Fusing Historical Records and Physics-Informed Priors for Urban Waterlogging Susceptibility Assessment: A Framework Integrating Machine Learning, Fuzzy Evaluation, and Decision Analysis
Abstract
Featured Application
- This study proposes a dual-source sample enhancement strategy that integrates Physics-Informed Priors (PI-PRIORS) with HWR, incorporating extreme rainfall scenarios and applying a joint filtering mechanism based on membership, credibility, and impact degrees. This approach systematically extracts high-quality samples and embeds extreme-scenario information into the modeling process.
- To address the heterogeneity of polygon-based waterlogging risk distributions, a dimension-reduction sampling framework is introduced based on TWD theory. It integrates an MCCM and the CRITIC-TOPSIS method, which integrates the CRITIC (Criteria Importance Through Intercriteria Correlation) method and the TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) method, to quantify membership degrees of overlapping risk levels, while also assessing credibility and social influence scores to support robust point-based sampling in spatially complex environments.
- A MaxEnt (Maximum Entropy) modeling framework—a statistical learning approach rooted in information entropy theory—is developed by integrating variables from natural conditions, social capital, infrastructure, and the built environment. The contributions and directional effects of each factor are quantified, achieving a balance between interpretability and scalability. This framework offers a transferable tool for diverse urban settings and targeted flood mitigation planning.
Abstract
1. Introduction
2. Research Area and Data Collection
2.1. Overview of the Study Area
2.2. UWSA Indicator System
2.3. Indicator Data Collection
3. Materials and Methods
3.1. Dominant Factor Identification and Correlation Analysis
3.2. Supplementary Waterlogging Dataset Construction Using PI-Priors
- Membership measures the probability that a grid cell truly belongs to a high-risk class.
- Impact captures the potential consequences should waterlogging occur, derived from socio-economic and infrastructural exposure.
- Credibility quantifies the internal consistency of simulation output within a cell, reflecting model stability.
3.2.1. Membership Degree Quantification Based on the 2-D Connection Cloud Model
3.2.2. Impact and Credibility Score Quantification Based on the CRITIC-TOPSIS Method
- The Impact matrix includes four indicators: population density, GDP, building density, and road density (see Table 1). These indicators reflect the potential urban exposure and losses if waterlogging occurs in the area.
- The Credibility matrix includes four spatial proximity indicators: distance to water system, distance to underpass, distance to concave-down overpasses, and distance to HWR points. These indicators assess the spatial and physical reliability of the PI-Priors by estimating how likely the identified risk is to exist in reality.
Step 1. Indicator Direction Alignment and Normalization Mapping
Step 2. Indicator Weight Calculation Based on the CRITIC Method
Step 3. Composite Scoring Using the TOPSIS Method
3.2.3. Selection of Supplementary Waterlogging Points Based on TWD Theory
3.3. MaxEnt-Based Modeling for UWSA
3.3.1. MaxEnt Principles and Methods
3.3.2. Parameter Setting and Model Construction of MaxEnt
3.4. Spatial Autocorrelation Analysis Method
4. Results
4.1. Results of the Supplementary Dataset Based on PI-Priors
4.2. Results of Model Accuracy Validation and Dominant Factor Analysis
4.2.1. Model Accuracy Validation
4.2.2. Dominant Factor Analysis
4.3. Results of Susceptibility Assessment and Identification of Waterlogging Prone Areas
4.4. Results of Spatial Autocorrelation Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
USWA | Urban Waterlogging Susceptibility Assessment |
HWR | Historical Waterlogging Records |
PI-Priors | Physics-Informed Priors |
PB-HydroSim | Physics-based Hydrodynamic Simulation |
TWD | Three-Way Decision |
MCCM | Multi-dimensional Connection Cloud Model |
NCM | Normal Cloud Model |
CRITIC | Criteria Importance Through Intercriteria Correlation |
TOPSIS | Technique for Order Preference by Similarity to Ideal Solution |
References
- Yan, W.; Ren, H.; Luo, X.; Li, S. Comparison of fluvial and pluvial flood risk curves in urban cities derived from a large ensemble climate simulation dataset: A case study in Nagoya, Japan. J. Hydrol. 2020, 584, 124706. [Google Scholar] [CrossRef]
- Yang, H.; Liu, L.; Zhang, J.; Guo, K.; Mudashiru, R.B.; Sabtu, N.; Abustan, I.; Balogun, W. Flood hazard mapping methods: A review. J. Hydrol. 2021, 603, 126846. [Google Scholar] [CrossRef]
- Zanuttigh, B.; Nicholls, R.J.; Vanderlinden, J.-P.; Thompson, R.C.; Burcharth, H.F. Coastal Risk Management in a Changing Climate; Butterworth-Heinemann: Oxford, UK, 2014; ISBN 978-0-12-397331-3. [Google Scholar]
- Jiang, J.; Qin, C.-Z.; Yu, J.; Cheng, C.; Liu, J.; Huang, J.; Hong, S.; Shen, J.; Yang, H.; Pirasteh, S.; et al. Enhancing flexibility and efficiency for urban waterlogging response scenarios simulation: An open-ended approach involving user participation. Int. J. Digit. Earth 2025, 18, 2468420. [Google Scholar] [CrossRef]
- Dharmarathne, G.; Waduge, A.O.; Bogahawaththa, M.; Rathnayake, U.; Meddage, D.P.P. Adapting cities to the surge: A comprehensive review of climate-induced urban flooding. Results Eng. 2024, 22, 102123. [Google Scholar] [CrossRef]
- Zhang, Z.; Jian, X.; Chen, Y.; Huang, Z.; Liu, J.; Yang, L.; Yao, K.; Su, H.; Torrenti, J.; Wen, Z.; et al. Urban waterlogging prediction and risk analysis based on rainfall time series features: A case study of Shenzhen. Front. Environ. Sci. 2023, 11, 1131954. [Google Scholar] [CrossRef]
- Wang, M.; Liang, H.; Zhu, Z.; Wu, H.; Xu, F.; Koo, K.; Brownjohn, J.; Jiang, Y.; Zevenbergen, C.; Ma, Y. Urban pluvial flooding and stormwater management: A contemporary review of China’s challenges and “sponge cities” strategy. Environ. Sci. Policy 2018, 80, 132–143. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, J.; Shen, X.; Dai, K.; Chen, Y.; Wang, D.; Zhang, L.; Guo, H.; Ma, J.; Gao, W. Flood risk assessment of Wuhan, China, using a multi-criteria analysis model with the improved AHP-Entropy method. Environ. Sci. Pollut. Res. 2023, 30, 96001–96018. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, H.; Hou, Y.; Liu, P.; Zeng, B.; Huang, G.; Chen, W.; Wei, K.; Ouyang, C.; Duan, H.; et al. Reflections on the Catastrophic 2020 Yangtze River Basin Flooding in Southern China. Innovation 2020, 1, 100038. [Google Scholar] [CrossRef]
- Zhao, X.; Li, H.; Cai, Q.; Pan, Y.; Qi, Y. Managing Extreme Rainfall and Flooding Events: A Case Study of the 20 July 2021 Zhengzhou Flood in China. Climate 2023, 11, 228. [Google Scholar] [CrossRef]
- Yan, W.; Ren, H.; Luo, X.; Li, S. Multi-Dimensional Urban Flooding Impact Assessment Leveraging Social Media Data: A Case Study of the 2020 Guangzhou Rainstorm. Water 2023, 15, 4296. [Google Scholar] [CrossRef]
- Zhao, D.; Xu, H.; Li, Y.; Yu, Y.; Duan, Y.; Xu, X.; Chen, L. Locally opposite responses of the 2023 Beijing–Tianjin–Hebei extreme rainfall event to global anthropogenic warming. Npj Clim. Atmos. Sci. 2024, 7, 38. [Google Scholar] [CrossRef]
- Domínguez-Cuesta, M.J. Susceptibility. In Encyclopedia of Natural Hazards; Bobrowsky, P.T., Ed.; Springer Netherlands: Dordrecht, The Netherlands, 2013; p. 988. ISBN 978-1-4020-4399-4. [Google Scholar]
- Lacasse, S. Risk Assessment. In Encyclopedia of Natural Hazards; Bobrowsky, P.T., Ed.; Springer Netherlands: Dordrecht, The Netherlands, 2013; pp. 862–863. ISBN 978-1-4020-4399-4. [Google Scholar]
- Cutter, S.L. Vulnerability. In Encyclopedia of Natural Hazards; Bobrowsky, P.T., Ed.; Springer Netherlands: Dordrecht, The Netherlands, 2013; pp. 1088–1090. ISBN 978-1-4020-4399-4. [Google Scholar]
- Porter, K. A Beginner’s Guide to Fragility, Vulnerability, and Risk. In Encyclopedia of Earthquake Engineering; Beer, M., Kougioumtzoglou, I.A., Patelli, E., Au, I.S.-K., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2021; pp. 235–260. ISBN 978-3-642-36197-5. [Google Scholar]
- Xu, L.; Ma, A. Coarse-to-fine waterlogging probability assessment based on remote sensing image and social media data. Geo-Spat. Inf. Sci. 2021, 24, 279–301. [Google Scholar] [CrossRef]
- Antwi-Agyakwa, K.T.; Afenyo, M.K.; Angnuureng, D.B. Know to Predict, Forecast to Warn: A Review of Flood Risk Prediction Tools. Water 2023, 15, 427. [Google Scholar] [CrossRef]
- Zhang, M.; Xu, M.; Wang, Z.; Lai, C. Assessment of the vulnerability of road networks to urban waterlogging based on a coupled hydrodynamic model. J. Hydrol. 2021, 603, 127105. [Google Scholar] [CrossRef]
- Yao, Y.; Dai, P.; Wang, H.; Han, Q.; Li, J.; Song, H.; Gu, Z.; Wang, L.; Guo, Y.; Li, Q.; et al. Method for analyzing urban waterlogging mechanisms based on a 1D–2D water environment dynamic bidirectional coupling model. J. Environ. Manag. 2024, 360, 121024. [Google Scholar] [CrossRef]
- Das, B.; Ray, T.K.; Boral, E. Identification of urban waterlogging risk zones using Analytical Hierarchy Process (AHP): A case of Agartala city. Environ. Monit. Assess. 2025, 197, 322. [Google Scholar] [CrossRef]
- Yuan, D.; Xue, H.; Du, M.; Pang, Y.; Wang, J.; Wang, C.; Song, X.; Wang, S.; Kou, Y. Urban waterlogging resilience assessment based on combination weight and cloud model: A case study of Haikou. Environ. Impact Asses. 2025, 111, 107728. [Google Scholar] [CrossRef]
- Li, H.; Wang, Q.; Li, M.; Zang, X.; Wang, Y. Identification of urban waterlogging indicators and risk assessment based on MaxEnt Model: A case study of Tianjin Downtown. Ecol. Indic. 2024, 158, 111354. [Google Scholar] [CrossRef]
- Wang, Z.; Lai, C.; Chen, X.; Yang, B.; Zhao, S.; Bai, X.; Jeon, G.; Han, K.; Yoon, H.; Song, W.; et al. Flood hazard risk assessment model based on random forest. J. Hydrol. 2015, 527, 1130–1141. [Google Scholar] [CrossRef]
- Youssef, A.M.; Pourghasemi, H.R.; Mahdi, A.M.; Matar, S.S. Flood vulnerability mapping and urban sprawl suitability using FR, LR, and SVM models. Environ. Sci. Pollut. Res. 2023, 30, 16081–16105. [Google Scholar] [CrossRef]
- Zeng, B.; Huang, G.; Chen, W. Research progress and prospects of urban flooding simulation: From traditional numerical models to deep learning approaches. Environ. Model. Softw. 2025, 183, 106213. [Google Scholar] [CrossRef]
- Yoshimura, N.; Hiura, T.; Yu, X.; Wu, K.; Yang, Y.; Liu, Q. WaRENet: A Novel Urban Waterlogging Risk Evaluation Network. ACM Trans. Multimed. Comput. Commun. Appl. 2024, 20, 1–28. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, C.; Li, W.; Tang, Y.; Yang, F.; Xu, Y.; Quan, L.; Hu, C. Simulation of Urban Flood Process Based on a Hybrid LSTM-SWMM Model. Water Resour. Manag. 2023, 37, 5171–5187. [Google Scholar] [CrossRef]
- Zhang, Z.; Jian, X.; Chen, Y.; Huang, Z.; Liu, J.; Yang, L.; Yao, K.; Su, H.; Torrenti, J.; Wen, Z.; et al. Real-Time Waterlogging Monitoring on Urban Roads Using Edge Computing. Water Resour. Manag. 2025, 39, 5273–5287. [Google Scholar] [CrossRef]
- Beijing Water Authority. Waterlogging Risk Map for Suburban New Towns. 2024. Available online: https://swj.beijing.gov.cn/swdt/tzgg/202406/t20240627_3730100.html (accessed on 3 June 2025).
- Huang, F.; Zhu, D.; Zhang, Y.; Zhang, J.; Wang, N.; Dong, Z. Urban Flooding Disaster Risk Assessment Utilizing the MaxEnt Model and Game Theory: A Case Study of Changchun, China. Sustainability 2024, 16, 8696. [Google Scholar] [CrossRef]
- Yan, M.; Yang, J.; Ni, X.; Liu, K.; Wang, Y.; Xu, F. Urban waterlogging susceptibility assessment based on hybrid ensemble machine learning models: A case study in the metropolitan area in Beijing, China. J. Hydrol. 2024, 630, 130695. [Google Scholar] [CrossRef]
- Zhou, S.; Xu, Z.; Zhang, Q.; Yu, P.; Jiang, M.; Li, J.; Yang, M. Rainstorm-induced flood risk assessment in developed urban area using a data-driven approach with watershed units. Sci. Total. Environ. 2024, 946, 174135. [Google Scholar] [CrossRef]
- Qi, X.; Khu, S.-T.; Yu, P.; Liu, Y.; Wang, M. Integrating machine learning with the Minimum Cumulative Resistance Model to assess the impact of urban land use on road waterlogging risk. J. Hydrol. 2025, 654, 132842. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, Y.; Bakhshipour, A.E.; Liu, M.; Rao, Q.; Lu, Z. Designing coupled LID–GREI urban drainage systems: Resilience assessment and decision-making framework. Sci. Total. Environ. 2022, 834, 155267. [Google Scholar] [CrossRef]
- Tang, X.; Wu, Z.; Liu, W.; Tian, J.; Liu, L. Exploring effective ways to increase reliable positive samples for machine learning-based urban waterlogging susceptibility assessments. J. Environ. Manag. 2023, 344, 118682. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, Z.; Zhang, H.; Dalla Fontana, G.; Tarolli, P. Identifying dominant factors of waterlogging events in metropolitan coastal cities: The case study of Guangzhou, China. J. Environ. Manag. 2020, 271, 110951. [Google Scholar] [CrossRef]
- Wang, M.; Liu, M.; Zhang, D.; Zhang, Y.; Su, J.; Zhou, S.; Bakhshipour, A.E.; Tan, S.K. Assessing hydrological performance for optimized integrated grey-green infrastructure in response to climate change based on shared socio-economic pathways. Sustain. Cities Soc. 2023, 91, 104436. [Google Scholar] [CrossRef]
- Abd-Elaty, I.; Kuriqi, A.; Pugliese, L.; Zelenakova, M.; El Shinawi, A. Mitigation of urban waterlogging from flash floods hazards in vulnerable watersheds. J. Hydrol. Reg. Stud. 2023, 47, 101429. [Google Scholar] [CrossRef]
- Wu, M.; Wei, X.; Ge, W.; Chen, G.; Zheng, D.; Zhao, Y.; Chen, M.; Xin, Y. Analyzing the spatial scale effects of urban elements on urban flooding based on multiscale geographically weighted regression. J. Hydrol. 2024, 645, 132178. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, M.; Zhang, D.; Lu, Z.; Bakhshipour, A.E.; Liu, M.; Jiang, Z.; Li, J.; Tan, S.K. Multi-stage planning of LID-GREI urban drainage systems in response to land-use changes. Sci. Total Environ. 2023, 859, 160214. [Google Scholar] [CrossRef]
- Alfieri, L.; Bisselink, B.; Dottori, F.; Naumann, G.; de Roo, A.; Salamon, P.; Wyser, K.; Feyen, L. Global projections of river flood risk in a warmer world. Earth’s Future 2017, 5, 171–182. [Google Scholar] [CrossRef]
- Zhang, W.; Villarini, G.; Vecchi, G.A.; Smith, J.A. Urbanization exacerbated the rainfall and flooding caused by hurricane Harvey in Houston. Nature 2018, 563, 384–388. [Google Scholar] [CrossRef]
- Sun, S.; Zhai, J.; Li, Y.; Huang, D.; Wang, G. Urban waterlogging risk assessment in well-developed region of Eastern China. Phys. Chem. Earth Parts A/B/C 2020, 115, 102824. [Google Scholar] [CrossRef]
- Liao, X.; Xu, W.; Zhang, J.; Qiao, Y.; Meng, C. Analysis of affected population vulnerability to rainstorms and its induced floods at county level: A case study of Zhejiang Province, China. Int. J. Disaster Risk Reduct. 2022, 75, 102976. [Google Scholar] [CrossRef]
- Mishra, K.; Sinha, R. Flood risk assessment in the Kosi megafan using multi-criteria decision analysis: A hydro-geomorphic approach. Geomorphology 2020, 350, 106861. [Google Scholar] [CrossRef]
- Wang, M.; Fu, X.; Zhang, D.; Lou, S.; Li, J.; Chen, F.; Li, S.; Tan, S.K. Urban agglomeration waterlogging hazard exposure assessment based on an integrated Naive Bayes classifier and complex network analysis. Nat. Hazards 2023, 118, 2173–2197. [Google Scholar] [CrossRef]
- Zhou, X.; Bai, Z.; Yang, Y. Linking trends in urban extreme rainfall to urban flooding in China. Int. J. Clim. 2017, 37, 4586–4593. [Google Scholar] [CrossRef]
- Yan, Y.; Zhang, H.; Zhang, N.; Feng, C. Development of an Integrated Urban Flood Model and Its Application in a Concave-Down Overpass Area. Remote Sens. 2024, 16, 1650. [Google Scholar] [CrossRef]
- Lin, J.; He, P.; Yang, L.; He, X.; Lu, S.; Liu, D. Predicting future urban waterlogging-prone areas by coupling the maximum entropy and FLUS model. Sustain. Cities Soc. 2022, 80, 103812. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, W.; Wei, Y.; Sebastian, F.S.M.; Wang, M. Urban waterlogging control: A novel method to urban drainage pipes reconstruction, systematic and automated. J. Clean. Prod. 2023, 418, 137950. [Google Scholar] [CrossRef]
- Ding, Y.; Wang, H.; Liu, Y.; Lei, X. Urban waterlogging structure risk assessment and enhancement. J. Environ. Manag. 2024, 352, 120074. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Z.; Qi, X.; Zhao, X.; Hu, W.; Cai, R. Spatiotemporal Urban Waterlogging Risk Assessment Incorporating Human and Vehicle Distribution. Water 2023, 15, 3452. [Google Scholar] [CrossRef]
- Song, Y.; Guo, L.; Wang, C.; Zhu, J.; Li, Z. Urban road waterlogging multi-level assessment integrated flood models and road network models. Transp. Res. Part. D Transp. Environ. 2024, 133, 104305. [Google Scholar] [CrossRef]
- Han, F.; Yu, J.; Zhou, G.; Li, S.; Sun, T. A comparative study on urban waterlogging susceptibility assessment based on multiple data-driven models. J. Environ. Manag. 2024, 360, 121166. [Google Scholar] [CrossRef]
- Zou, B.; Nie, Y.; Liu, R.; Wang, M.; Li, J.; Fan, C.; Zhou, X. Assessing the Impact of Urban Morphologies on Waterlogging Risk Using a Spatial Weight Naive Bayes Model and Local Climate Zones Classification. Water 2025, 16, 2464. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Z.; Hu, W.; Zhao, X.; Qi, X.; Cai, R. Vulnerability Assessment and Future Prediction of Urban Waterlogging—A Case Study of Fuzhou. Water 2023, 15, 4025. [Google Scholar] [CrossRef]
- Li, J.; Zhang, H.; Zhang, X.; Wang, W. Establishment and Application of a Specialized Physical Examination Indicator System for Urban Waterlogging Risk in China. Sustainability 2023, 15, 4998. [Google Scholar] [CrossRef]
- Wang, M.; Li, Y.; Yuan, H.; Zhou, S.; Wang, Y.; Adnan Ikram, R.M.; Li, J. An XGBoost-SHAP approach to quantifying morphological impact on urban flooding susceptibility. Ecol. Indic. 2023, 156, 111137. [Google Scholar] [CrossRef]
- Duan, C.; Zhang, J.; Chen, Y.; Lang, Q.; Zhang, Y.; Wu, C.; Zhang, Z. Comprehensive Risk Assessment of Urban Waterlogging Disaster Based on MCDA-GIS Integration: The Case Study of Changchun, China. Remote Sens. 2022, 14, 3101. [Google Scholar] [CrossRef]
- Ma, F.; Ao, Y.; Wang, X.; He, H.; Liu, Q.; Yang, D.; Gou, H. Assessing and enhancing urban road network resilience under rainstorm waterlogging disasters. Transp. Res. Part. D Transp. Environ. 2023, 123, 103928. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, B.; Duan, C.; Wang, H. Economic loss of urban waterlogging based on an integrated drainage model and network environ analyses. Resour. Conserv. Recycl. 2023, 192, 106923. [Google Scholar] [CrossRef]
- Li, G.; Shao, W.; Su, X.; Li, Y.; Zhang, Y.; Song, T. Urban Flood Hazard Assessment Based on Machine Learning Model. Water Resour. Manag. 2025, 39, 1953–1970. [Google Scholar] [CrossRef]
- Yao, L.; Chen, L.; Wei, W.; Sun, R. Potential reduction in urban runoff by green spaces in Beijing: A scenario analysis. Urban For. Urban Green. 2015, 14, 300–308. [Google Scholar] [CrossRef]
- Wang, Y.; Zhai, J.; Gao, G.; Liu, Q.; Song, L. Risk assessment of rainstorm disasters in the Guangdong–Hong Kong–Macao greater Bay area of China during 1990–2018. Geomat. Nat. Hazards Risk 2022, 13, 267–288. [Google Scholar] [CrossRef]
- Shi, Q.; Liu, M.; Marinoni, A.; Liu, X. UGS-1m: Fine-grained urban green space mapping of 31 major cities in China based on the deep learning framework. Earth Syst. Sci. Data 2023, 15, 555–577. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, C.; Zhang, Y.; Hu, B.; Xu, S.; Dai, Z. Assessment of urban flooding vulnerability based on AHP-PSR model: A case study in Jining City, China. Geocarto Int. 2023, 38, 2252777. [Google Scholar] [CrossRef]
- Ding, Y.; Wang, H.; Liu, Y.; Chai, B.; Bin, C. The spatial overlay effect of urban waterlogging risk and land use value. Sci. Total Environ. 2024, 947, 174290. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Yao, Y. Three-way decision and granular computing. Int. J. Approx. Reason. 2018, 103, 107–123. [Google Scholar] [CrossRef]
- Wang, M.; Wang, X.; Liu, Q.; Shen, F.; Jin, J.; Zhang, H.; Hu, Y.; Wang, Q.; Qian, Z.; Liu, P. A novel multi-dimensional cloud model coupled with connection numbers theory for evaluation of slope stability. Appl. Math. Model. 2020, 77, 426–438. [Google Scholar] [CrossRef]
- Li, D.; Liu, C.; Gan, W. A new cognitive model: Cloud model. Int. J. Intell. Syst. 2009, 24, 357–375. [Google Scholar] [CrossRef]
- Xiang, W.; Yang, X.; Babuna, P.; Bian, D. Development, Application and Challenges of Set Pair Analysis in Environmental Science from 1989 to 2020: A Bibliometric Review. Sustainability 2022, 14, 153. [Google Scholar] [CrossRef]
- Chen, G.; Wang, S.; Ran, Y.; Cao, X.; Fang, Z.; Xu, Z. Intelligent monitoring and quantitative evaluation of fire risk in subway construction: Integration of multi- source data fusion, FTA, and deep learning. J. Clean. Prod. 2024, 478, 143832. [Google Scholar] [CrossRef]
- Chen, G.; Liang, Y.; Li, S.; Xu, Z. A novel gradient descent optimizer based on fractional order scheduler and its application in deep neural networks. Appl. Math. Model. 2024, 128, 26–57. [Google Scholar] [CrossRef]
- Huang, Z.; Chen, G.; Jiang, Z. Assessing L2 writing formality using syntactic complexity indices: A fuzzy evaluation approach. Assess. Writ. 2025, 66, 100973. [Google Scholar] [CrossRef]
- Yin, J.; Yu, D.; Lin, N.; Wilby, R.L. Evaluating the cascading impacts of sea level rise and coastal flooding on emergency response spatial accessibility in Lower Manhattan, New York City. J. Hydrol. 2017, 555, 648–658. [Google Scholar] [CrossRef]
- Coles, D.; Yu, D.; Wilby, R.L.; Green, D.; Herring, Z. Beyond ‘flood hotspots’: Modelling emergency service accessibility during flooding in York, UK. J. Hydrol. 2017, 546, 419–436. [Google Scholar] [CrossRef]
- Green, D.; Yu, D.; Pattison, I.; Wilby, R.; Bosher, L.; Patel, R.; Thompson, P.; Trowell, K.; Draycon, J.; Halse, M.; et al. City-scale accessibility of emergency responders operating during flood events. Nat. Hazards Earth Syst. Sci. 2017, 17, 1–16. [Google Scholar] [CrossRef]
- Diakoulaki, D.; Mavrotas, G.; Papayannakis, L. Determining objective weights in multiple criteria problems: The critic method. Comput. Oper. Res. 1995, 22, 763–770. [Google Scholar] [CrossRef]
- Deng, H.; Yeh, C.-H.; Willis, R.J. Inter-company comparison using modified TOPSIS with objective weights. Comput. Oper. Res. 2000, 27, 963–973. [Google Scholar] [CrossRef]
- Yan, W.; Ren, H.; Luo, X.; Li, S. A modified TOPSIS with a different ranking index. Eur. J. Oper. Res. 2017, 260, 152–160. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 2011, 17, 43–57. [Google Scholar] [CrossRef]
- Mahatara, D.; Acharya, A.; Dhakal, B.; Sharma, D.; Ulak, S.; Paudel, P. Maxent modelling for habitat suitability of vulnerable tree Dalbergia latifolia in Nepal. Silva Fenn. 2021, 55, 1–17. [Google Scholar] [CrossRef]
- Pearson, R.G.; Raxworthy, C.J.; Nakamura, M.; Townsend Peterson, A. ORIGINAL ARTICLE: Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. J. Biogeogr. 2007, 34, 102–117. [Google Scholar] [CrossRef]
- Wu, L.; Liu, Y.; Zhang, J.; Zhang, B.; Wang, Z.; Tong, J.; Li, M.; Zhang, A.; Diakoulaki, D.; Mavrotas, G.; et al. Demand and supply of cultural ecosystem services: Use of geotagged photos to map the aesthetic value of landscapes in Hokkaido. Ecosyst. Serv. 2017, 24, 68–78. [Google Scholar] [CrossRef]
- Chen, J.; Yang, S.T.; Li, H.W.; Zhang, B.; Lv, J.R. Research on Geographical Environment Unit Division Based on the Method of Natural Breaks (Jenks). Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, 4, 47–50. [Google Scholar] [CrossRef]
Dimension | Indicator | Reference | Data Source |
---|---|---|---|
Natural condition | Elevation () | [33,34] | https://www.rivermap.cn/home/mapdata.html (accessed on 15 July 2025) |
Roughness () | [35,36] | / | |
Relief () | [37,38] | / | |
Slope () | [39,40] | / | |
Precipitation () | [19,41] | https://gre.geodata.cn/ (accessed on 21 June 2025) | |
Social capital | Population density () | [42,43] | https://landscan.ornl.gov/ (accessed on 23 June 2025) |
GDP () | [44,45] | https://www.resdc.cn/doi/doi.aspx?DOIid=33 (accessed on 25 June 2025) | |
Infrastructure | Distance to overpass () | [46,47] | Gaode map |
Distance to concave-down overpass () | [48,49] | Plan 2020 | |
Distance to underpass () | [50] | Plan 2020 | |
* Distance to main stormwater pipe () | [51,52] | Plan 2020 | |
* Density of main stormwater pipe () | [51,52] | Plan 2020 | |
Road density () | [53,54] | https://www.rivermap.cn/home/mapdata.html (accessed on 8 July 2025) | |
Built environment | Distance to surface water system () | [55,56] | / |
Building density () | [22,57] | https://www.rivermap.cn/home/mapdata.html (accessed on 8 July 2025) | |
Building height () | [58,59] | https://www.rivermap.cn/home/mapdata.html (accessed on 8 July 2025) | |
Impervious surface () | [60,61] | https://zenodo.org/records/12779975 (accessed on 9 July 2025) | |
Water density () | [62,63] | https://zenodo.org/records/12779975 (accessed on 10 July 2025) | |
Green space () | [64,65] | https://doi.org/10.57760/sciencedb.07049 (accessed on 12 July 2025) [66] | |
Land use () | [67,68] | https://zenodo.org/records/12779975 (accessed on 8 July 2025) |
State | Safety Factor | Hazard Factor |
---|---|---|
Waterlogging-prone area | ||
Waterlogging-safe area | 1 |
State | Modified Safety Factor | Modified Hazard Factor |
---|---|---|
Waterlogging-prone area | ||
Waterlogging-fuzzy area | ||
Waterlogging-safe area |
Random Seed | Random Test Percentage | Replicates | Maximum Iterations | Replicated Run Type | Output Format |
---|---|---|---|---|---|
True | 25% | 10 | 1000 | Bootstrap | Cloglog |
Dimension | Index | Percent Contribution (%) | Permutation Importance (%) |
---|---|---|---|
Natural condition | Elevation () | 3.2 | 12.2 |
Roughness () | 0.4 | 0.8 | |
Relief () | 2.9 | 2.8 | |
Slope () | 1.9 | 1.6 | |
Precipitation () | 6.6 | 12.0 | |
Social capital | Population density () | 9.5 | 5.1 |
GDP () | 4.7 | 5.1 | |
Infrastructure | Distance to overpass () | 1.5 | 2.5 |
Distance to concave-down overpass () | 1.1 | 2.5 | |
Distance to underpass () | 4.2 | 22.2 | |
Distance to stormwater drainage pipe () | 13.5 | 7.6 | |
Density of stormwater drainage pipe () | 8.7 | 0.7 | |
Road density () | 18.9 | 11.3 | |
Built environment | Distance to surface water system () | 2.7 | 3.5 |
Building density () | 2.2 | 2.3 | |
Building height () | 2.3 | 1.5 | |
Impervious surface () | 13.9 | 2.6 | |
Water density () | 0.5 | 1 | |
Green space () | 1.3 | 2.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, G.; Guan, W.; Xu, J.; Koh, C.G.; Xu, Z. Fusing Historical Records and Physics-Informed Priors for Urban Waterlogging Susceptibility Assessment: A Framework Integrating Machine Learning, Fuzzy Evaluation, and Decision Analysis. Appl. Sci. 2025, 15, 10604. https://doi.org/10.3390/app151910604
Chen G, Guan W, Xu J, Koh CG, Xu Z. Fusing Historical Records and Physics-Informed Priors for Urban Waterlogging Susceptibility Assessment: A Framework Integrating Machine Learning, Fuzzy Evaluation, and Decision Analysis. Applied Sciences. 2025; 15(19):10604. https://doi.org/10.3390/app151910604
Chicago/Turabian StyleChen, Guangyao, Wenxin Guan, Jiaming Xu, Chan Ghee Koh, and Zhao Xu. 2025. "Fusing Historical Records and Physics-Informed Priors for Urban Waterlogging Susceptibility Assessment: A Framework Integrating Machine Learning, Fuzzy Evaluation, and Decision Analysis" Applied Sciences 15, no. 19: 10604. https://doi.org/10.3390/app151910604
APA StyleChen, G., Guan, W., Xu, J., Koh, C. G., & Xu, Z. (2025). Fusing Historical Records and Physics-Informed Priors for Urban Waterlogging Susceptibility Assessment: A Framework Integrating Machine Learning, Fuzzy Evaluation, and Decision Analysis. Applied Sciences, 15(19), 10604. https://doi.org/10.3390/app151910604