Rapid Biocathode Start-Up with Mixed Methanogenic–Electroactive Inocula for Enhanced Bioelectrochemical Performance
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Set-Up and Operation Conditions
2.2. Origin of the Inoculum and Growth Media
2.3. Extraction of DNA and Microbial Community Structure Determination
2.4. Analytical Techniques
2.5. Bioelectrochemical Operation and Electroanalytical Characterization
3. Results & Discussion
3.1. Analysis of the Microbial Composition and Abundance of the Initial Inoculum
3.2. Influence of Inoculum on Start-Up
3.3. Monitoring of Physico-Chemical Conditions During the Operation of the Enriched Biocathode
3.4. Bio-Electrochemical Characterization of Biocathodes
3.4.1. Cyclic Voltammetry (CV)
3.4.2. Electrochemical Impedance Spectroscopy (EIS)
- (a)
- RS: Ohmic resistance, representing the electrolyte resistance and system connections.
- (b)
- RCT: Charge transfer resistance between the biofilm and the bulk, represented as a semicircle in the Niquits representation [48].
- (c)
- Q1: The parameter Q is the coefficient associated with the Constant Phase Element (CPE), used in equivalent circuits to model non-ideal capacitive behaviour.
- (d)
- RBIO: Opposition to charge transfer between biofilm and electrode.
- (e)
- C2: which represents the capacitive behaviour of the system, associated with surface charge accumulation on the biofilm or electrode support.
3.5. Impact of Inoculum Type on Microbial Community Dynamics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Horváth-Gönczi, N.N.; Bagi, Z.; Szuhaj, M.; Rákhely, G.; Kovács, K.L. Bioelectrochemical Systems (BES) for Biomethane Production—Review. Fermentation 2023, 9, 610. [Google Scholar] [CrossRef]
- Carrillo-Peña, D.; Pelaz, G.; Mateos, R.; Escapa, A. Charge Storage Capacity of Electromethanogenic Biocathodes. J. Energy Storage 2024, 76, 109789. [Google Scholar] [CrossRef]
- Chandrasekhar, K.; Kumar, A.N.; Raj, T.; Kumar, G.; Kim, S.H. Bioelectrochemical System-Mediated Waste Valorization. Syst. Microbiol. Biomanuf. 2021, 1, 432–443. [Google Scholar] [CrossRef]
- Mateos, R.; Sotres, A.; Alonso, R.M.; Escapa, A.; Morán, A. Impact of the Start-up Process on the Microbial Communities in Biocathodes for Electrosynthesis. Bioelectrochemistry 2018, 121, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Arshi, S.; Nozari-Asbemarz, M.; Magner, E. Enzymatic Bioreactors: An Electrochemical Perspective. Catalysts 2020, 10, 1232. [Google Scholar] [CrossRef]
- Chatterjee, P.; Dessì, P.; Kokko, M.; Lakaniemi, A.-M.; Lens, P. Selective Enrichment of Biocatalysts for Bioelectrochemical Systems: A Critical Review. Renew. Sustain. Energy Rev. 2019, 109, 10–23. [Google Scholar] [CrossRef]
- Jeremiasse, A.W.; Hamelers, H.V.M.; Buisman, C.J.N. Microbial Electrolysis Cell with a Microbial Biocathode. Bioelectrochemistry 2010, 78, 39–43. [Google Scholar] [CrossRef]
- Rozendal, R.A.; Jeremiasse, A.W.; Hamelers, H.V.M.; Buisman, C.J.N. Hydrogen Production with a Microbial Biocathode. Environ. Sci. Technol. 2008, 42, 629–634. [Google Scholar] [CrossRef]
- Batlle-Vilanova, P.; Puig, S.; Gonzalez-Olmos, R.; Vilajeliu-Pons, A.; Balaguer, M.D.; Colprim, J. Deciphering the Electron Transfer Mechanisms for Biogas Upgrading to Biomethane within a Mixed Culture Biocathode. RSC Adv. 2015, 5, 52243–52251. [Google Scholar] [CrossRef]
- Sun, D.; Call, D.F.; Kiely, P.D.; Wang, A.; Logan, B.E. Syntrophic Interactions Improve Power Production in Formic Acid Fed MFCs Operated with Set Anode Potentials or Fixed Resistances. Biotechnol. Bioeng. 2012, 109, 405–414. [Google Scholar] [CrossRef]
- Boghani, H.C.; Kim, J.R.; Dinsdale, R.M.; Guwy, A.J.; Premier, G.C. Control of Power Sourced from a Microbial Fuel Cell Reduces Its Start-up Time and Increases Bioelectrochemical Activity. Bioresour. Technol. 2013, 140, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Carrillo-Peña, D.; Mateos, R.; Morán, A.; Escapa, A. Use of Carbon-Based Additives in Bio-Electrochemically Assisted Anaerobic Digestion for Cheese Whey Valorisation. Energies 2024, 17, 1290. [Google Scholar] [CrossRef]
- Pelaz, G.; Carrillo-Peña, D.; Morán, A.; Escapa, A. Microbial Electromethanogenesis for Energy Storage: Influence of Acidic PH on Process Performance. J. Energy Storage 2024, 75, 109685. [Google Scholar] [CrossRef]
- Fudge, T.; Bulmer, I.; Bowman, K.; Pathmakanthan, S.; Gambier, W.; Dehouche, Z.; Al-Salem, S.M.; Constantinou, A. Microbial Electrolysis Cells for Decentralisedwastewater Treatment: The next Steps. Water 2021, 13, 445. [Google Scholar] [CrossRef]
- Ghaderikia, A.; Taskin, B.; Yilmazel, Y.D. Start-up Strategies of Electromethanogenic Reactors for Methane Production from Cattle Manure. Waste Manag. 2023, 159, 27–38. [Google Scholar] [CrossRef]
- Dumas, C.; Basseguy, R.; Bergel, A. Microbial Electrocatalysis with Geobacter Sulfurreducens Biofilm on Stainless Steel Cathodes. Electrochim. Acta 2008, 53, 2494–2500. [Google Scholar] [CrossRef]
- Saheb-Alam, S.; Singh, A.; Hermansson, M.; Persson, F.; Schnürer, A.; Wilén, B.-M.; Modin, O. Effect of Start-Up Strategies and Electrode Materials on Carbon Dioxide Reduction on Biocathodes. Appl. Environ. Microbiol. 2018, 84, e02242-17. [Google Scholar] [CrossRef]
- Cheng, S.; Xing, D.; Call, D.F.; Logan, B.E. Direct Biological Conversion of Electrical Current into Methane by Electromethanogenesis. Environ. Sci. Technol. 2009, 43, 3953–3958. [Google Scholar] [CrossRef]
- Gregory, K.B.; Bond, D.R.; Lovley, D.R. Graphite Electrodes as Electron Donors for Anaerobic Respiration. Environ. Microbiol. 2004, 6, 596–604. [Google Scholar] [CrossRef]
- Van Eerten-Jansen, M.C.A.A.; Veldhoen, A.B.; Plugge, C.M.; Stams, A.J.M.; Buisman, C.J.N.; Ter Heijne, A. Microbial Community Analysis of a Methane-Producing Biocathode in a Bioelectrochemical System. Archaea 2013, 2013, 481784. [Google Scholar] [CrossRef]
- Mur-Gorgas, A.; García-Triviño, A.V.; Mateos, R.; Escapa, A.; Morán, A. Influence of Adding Conductive Materials and Integrating Bio Electrochemical Systems on the Efficiency of Anaerobic Digestion. Appl. Sci. 2024, 15, 143. [Google Scholar] [CrossRef]
- Alonso, R.M.; Escapa, A.; Sotres, A.; Morán, A. Integrating Microbial Electrochemical Technologies with Anaerobic Digestion to Accelerate Propionate Degradation. Fuel 2020, 267, 117158. [Google Scholar] [CrossRef]
- Aulenta, F.; Catapano, L.; Snip, L.; Villano, M.; Majone, M. Linking Bacterial Metabolism to Graphite Cathodes: Electrochemical Insights into the H2 Producing Capability of Desulfovibrio Sp. ChemSusChem 2012, 5, 1080–1085. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liu, Y.; Liu, K.; Hu, L.; Yang, J.; Wang, X.; Song, Z.L.; Yang, Y.; Tang, M.; Wang, R. Bacterial Community Composition of Internal Circulation Reactor at Different Heights for Large-Scale Brewery Wastewater Treatment. Bioresour. Technol. 2021, 331, 125027. [Google Scholar] [CrossRef]
- Xia, Y.; Wang, Y.; Wang, Y.; Chin, F.Y.L.; Zhang, T. Cellular Adhesiveness and Cellulolytic Capacity in Anaerolineae Revealed by Omics-Based Genome Interpretation. Biotechnol. Biofuels 2016, 9, 111. [Google Scholar] [CrossRef] [PubMed]
- Marshall, C.W.; Ross, D.E.; Fichot, E.B.; Norman, R.S.; May, H.D. Electrosynthesis of Commodity Chemicals by an Autotrophic Microbial Community. Appl. Environ. Microbiol. 2012, 78, 8412–8420. [Google Scholar] [CrossRef] [PubMed]
- Yamada, T.; Imachi, H.; Ohashi, A.; Harada, H.; Hanada, S.; Kamagata, Y.; Sekiguchi, Y. Bellilinea Caldifistulae Gen. Nov., Sp. Nov and Longilinea Arvoryzae Gen. Nov., Sp. Nov., Strictly Anaerobic, Filamentous Bacteria of the Phylum Chloroflexi Isolated from Methanogenic Propionate-Degrading Consortia. Int. J. Syst. Evol. Microbiol. 2007, 57, 2299–2306. [Google Scholar] [CrossRef]
- Blasco-Gómez, R.; Batlle-Vilanova, P.; Villano, M.; Balaguer, M.D.; Colprim, J.; Puig, S. On the Edge of Research and Technological Application: A Critical Review of Electromethanogenesis. Int. J. Mol. Sci. 2017, 18, 874. [Google Scholar] [CrossRef]
- Imachi, H.; Sakai, S.; Sekiguchi, Y.; Hanada, S.; Kamagata, Y.; Ohashi, A.; Harada, H. Methanolinea Tarda Gen. Nov., Sp. Nov., a Methane-Producing Archaeon Isolated from a Methanogenic Digester Sludge. Int. J. Syst. Evol. Microbiol. 2008, 58, 294–301. [Google Scholar] [CrossRef]
- Morris, B.E.L.; Henneberger, R.; Huber, H.; Moissl-Eichinger, C. Microbial Syntrophy: Interaction for the Common Good. FEMS Microbiol. Rev. 2013, 37, 384–406. [Google Scholar] [CrossRef]
- Amha, Y.M.; Anwar, M.Z.; Brower, A.; Jacobsen, C.S.; Stadler, L.B.; Webster, T.M.; Smith, A.L. Inhibition of Anaerobic Digestion Processes: Applications of Molecular Tools. Bioresour. Technol. 2018, 247, 999–1014. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Hsu, L.H.H.; Kavanagh, P.; Barrière, F.; Lens, P.N.L.; Lapinsonnière, L.; Lienhard, J.H.; Schröder, U.; Jiang, X.; Leech, D. The Ins and Outs of Microorganism-Electrode Electron Transfer Reactions. Nat. Rev. Chem. 2017, 1, 0024. [Google Scholar] [CrossRef]
- Lovley, D.R. Microbial Fuel Cells: Novel Microbial Physiologies and Engineering Approaches. Curr. Opin. Biotechnol. 2006, 17, 327–332. [Google Scholar] [CrossRef] [PubMed]
- Rotaru, A.E.; Calabrese, F.; Stryhanyuk, H.; Musat, F.; Shrestha, P.M.; Weber, H.S.; Snoeyenbos-West, O.L.O.; Hall, P.O.J.; Richnow, H.H.; Musat, N.; et al. Conductive Particles Enable Syntrophic Acetate Oxidation between Geobacter and Methanosarcina from Coastal Sediments. MBio 2018, 9, 14. [Google Scholar] [CrossRef]
- Jones, L.M.; El Aidy, S. Electroactive Ecosystem Insights from Corrosion Microbiomes Inform Gut Microbiome Modulation. ISME J. 2025, 19, wraf112. [Google Scholar] [CrossRef]
- Deng, X.; Saito, J.; Kaksonen, A.; Okamoto, A. Enhancement of Cell Growth by Uncoupling Extracellular Electron Uptake and Oxidative Stress Production in Sediment Sulfate-Reducing Bacteria. Environ. Int. 2020, 144, 106006. [Google Scholar] [CrossRef]
- Wu, Q.; Yang, N.; Xiao, M.; Wang, W.; Cui, C. Bicarbonate-Mediated Proton Transfer Requires Cations. Nat. Commun. 2024, 15, 9145. [Google Scholar] [CrossRef]
- Nandy, A.; Farkas, D.; Pepió-Tárrega, B.; Martinez-Crespiera, S.; Borràs, E.; Avignone-Rossa, C.; Di Lorenzo, M. Influence of Carbon-Based Cathodes on Biofilm Composition and Electrochemical Performance in Soil Microbial Fuel Cells. Environ. Sci. and Ecotechnology 2023, 16, 100276. [Google Scholar] [CrossRef]
- Hsieh, C.-T.; Lin, Y.-T. Synthesis of Mesoporous Carbon Composite and Its Electric Double-Layer Formation Behavior. Microporous Mesoporous Mater. 2006, 93, 232–239. [Google Scholar] [CrossRef]
- Forghani, M.; Donne, S.W. Method Comparison for Deconvoluting Capacitive and Pseudo-Capacitive Contributions to Electrochemical Capacitor Electrode Behavior. J. Electrochem. Soc. 2018, 165, A664–A673. [Google Scholar] [CrossRef]
- Sravan, J.S.; Hemalatha, M.; Mohan, S.V. Cascading Integration of Electrofermentation and Photosynthesis—Low-Carbon Biorefinery in Closed Loop Approach. Adv. Sustain. Syst. 2023, 7, 2300142. [Google Scholar] [CrossRef]
- Santos, T.C.; Silva, M.A.; Morgado, L.; Dantas, J.M.; Salgueiro, C.A. Diving into the Redox Properties of Geobacter Sulfurreducens Cytochromes: A Model for Extracellular Electron Transfer. Dalton Trans. 2015, 44, 9335–9344. [Google Scholar] [CrossRef]
- Li, Z.; Liu, Z.; Ng, T.Y.; Sharma, P. The Effect of Water Content on the Elastic Modulus and Fracture Energy of Hydrogel. Extreme Mech. Lett. 2020, 35, 100617. [Google Scholar] [CrossRef]
- Marsili, E.; Rollefson, J.B.; Baron, D.B.; Hozalski, R.M.; Bond, D.R. Microbial Biofilm Voltammetry: Direct Electrochemical Caracterization of Catalytic Electrode-Attached Biofilms. Appl. Environ. Microbiol. 2008, 74, 7329–7337. [Google Scholar] [CrossRef] [PubMed]
- Quan, Z.; Ni, E.; Ogasawara, Y.; Sonoyama, N. Nano-Size Multiple Metal Oxide Anode Electrodes Synthesized from Layered Double Hydroxides—Electrochemical Reaction Mechanism and Surface Morphology Change during Reaction with Lithium Ion. Solid State Ion. 2014, 268, 268–272. [Google Scholar] [CrossRef]
- Mei, B.-A.; Munteshari, O.; Lau, J.; Dunn, B.; Pilon, L. Physical Interpretations of Nyquist Plots for EDLC Electrodes and Devices. J. Phys. Chem. C 2018, 122, 194–206. [Google Scholar] [CrossRef]
- Heijne, A.t.; Liu, D.; Sulonen, M.; Sleutels, T.; Fabregat-Santiago, F. Quantification of Bio-Anode Capacitance in Bioelectrochemical Systems Using Electrochemical Impedance Spectroscopy. J. Power Sources 2018, 400, 533–538. [Google Scholar] [CrossRef]
- Mei, B.A.; Lau, J.; Lin, T.; Tolbert, S.H.; Dunn, B.S.; Pilon, L. Physical Interpretations of Electrochemical Impedance Spectroscopy of Redox Active Electrodes for Electrical Energy Storage. J. Phys. Chem. C 2018, 122, 24499–24511. [Google Scholar] [CrossRef]
- Piratoba Morales, U.; Vera López, E.; Ortiz Otálora, C. Aspectos Básicos En La Interpretación de Diagramas de Impedancia Electroquímica. Dyna 2010, 77, 13–19. [Google Scholar]
- Kretzschmar, J.; Harnisch, F. Electrochemical Impedance Spectroscopy on Biofilm Electrodes—Conclusive or Euphonious? Curr. Opin. Electrochem. 2021, 29, 100757. [Google Scholar] [CrossRef]
- Wang, D.; Geng, Z.; Li, B.; Zhang, C. High Performance Electrode Materials for Electric Double-Layer Capacitors Based on Biomass-Derived Activated Carbons. Electrochim. Acta 2015, 173, 377–384. [Google Scholar] [CrossRef]
- Jorcin, J.-B.; Orazem, M.E.; Pébère, N.; Tribollet, B. CPE Analysis by Local Electrochemical Impedance Spectroscopy. Electrochim. Acta 2006, 51, 1473–1479. [Google Scholar] [CrossRef]
- Babauta, J.T.; Nguyen, H.D.; Istanbullu, O.; Beyenal, H. Microscale Gradients of Oxygen, Hydrogen Peroxide, and PH in Freshwater Cathodic Biofilms. ChemSusChem 2013, 6, 1252–1261. [Google Scholar] [CrossRef]
- Wenzel, J.; Fiset, E.; Batlle-Vilanova, P.; Cabezas, A.; Etchebehere, C.; Balaguer, M.D.; Colprim, J.; Puig, S. Microbial Community Pathways for the Production of Volatile Fatty Acids from CO2 and Electricity. Front. Energy Res. 2018, 6, 15. [Google Scholar] [CrossRef]
Start-Up Time (Days) | Current Density (A/m2) | Reference |
---|---|---|
28 | 0.2–0.8 | [7] |
60 | 1.2 | [8] |
43 | 0.1–0.3 | [9] |
30 | - | [10] |
40 | - | [11] |
17 | 1.5 | [12] |
Tailor-Made Inoculum | Control | |
---|---|---|
Rs (Ω) | 2.12 | 7.67 |
RCT (Ω) | 50.3 | 113.5 |
Q1 (mFs(a−1)) | 135.1 | 23.6 |
a | 0.74 | 0.20 |
RBIO (Ω) | 314.5 | 604.9 |
C2 (mF) | 22.7 | 13.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joglar, T.; Crespo-Barreiro, A.; Jiménez-Rosado, M.; Mateos, R. Rapid Biocathode Start-Up with Mixed Methanogenic–Electroactive Inocula for Enhanced Bioelectrochemical Performance. Appl. Sci. 2025, 15, 10601. https://doi.org/10.3390/app151910601
Joglar T, Crespo-Barreiro A, Jiménez-Rosado M, Mateos R. Rapid Biocathode Start-Up with Mixed Methanogenic–Electroactive Inocula for Enhanced Bioelectrochemical Performance. Applied Sciences. 2025; 15(19):10601. https://doi.org/10.3390/app151910601
Chicago/Turabian StyleJoglar, Tamara, Andrea Crespo-Barreiro, Mercedes Jiménez-Rosado, and Raúl Mateos. 2025. "Rapid Biocathode Start-Up with Mixed Methanogenic–Electroactive Inocula for Enhanced Bioelectrochemical Performance" Applied Sciences 15, no. 19: 10601. https://doi.org/10.3390/app151910601
APA StyleJoglar, T., Crespo-Barreiro, A., Jiménez-Rosado, M., & Mateos, R. (2025). Rapid Biocathode Start-Up with Mixed Methanogenic–Electroactive Inocula for Enhanced Bioelectrochemical Performance. Applied Sciences, 15(19), 10601. https://doi.org/10.3390/app151910601