.org/10.3390/app151910624

