Lightweight Online Clock Skew Estimation for Robust ITS Time Synchronization
Abstract
1. Introduction
- This paper proposes lightweight online clock skew estimation algorithms that update skew in real time with minimal storage and computation.
- This paper integrates the proposed estimators into existing offset correction frameworks, enabling accurate and hardware-free synchronization in ITS scenarios.
- This paper validates the effectiveness of the proposed approach through simulations and testbed experiments, demonstrating significant error reduction in both single-hop and multi-hop networks.
2. Related Work
2.1. ITS Synchronization: I2I and V2I Scenarios
2.2. Time Synchronization: V2V Scenarios (VANET Environments)
3. Clock Models and Challenges in Time Synchronization
3.1. Clock Fundamentals
3.2. Time Synchronization
4. Proposed Online Estimation Algorithms for Clock Skew
4.1. Clock Skew Estimation via Recursive Least Squares (RLS)
4.2. Adaptive Clock Skew Estimation via Recursive Weighted Least Squares (RWLS)
4.3. Noise-Augmented Formulation
5. Implementation Considerations
5.1. Exclude Outliers
5.2. Implementation of Skew Compensation
Algorithm 1. Pseudo code for time synchronization using RWLS | |
Step | Pseudo Code |
1 | Begin |
2 | Initialize all variables |
3 | while (true) do |
4 | if (timing information is obtained) then |
5 | Perform offset(θi) correction |
6 | i ← i + 1 |
7 | if (i = 1) then |
8 | Store TD0 using Equation (23) |
9 | goto Step 3 |
10 | else |
// Clock skew estimation | |
11 | Obtain εi using Equation (10) |
12 | Calculate σi using Equation (24) |
13 | Update K[i] using Equation (20) |
14 | Update using Equation (19) |
15 | Update using Equation (21) |
16 | Calculate τi using Equation (38) |
17 | if (εi is outlier according to Equation (35)) then |
18 | Discard measurement and goto Step 2 |
19 | else |
// Clock skew compensation | |
20 | Set Timer Compare Register: TCPR ← Tcurrent + τi |
21 | end if |
22 | end if |
23 | end if |
24 | if (timer compare interrupt occurs) then |
25 | execute TimerCompareISR() |
26 | end if |
27 | end while |
28 | procedure TimerCompareISR() |
29 | if ( > 0) then |
30 | Tcurrent++ |
31 | else if ( < 0 then |
32 | Tcurrent-- |
33 | end if |
34 | TCPR ← TCPR + τi |
35 | end procedure |
6. Performance Analysis
6.1. Simulation Results
6.2. Experimental Results
6.2.1. Single-Hop Network Topology
6.2.2. Multi-Hop Tree-Based Network Topology
7. Conclusions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ITS | Intelligent Transportation Systems |
V2V | Vehicle-to-Vehicle |
V2I | Vehicle-to-Infrastructure |
I2I | Infrastructure-to-Infrastructure |
OBE | On-Board Equipment |
RSU | Roadside unit |
GNSS | Global Navigation Satellite System |
GPS | Global Positioning System |
OTA | Over-The-Air |
VANET | Vehicular Ad Hoc Network |
WSN | Wireless Sensor Network |
S-R | Sender-Receiver |
R-R | Receiver-Receiver |
TPSN | Timing-sync Protocol for Sensor Networks |
RBS | Reference Broadcast Synchronization |
RLS | Recursive Least Squares |
RWLS | Recursive Weighted Least Squares |
PPM | Parts Per Million |
TCPR | Timer Compare Register |
MLE | Maximum Likelihood Estimator |
PPB | Parts Per Billion |
Appendix A
Appendix A.1. RLS Estimator [35]
Appendix A.2. RWLS Estimator [35]
References
- Hasan, K.F.; Wang, C.; Feng, Y.; Tian, Y.-C. Time synchronization in vehicular ad-hoc networks: A survey on theory and practice. Veh. Commun. 2018, 14, 39–51. [Google Scholar] [CrossRef]
- Ahmed, E.; Gharavi, H. Cooperative vehicular networking: A survey. IEEE Trans. Intell. Transp. Syst. 2018, 19, 996–1014. [Google Scholar] [CrossRef] [PubMed]
- Hasan, K.F.; Feng, Y.; Tian, Y.-C. Precise GNSS time synchronization with experimental validation in vehicular networks. IEEE Trans. Netw. Serv. Manag. 2023, 20, 3289–3301. [Google Scholar] [CrossRef]
- Garcia, M.H.C.; Hélou, A.E.; Ceron, R.V.; Vieira, L.F.M.; Vieira, M.A.M. A Tutorial on 5G NR V2X Communications. IEEE Commun. Surv. Tut. 2021, 23, 1972–2026. [Google Scholar] [CrossRef]
- Clancy, J.; Khan, A.N.; Shafi, F.; Azam, M.A.; Rehman, S.U.; Al-Turjman, F. Wireless Access for V2X Communications: Research, Challenges and Opportunities. IEEE Commun. Surv. Tut. 2024, 26, 2082–2119. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, G.; Xue, C.; Wang, J.; Nixon, M.; Han, S. Time-sensitive networking (TSN) for industrial automation: Current advances and future directions. ACM Comput. Surv. 2025, 57, 30. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, H.; Li, X.; Zhu, F.; Liu, Y. GNSS Timing Performance Assessment and Results Analysis. Sensors 2022, 22, 2486. [Google Scholar] [CrossRef]
- Hasan, K.F.; Feng, Y.; Tian, Y.-C. GNSS Time Synchronization in Vehicular Ad-Hoc Networks: Benefits and Feasibility. IEEE Trans. Intell. Transp. Syst. 2018, 19, 3915–3924. [Google Scholar] [CrossRef]
- Weng, Y.; Zhang, Y. A Survey of Secure Time Synchronization. Appl. Sci. 2023, 13, 3923. [Google Scholar] [CrossRef]
- Balakrishnan, K.; Dhanalakshmi, R.; Sinha, B.B.; Gopalakrishnan, R. Clock synchronization in industrial Internet of Things and potential works in precision time protocol: Review, challenges and future directions. Int. J. Cogn. Comput. Eng. 2023, 4, 205–219. [Google Scholar] [CrossRef]
- Liu, J.; Deng, Z.; Hu, E.; Huang, Y.; Deng, X.; Zhang, Z.; Ding, Z.; Liu, B. GNSS-5G Hybrid Positioning Based on Joint Estimation of Multiple Signals in a Highly Dependable Spatio-Temporal Network. Remote Sens. 2023, 15, 4220. [Google Scholar] [CrossRef]
- Camajori Tedeschini, B.; Brambilla, M.; Italiano, L.; Reggiani, S.; Vaccarono, D.; Alghisi, M.; Benvenuto, L.; Goia, A.; Realini, E.; Grec, F.; et al. A Feasibility Study of 5G Positioning with Current Cellular Network Deployment. Sci. Rep. 2023, 13, 15281. [Google Scholar] [CrossRef] [PubMed]
- Gu, S.; Mao, F.; Gong, X.; Wang, L.; Zhou, Y. Improved Short-Term Stability for Real-Time GNSS Satellite Clock Estimation with Clock Model. J. Geod. 2023, 97, 61. [Google Scholar] [CrossRef]
- Kim, H.-I.; Park, K.-D. Satellite Positioning Accuracy Improvement in Urban Canyons Through a New Weight Model Utilizing GPS Signal Strength Variability. Sensors 2025, 25, 4678. [Google Scholar] [CrossRef]
- Dang, F.; Sun, X.K.; Liu, K.B.; Li, Y. A Survey on Clock Synchronization in the Industrial Internet. J. Comput. Sci. Technol. 2023, 38, 146–165. [Google Scholar] [CrossRef]
- Association of Radio Industries and Businesses (ARIB). 700 MHz Band Intelligent Transport Systems; ARIB STD-T109, Ver. 1.3 (English Translation); ARIB: Tokyo, Japan, 2017; Available online: https://www.arib.or.jp/english/html/overview/doc/5-STD-T109v1_3-E1.pdf (accessed on 15 August 2025).
- BK, S.; Azam, F. Ensuring Security and Privacy in VANET: A Comprehensive Survey of Authentication Approaches. J. Comput. Netw. Commun. 2024, 2024, 1818079. [Google Scholar] [CrossRef]
- Abbasi, M.; Shahraki, A.; Barzegar, H.R.; Pahl, C. Synchronization Techniques in Device-to-Device and Vehicle-to-Vehicle-Enabled Cellular Networks: A Survey. Comput. Electr. Eng. 2021, 90, 106955. [Google Scholar] [CrossRef]
- Bai, K.; Wu, J.; Wu, H. High-precision time synchronization algorithm for unmanned aerial vehicle ad hoc networks based on bidirectional pseudo-range measurements. Ad. Hoc. Netw. 2024, 152, 103326. [Google Scholar] [CrossRef]
- Ganeriwal, S.; Kumar, R.; Srivastava, M.B. Timing-sync protocol for sensor networks (TPSN). In Proceedings of the 1st International Conference on Embedded Networked Sensor Systems (SenSys ’03), Los Angeles, CA, USA, 5–7 November 2003; pp. 138–149. [Google Scholar] [CrossRef]
- Elson, J.; Girod, L.; Estrin, D. Fine-grained network time synchronization using reference broadcasts. In Proceedings of the 5th Symposium on Operating Systems Design and Implementation (OSDI 2002), Boston, MA, USA, 9–11 December 2002; pp. 147–163. [Google Scholar] [CrossRef]
- Maróti, M.; Kusy, B.; Simon, G.; Lédeczi, Á. The flooding time synchronization protocol. In Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems (SenSys ’04), Baltimore, MD, USA, 3–5 November 2004; pp. 39–49. [Google Scholar] [CrossRef]
- Wu, Y.-C.; Chaudhari, Q.M.; Serpedin, E. Clock synchronization of wireless sensor networks. IEEE Signal Process. Mag. 2011, 28, 124–138. [Google Scholar] [CrossRef]
- Hamilton, B.R.; Ma, X.; Zhao, Q.; Xu, J. ACES: Adaptive clock estimation and synchronization using Kalman filtering. In Proceedings of the 14th ACM International Conference on Mobile Computing and Networking (MobiCom ’08), San Francisco, CA, USA, 14–19 September 2008; pp. 152–162. [Google Scholar] [CrossRef]
- Jin, M.; Xing, T.; Chen, X.; Meng, X.; Fang, D.; He, Y. DualSync: Taming clock skew variation for synchronization in low-power wireless networks. In Proceedings of the 35th Annual IEEE International Conference on Computer Communications (IEEE INFOCOM 2016), San Francisco, CA, USA, 10–15 April 2016; pp. 1–9. [Google Scholar] [CrossRef]
- Noh, K.-L.; Chaudhari, Q.M.; Serpedin, E.; Suter, B.W. Novel clock phase offset and skew estimation using two-way timing message exchanges for wireless sensor networks. IEEE Trans. Commun. 2007, 55, 766–777. [Google Scholar] [CrossRef]
- Lenzen, C.; Sommer, P.; Wattenhofer, R. PulseSync: An Efficient and Scalable Clock Synchronization Protocol. IEEE/ACM Trans. Netw. 2015, 23, 717–727. [Google Scholar] [CrossRef]
- Sichitiu, M.L.; Veerarittiphan, C. Simple, accurate time synchronization for wireless sensor networks. In Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC 2003), New Orleans, LA, USA, 16–20 March 2003; Volume 2, pp. 1266–1273. [Google Scholar] [CrossRef]
- Shi, F.; Li, H.; Yang, S.X.; Tuo, X.; Lin, M. Novel maximum likelihood estimation of clock skew in one-way broadcast time synchronization. IEEE Trans. Ind. Electron. 2020, 67, 9948–9957. [Google Scholar] [CrossRef]
- Chaloupka, Z.; Alsindi, N.; Aweya, J. Clock skew estimation using Kalman filter and IEEE 1588v2 PTP for telecom networks. IEEE Commun. Lett. 2015, 19, 1181–1184. [Google Scholar] [CrossRef]
- Sugihara, R.; Gupta, R.K. Clock Synchronization with Deterministic Accuracy Guarantee. In Proceedings of the 8th European Conference on Wireless Sensor Networks (EWSN 2011), Bonn, Germany, 14–16 February 2011; Marrón, P.J., Whitehouse, K., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2011; Volume 6567, pp. 130–146. [Google Scholar] [CrossRef]
- Raitoharju, M.; Piché, R. On Computational Complexity Reduction Methods for Kalman Filter Extensions. IEEE Aerosp. Electron. Syst. Mag. 2019, 34, 2–19. [Google Scholar] [CrossRef]
- Schenato, L.; Fiorentin, F. Average TimeSync: A Consensus-Based Protocol for Time Synchronization in Wireless Sensor Networks. IFAC Proc. Vol. 2009, 42, 30–35. [Google Scholar] [CrossRef]
- Wang, H.; Zou, Y.; Liu, X.; Meng, Z. A Rapid Time Synchronization Scheme Using Virtual Links and Maximum Consensus for Wireless Sensor Networks. IEEE Internet Things J. 2025, 12, 3318–3329. [Google Scholar] [CrossRef]
- Kay, S.M. Fundamentals of Statistical Signal Processing, Volume I: Estimation Theory; Prentice Hall: Englewood Cliffs, NJ, USA, 1993; ISBN 978-0-13-345711-7. [Google Scholar]
Symbol | Definition |
---|---|
Time reported by a clock at ideal time t | |
Time indicated by Node A’s local clock | |
Relative clock offset of Node A from the perspective of Node B | |
Relative clock skew of Node A from the perspective of Node B | |
Operating frequency of Node A’s clock | |
Ideal clock offset between Nodes A and B at the i-th message exchange | |
Noise due to nondeterministic components in message delivery delays | |
Relative clock offset observed by Node B at the i-th message exchange | |
Local clock time immediately before offset correction at the i-th round | |
Local clock time just after offset correction at the i-th round | |
Node B’s relative clock skew to Node A based on Node B’s adjusted frequency between the i-th and (i + 1)-th rounds | |
Node B’s relative clock skew to Node A based on Node B’s original frequency between the i-th and (i + 1)-th rounds | |
Node B’s clock skew estimator relative to Node A at the (i + 1)-th round | |
Normalized variance factor in RWLS at the (i + 1)-th round | |
Adaptive gain factor in RWLS at the (i + 1)-th round | |
Time difference between the i-th and (i + 1)-th rounds | |
Maximum drift rate of the crystal oscillator | |
Skew compensation interval from the (i + 1)-th round | |
Actual local elapsed interval between the i-th and (i + 1)-th rounds | |
Ideal relative clock offset increment between the i-th and (i + 1)-th rounds | |
ε* | True relative skew between Node A and B |
ai | Path delay asymmetry component at the i-th round |
ji | Timestamping jitter at the i-th round |
ui | Residual offset after imperfect correction at the i-th round |
Observed relative clock offset increment, including intrinsic and extrinsic perturbations | |
Measured elapsed interval, possibly perturbed | |
Perturbation (noise) in local interval measurement (denominator noise) | |
Aggregate numerator perturbation | |
Relative skew estimator between Node A and B considering additional perturbations | |
Bias[·] | Estimator bias operator |
Var[·] | Variance of an estimator |
Cov(·,·) | Covariance between two terms |
Method | Time Complexity | Space Complexity |
---|---|---|
Single-step | O(1) | O(1) |
Batch least squares | O(N) | O(N) |
Proposed RLS/RWLS | O(1) | O(1) |
Kalman filter | O(m3) | O(m2) |
MLE | O(N) | O(N) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, W. Lightweight Online Clock Skew Estimation for Robust ITS Time Synchronization. Appl. Sci. 2025, 15, 10581. https://doi.org/10.3390/app151910581
Lee W. Lightweight Online Clock Skew Estimation for Robust ITS Time Synchronization. Applied Sciences. 2025; 15(19):10581. https://doi.org/10.3390/app151910581
Chicago/Turabian StyleLee, Wooyong. 2025. "Lightweight Online Clock Skew Estimation for Robust ITS Time Synchronization" Applied Sciences 15, no. 19: 10581. https://doi.org/10.3390/app151910581
APA StyleLee, W. (2025). Lightweight Online Clock Skew Estimation for Robust ITS Time Synchronization. Applied Sciences, 15(19), 10581. https://doi.org/10.3390/app151910581