Radiomics vs. Deep Learning in Autism Classification Using Brain MRI: A Systematic Review
Abstract
1. Introduction
Related Work
2. Materials and Methods
2.1. Selection Criteria
2.2. Overview of Included Studies
2.2.1. Preprocessing and Modeling Approaches
2.2.2. Radiomics-Based Studies
2.2.3. Deep Learning Studies
2.3. Risk of Bias Assessment
Radiomics Studies [33,34,35,36,45,46,47,48,49,50,51,52,53,54,55] | Deep Learning Studies [37,39,40,41,42,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77] | Hybrid Studies [78,79,80] | |
---|---|---|---|
Feature Type | Handcrafted (texture, shape, intensity) | Learned automatically from image tensors | Combination of handcrafted and learned features |
Segmentation | Required for ROI definition | Optional (whole-brain or patch-based input) | Usually required for handcrafted features; optional for deep inputs |
Interpretability | High | Low | Moderate |
Preprocessing | Strict normalization, harmonization, segmentation | Variable; less dependent on-site harmonization | Needed for handcrafted features; DL branches not as sensitive |
Model Type | Classical ML (i.e., SVM, RF, XGBoost) | CNNs, 3D CNNs, ViTs | Dual of fused architectures (i.e., AE+CN, GCN+ML) |
Data Need | Small to moderate datasets | Large datasets, especially for training from scratch | Moderate to large; depends on model complexity and fusion strategy |
Pipeline | Modular (multi-step) | End-to-end | Semi-modular; parallel or fused branches integrated in final layers |
3. Results
4. Discussion
4.1. Limitations
4.2. Challenges
5. Conclusions
Funding
Conflicts of Interest
References
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association Publishing: Washington, DC, USA, 2022. [Google Scholar] [CrossRef]
- Santomauro, D.; Erskine, H.; Mantilla Herrera, A.; Miller, P.A.; Shadid, J.; Hagins, H.; Addo, I.Y.; Adnani, Q.E.S.; Ahinkorah, B.O.; Ahmed, A.; et al. The global epidemiology and health burden of the autism spectrum: Findings from the Global Burden of Disease Study 2021. Lancet Psychiatry 2025, 12, 111–121. [Google Scholar] [CrossRef]
- Sandin, S.; Lichtenstein, P.; Kuja-Halkola, R.; Hultman, C.; Larsson, H.; Reichenberg, A. The heritability of autism spectrum disorder. J. Am. Med. Assoc. 2017, 318, 1182–1184. [Google Scholar] [CrossRef]
- Modabbernia, A.; Velthorst, E.; Reichenberg, A. Environmental risk factors for autism: An evidence-based review of systematic reviews and meta-analyses. Mol. Autism 2017, 8, 1–16. [Google Scholar] [CrossRef]
- Van Rooij, D.; Anagnostou, E.; Arango, C.; Auzias, G.; Behrmann, M.; Busatto, G.F.; Calderoni, S.; Daly, E.; Deruelle, C.; Di Martino, A.; et al. Cortical and subcortical brain morphometry differences between patients with autism spectrum disorder and healthy individuals across the lifespan: Results from the ENIGMA ASD working group. Am. J. Psychiatry 2018, 175, 359–369. [Google Scholar] [CrossRef]
- Emerson, R.W.; Adams, C.; Nishino, T.; Hazlett, H.C.; Zwaigenbaum, L.; Constantino, J.N.; Shen, M.D.; Swanson, M.R.; Elison, J.T.; Kandala, S.; et al. Functional neuroimaging of high-risk 6-month-old infants predicts a diagnosis of autism at 24 months of age. Sci. Transl. Med. 2017, 9, eaag2882. [Google Scholar] [CrossRef]
- Ecker, C.; Bookheimer, S.Y.; Murphy, D.G.M. Neuroimaging in autism spectrum disorder: Brain structure and function across the lifespan. Lancet Neurol. 2015, 14, 1121–1134. [Google Scholar] [CrossRef]
- Padmanabhan, A.; Lynch, C.J.; Schaer, M.; Menon, V. The Default Mode Network in Autism. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2017, 2, 476. [Google Scholar] [CrossRef] [PubMed]
- Ameis, S.H.; Catani, M. Altered white matter connectivity as a neural substrate for social impairment in Autism Spectrum Disorder. Cortex 2015, 62, 158–181. [Google Scholar] [CrossRef]
- Horder, J.; Petrinovic, M.M.; Mendez, A.A.; Bruns, A.; Takumi, T.; Spooren, W.; Barker, G.J.; Künnecke, B.; Murphy, D.G. Glutamate and GABA in autism spectrum disorder-a translational magnetic resonance spectroscopy study in man and rodent models. Transl. Psychiatry 2018, 8, 1–11. [Google Scholar] [CrossRef] [PubMed]
- McCrimmon, A.; Rostad, K. Test Review: Autism Diagnostic Observation Schedule, Second Edition (ADOS-2) Manual (Part II): Toddler Module. J. Psychoeduc. Assess. 2014, 32, 88–92. [Google Scholar] [CrossRef]
- Kim, S.H.; Hus, V.; Lord, C. Autism Diagnostic Interview-Revised. In Encyclopedia of Autism Spectrum Disorders; Springer: New York, NY, USA, 2013; pp. 345–349. [Google Scholar] [CrossRef]
- Happé, F.; Frith, U. Annual Research Review: Looking back to look forward—Changes in the concept of autism and implications for future research. J. Child. Psychol. Psychiatry 2020, 61, 218–232. [Google Scholar] [CrossRef]
- Kapp, S.K.; Gillespie-Lynch, K.; Sherman, L.E.; Hutman, T. Deficit, difference, or both? Autism and neurodiversity. Dev. Psychol. 2013, 49, 59–71. [Google Scholar] [CrossRef] [PubMed]
- Klin, A. Biomarkers in Autism Spectrum Disorder: Challenges, Advances, and the Need for Biomarkers of Relevance to Public Health. Focus J. Life Long. Learn. Psychiatry 2018, 16, 135. [Google Scholar] [CrossRef]
- Arbabshirani, M.R.; Plis, S.; Sui, J.; Calhoun, V.D. Single subject prediction of brain disorders in neuroimaging: Promises and pitfalls. Neuroimage 2017, 145 Pt. B, 137–165. [Google Scholar] [CrossRef]
- Bone, D.; Goodwin, M.S.; Black, M.P.; Lee, C.C.; Audhkhasi, K.; Narayanan, S. Applying Machine Learning to Facilitate Autism Diagnostics: Pitfalls and Promises. J. Autism Dev. Disord. 2015, 45, 1121–1136. [Google Scholar] [CrossRef]
- Lambin, P.; Rios-Velazquez, E.; Leijenaar, R.; Carvalho, S.; van Stiphout, R.G.P.M.; Granton, P.; Zegers, C.M.L.; Gillies, R.; Boellard, R.; Dekker, A.; et al. Radiomics: Extracting more information from medical images using advanced feature analysis. Eur. J. Cancer 2012, 48, 441–446. [Google Scholar] [CrossRef]
- Aerts, H.J.W.L.; Rios Velazquez, E.; Leijenaar, R.T.H.; Parmar, C.; Grossmann, P.; Carvalho, S.; Bussink, J.; Monshouwer, R.; Haibe-Kains, B.; Rietveld, D.; et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 2014, 5, 1–9. [Google Scholar] [CrossRef]
- Xiao, B.; He, N.; Wang, Q.; Cheng, Z.; Jiao, Y.; Haacke, E.M.; Yan, F.; Shi, F. Quantitative susceptibility mapping based hybrid feature extraction for diagnosis of Parkinson’s disease. Neuroimage Clin. 2019, 24, 102070. [Google Scholar] [CrossRef]
- Hashido, T.; Saito, S.; Ishida, T. A radiomics-based comparative study on arterial spin labeling and dynamic susceptibility contrast perfusion-weighted imaging in gliomas. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Su, C.; Chen, X.; Liu, C.; Li, S.; Jiang, J.; Qin, Y.; Zhang, S. T2-FLAIR, DWI and DKI radiomics satisfactorily predicts histological grade and Ki-67 proliferation index in gliomas. Am. J. Transl. Res. 2021, 13, 9182. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC8430185/ (accessed on 23 June 2025). [PubMed]
- Tsai, M.-L.; Hsieh, K.L.-C.; Liu, Y.-L.; Yang, Y.-S.; Chang, H.; Wong, T.-T.; Peng, S.-J. Morphometric and radiomics analysis toward the prediction of epilepsy associated with supratentorial low-grade glioma in children. Cancer Imaging 2025, 25, 63. [Google Scholar] [CrossRef]
- Singh, A.P.; Jain, V.S.; Yu, J.P.J. Diffusion radiomics for subtyping and clustering in autism spectrum disorder: A preclinical study. Magn. Reson. Imaging 2022, 96, 116. [Google Scholar] [CrossRef] [PubMed]
- Zwaigenbaum, L.; Bauman, M.L.; Choueiri, R.; Kasari, C.; Carter, A.; Granpeesheh, D.; Mailloux, Z.; Smith Roley, S.; Wagner, S.; Fein, D.; et al. Early Intervention for Children With Autism Spectrum Disorder Under 3 Years of Age: Recommendations for Practice and Research. Pediatrics 2015, 136 (Suppl. 1), S60–S81. [Google Scholar] [CrossRef] [PubMed]
- Schielen, S.J.C.; Pilmeyer, J.; Aldenkamp, A.P.; Zinger, S. The diagnosis of ASD with MRI: A systematic review and meta-analysis. Transl. Psychiatry 2024, 14, 1–11. [Google Scholar] [CrossRef]
- Moon, S.J.; Hwang, J.; Kana, R.; Torous, J.; Kim, J.W. Accuracy of machine learning algorithms for the diagnosis of autism spectrum disorder: Systematic review and meta-analysis of brain magnetic resonance imaging studies. JMIR Ment. Health 2019, 6, e14108. [Google Scholar] [CrossRef] [PubMed]
- Huda, S.; Khan, D.M.; Masroor, K.; Warda; Rashid, A.; Shabbir, M. Advancements in automated diagnosis of autism spectrum disorder through deep learning and resting-state functional mri biomarkers: A systematic review. Cogn. Neurodyn. 2024, 18, 3585–3601. [Google Scholar] [CrossRef]
- Abdelrahim, M.; Khudri, M.; Elnakib, A.; Shehata, M.; Weafer, K.; Khalil, A.; Saleh, G.A.; Batouty, N.M.; Ghazal, M.; Contractor, S.; et al. AI-based non-invasive imaging technologies for early autism spectrum disorder diagnosis: A short review and future directions. Artif. Intell. Med. 2025, 161, 103074. [Google Scholar] [CrossRef]
- Khodatars, M.; Shoeibi, A.; Sadeghi, D.; Ghaasemi, N.; Jafari, M.; Moridian, P.; Khadem, A.; Alizadehsani, R.; Zare, A.; Kong, Y.; et al. Deep learning for neuroimaging-based diagnosis and rehabilitation of Autism Spectrum Disorder: A review. Comput. Biol. Med. 2021, 139, 104949. [Google Scholar] [CrossRef]
- Alharthi, A.G.; Alzahrani, S.M. Do it the transformer way: A comprehensive review of brain and vision transformers for autism spectrum disorder diagnosis and classification. Comput. Biol. Med. 2023, 167, 107667. [Google Scholar] [CrossRef]
- Ma, R.; Huang, Y.; Pan, Y.; Wang, Y.; Wei, Y. Meta-data Study in Autism Spectrum Disorder Classification Based on Structural MRI. In Proceedings of the 15th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, Shenzhen, China, 22–25 November 2024; p. 1. [Google Scholar] [CrossRef]
- Xiao, X.; Fang, H.; Wu, J.; Xiao, C.; Xiao, T.; Qian, L.; Liang, F.; Xiao, Z.; Chu, K.K.; Ke, X. Diagnostic model generated by MRI-derived brain features in toddlers with autism spectrum disorder. Autism Res. 2015, 10, 620–630. [Google Scholar] [CrossRef]
- Chaddad, A.; Desrosiers, C.; Hassan, L.; Tanougast, C. Hippocampus and amygdala radiomic biomarkers for the study of autism spectrum disorder. BMC Neurosci. 2017, 18, 52. [Google Scholar] [CrossRef]
- Chaddad, A.; Desrosiers, C.; Toews, M. Multi-scale radiomic analysis of sub-cortical regions in MRI related to autism, gender and age. Sci. Rep. 2017, 7, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Nie, L.; Liu, X.; Chen, Z.; Zhou, Y.; Pan, Z.; He, L. Application of Quantitative Magnetic Resonance Imaging in the Diagnosis of Autism in Children. Front. Med. 2022, 9, 818404. [Google Scholar] [CrossRef] [PubMed]
- Heinsfeld, A.S.; Franco, A.R.; Craddock, R.C.; Buchweitz, A.; Meneguzzi, F. Identification of autism spectrum disorder using deep learning and the ABIDE dataset. Neuroimage Clin. 2018, 17, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Xiao, Z.; Wang, B.; Wu, J. Identification of Autism Based on SVM-RFE and Stacked Sparse Auto-Encoder. IEEE Access 2019, 7, 118030–118036. [Google Scholar] [CrossRef]
- Niu, K.; Guo, J.; Pan, Y.; Gao, X.; Peng, X.; Li, N.; Li, H. Multichannel Deep Attention Neural Networks for the Classification of Autism Spectrum Disorder Using Neuroimaging and Personal Characteristic Data. Complexity 2020, 2020, 1357853. [Google Scholar] [CrossRef]
- Thomas, R.M.; Gallo, S.; Cerliani, L.; Zhutovsky, P.; El-Gazzar, A.; van Wingen, G. Classifying Autism Spectrum Disorder Using the Temporal Statistics of Resting-State Functional MRI Data With 3D Convolutional Neural Networks. Front. Psychiatry 2020, 11, 440. [Google Scholar] [CrossRef]
- Ke, F.; Choi, S.; Kang, Y.H.; Cheon, K.A.; Lee, S.W. Exploring the Structural and Strategic Bases of Autism Spectrum Disorders with Deep Learning. IEEE Access 2020, 8, 153341–153352. [Google Scholar] [CrossRef]
- Husna, R.N.S.; Syafeeza, A.R.; Hamid, N.A.; Wong, Y.C.; Raihan, R.A. Functional magnetic resonance imaging for autism spectrum disorder detection using deep learning. J. Teknol. 2021, 83, 45–52. [Google Scholar] [CrossRef]
- Chaddad, A. Deep Radiomics for Autism Diagnosis and Age Prediction. IEEE Trans. Hum. Mach. Syst. 2025, 55, 144–154. [Google Scholar] [CrossRef]
- Whiting, P.F.; Rutjes, A.W.S.; Westwood, M.E.; Mallett, S.; Deeks, J.J.; Reitsma, J.B.; Leeflang, M.M.G.; Sterne, J.A.C.; Bossuyt, P.M.M. QUADAS-2: A Revised Tool for the Quality Assessment of Diagnostic Accuracy Studies Evaluation of QUADAS, a tool for the quality assessment of diagnostic accuracy studies. Ann. Intern. Med. 2011, 155, 529–536. [Google Scholar] [CrossRef]
- Zheng, Q.; Nan, P.; Cui, Y.; Li, L. ConnectomeAE: Multimodal brain connectome-based dual-branch autoencoder and its application in the diagnosis of brain diseases. Comput. Methods Programs Biomed. 2025, 267, 108801. [Google Scholar] [CrossRef]
- Reiter, M.A.; Jahedi, A.; Fredo, A.R.J.; Fishman, I.; Bailey, B.; Müller, R.A. Performance of machine learning classification models of autism using resting-state fMRI is contingent on sample heterogeneity. Neural Comput. Appl. 2020, 33, 3299. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.S.; Nielsen, J.A.; Froehlich, A.L.; DuBray, M.B.; Druzgal, T.J.; Cariello, A.N.; Cooperrider, J.R.; Zielinski, B.A. Functional connectivity magnetic resonance imaging classification of autism. Brain 2011, 134, 3739. [Google Scholar] [CrossRef]
- Plitt, M.; Barnes, K.A.; Martin, A. Functional connectivity classification of autism identifies highly predictive brain features but falls short of biomarker standards. Neuroimage Clin. 2014, 7, 359. [Google Scholar] [CrossRef]
- Zhang, F.; Savadjiev, P.; Cai, W.; Song, Y.; Rathi, Y.; Tunç, B.; Parker, D.; Kapur, T.; Schultz, R.T.; Makris, N.; et al. Whole brain white matter connectivity analysis using machine learning: An application to autism. Neuroimage 2018, 172, 826–837. [Google Scholar] [CrossRef]
- Soussia, M.; Rekik, I. Unsupervised Manifold Learning Using High-Order Morphological Brain Networks Derived From T1-w MRI for Autism Diagnosis. Front. Neuroinform 2018, 12, 70. [Google Scholar] [CrossRef]
- Dekhil, O.; Mohamed, A.; El-Nakieb, Y.; Shalaby, A.; Soliman, A.; Switala, A.; Ali, M.; Ghazal, M.; Hajjdiab, H.; Casanova, M.F.; et al. A Personalized Autism Diagnosis CAD System Using a Fusion of Structural MRI and Resting-State Functional MRI Data. Front. Psychiatry 2019, 10, 392. [Google Scholar] [CrossRef] [PubMed]
- Spera, G.; Retico, A.; Bosco, P.; Ferrari, E.; Palumbo, L.; Oliva, P.; Muratori, F.; Calderoni, S. Evaluation of altered functional connections in male children with autism spectrum disorders on multiple-site data optimized with machine learning. Front. Psychiatry 2019, 10, 620. [Google Scholar] [CrossRef] [PubMed]
- Kazeminejad, A.; Sotero, R.C. Topological properties of resting-state FMRI functional networks improve machine learning-based autism classification. Front. Neurosci. 2019, 13, 414728. [Google Scholar] [CrossRef]
- Chaitra, N.; Vijaya, P.A.; Deshpande, G. Diagnostic prediction of autism spectrum disorder using complex network measures in a machine learning framework. Biomed. Signal Process Control 2020, 62, 102099. [Google Scholar] [CrossRef]
- Squarcina, L.; Nosari, G.; Marin, R.; Castellani, U.; Bellani, M.; Bonivento, C.; Fabbro, F.; Molteni, M.; Brambilla, P. Automatic classification of autism spectrum disorder in children using cortical thickness and support vector machine. Brain Behav. 2021, 11, e2238. [Google Scholar] [CrossRef]
- Sarovic, D.; Hadjikhani, N.; Schneiderman, J.; Lundström, S.; Gillberg, C. Autism classified by magnetic resonance imaging: A pilot study of a potential diagnostic tool. Int. J. Methods Psychiatr. Res. 2020, 29, 1–18. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. In Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017. [Google Scholar] [CrossRef]
- Chen, H.; Liu, X.; Luo, X.; Fu, J.; Zhou, K.; Wang, N.; Li, Y.; Geng, D. An automated hybrid approach via deep learning and radiomics focused on the midbrain and substantia nigra to detect early-stage Parkinson’s disease. Front. Aging Neurosci. 2024, 16, 1397896. [Google Scholar] [CrossRef]
- Kim, S.; Lim, J.H.; Kim, C.-H.; Roh, J.; You, S.; Choi, J.-S.; Lim, J.H.; Kim, L.; Chang, J.W.; Park, D.; et al. Deep learning–radiomics integrated noninvasive detection of epidermal growth factor receptor mutations in non-small cell lung cancer patients. Sci. Rep. 2024, 14, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Yahata, N.; Morimoto, J.; Hashimoto, R.; Lisi, G.; Shibata, K.; Kawakubo, Y.; Kuwabara, H.; Kuroda, M.; Yamada, T.; Megumi, F.; et al. A small number of abnormal brain connections predicts adult autism spectrum disorder. Nat. Commun. 2016, 7, 11254. [Google Scholar] [CrossRef] [PubMed]
- Jahani, A.; Jahani, I.; Khadem, A.; Braden, B.B.; Delrobaei, M.; MacIntosh, B.J. Twinned neuroimaging analysis contributes to improving the classification of young people with autism spectrum disorder. Sci. Rep. 2024, 14, 1–10. [Google Scholar] [CrossRef]
- Abraham, A.; Milham, M.P.; Di Martino, A.; Craddock, R.C.; Samaras, D.; Thirion, B.; Varoquaux, G. Deriving reproducible biomarkers from multi-site resting-state data: An Autism-based example. Neuroimage 2017, 147, 736–745. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Zhang, H.; Rekik, I.; An, Z.; Shen, D. Diagnosis of Autism Spectrum Disorders Using Multi-Level High-Order Functional Networks Derived From Resting-State Functional MRI. Front. Hum. Neurosci. 2018, 12, 184. [Google Scholar] [CrossRef]
- Xiao, Z.; Wang, C.; Jia, N.; Wu, J. SAE-based classification of school-aged children with autism spectrum disorders using functional magnetic resonance imaging. Multimed. Tools Appl. 2018, 77, 22809–22820. [Google Scholar] [CrossRef]
- Wang, Z.; Peng, D.; Shang, Y.; Gao, J. Autistic Spectrum Disorder Detection and Structural Biomarker Identification Using Self-Attention Model and Individual-Level Morphological Covariance Brain Networks. Front. Neurosci. 2021, 15, 756868. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Parikh, N.A.; He, L. A novel transfer learning approach to enhance deep neural network classification of brain functional connectomes. Front. Neurosci. 2018, 12, 491. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Dvornek, N.C.; Zhou, Y.; Zhuang, J.; Ventola, P.; Duncan, J.S. Efficient Interpretation of Deep Learning Models Using Graph Structure and Cooperative Game Theory: Application to ASD Biomarker Discovery. Inf. Process. Med. Imaging 2018, 11492, 718–730. [Google Scholar] [CrossRef]
- Wang, C.; Xiao, Z.; Wu, J. Functional connectivity-based classification of autism and control using SVM-RFECV on rs-fMRI data. Phys. Medica 2019, 65, 99–105. [Google Scholar] [CrossRef]
- Yang, X.; Islam, M.S.; Khaled, A.M.A. Functional connectivity magnetic resonance imaging classification of autism spectrum disorder using the multisite ABIDE dataset. In Proceedings of the 2019 IEEE EMBS International Conference on Biomedical and Health Informatics, BHI 2019—Proceedings, Chicago, IL, USA, 19–22 May 2019. [Google Scholar] [CrossRef]
- Sherkatghanad, Z.; Akhondzadeh, M.; Salari, S.; Zomorodi-Moghadam, M.; Abdar, M.; Acharya, U.R.; Khosrowabadi, R.; Salari, V. Automated Detection of Autism Spectrum Disorder Using a Convolutional Neural Network. Front. Neurosci. 2020, 13, 1325. [Google Scholar] [CrossRef]
- Sewani, H.; Kashef, R. An Autoencoder-Based Deep Learning Classifier for Efficient Diagnosis of Autism. Children 2020, 7, 182. [Google Scholar] [CrossRef]
- Leming, M.; Górriz, J.M.; Suckling, J. Ensemble Deep Learning on Large, Mixed-Site fMRI Datasets in Autism and Other Tasks. Int. J. Neural Syst. 2020, 30, 2050012. [Google Scholar] [CrossRef] [PubMed]
- Rakić, M.; Cabezas, M.; Kushibar, K.; Oliver, A.; Lladó, X. Improving the detection of autism spectrum disorder by combining structural and functional MRI information. Neuroimage Clin. 2020, 25, 102181. [Google Scholar] [CrossRef]
- Ahammed, M.S.; Niu, S.; Ahmed, M.R.; Dong, J.; Gao, X.; Chen, Y. DarkASDNet: Classification of ASD on Functional MRI Using Deep Neural Network. Front. Neuroinform 2021, 15, 635657. [Google Scholar] [CrossRef]
- Gao, J.; Chen, M.; Li, Y.; Gao, Y.; Li, Y.; Cai, S.; Wang, J. Multisite Autism Spectrum Disorder Classification Using Convolutional Neural Network Classifier and Individual Morphological Brain Networks. Front. Neurosci. 2021, 14, 629630. [Google Scholar] [CrossRef]
- Almuqhim, F.; Saeed, F. ASD-SAENet: A Sparse Autoencoder, and Deep-Neural Network Model for Detecting Autism Spectrum Disorder (ASD) Using fMRI Data. Front. Comput. Neurosci. 2021, 15, 654315. [Google Scholar] [CrossRef]
- Leming, M.J.; Baron-Cohen, S.; Suckling, J. Single-participant structural similarity matrices lead to greater accuracy in classification of participants than function in autism in MRI. Mol. Autism 2021, 12, 34. [Google Scholar] [CrossRef]
- Jung, W.; Jeon, E.; Kang, E.; Suk, H.I. EAG-RS: A Novel Explainability-guided ROI-Selection Framework for ASD Diagnosis via Inter-regional Relation Learning. IEEE Trans. Med. Imaging 2023, 43, 1400–1411. [Google Scholar] [CrossRef]
- Vidya, S.; Gupta, K.; Aly, A.; Wills, A.; Ifeachor, E.; Shankar, R. Explainable AI for Autism Diagnosis: Identifying Critical Brain Regions Using fMRI Data. 2025. Available online: https://arxiv.org/pdf/2409.15374 (accessed on 20 June 2025).
- Khan, K.; Katarya, R. MCBERT: A multi-modal framework for the diagnosis of autism spectrum disorder. Biol. Psychol. 2025, 194, 108976. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, A.; Zhao, Q.; Bangyal, W.H.; Raza, M.; Iqbal, M. Female autism categorization using CNN based NeuroNet57 and ant colony optimization. Comput. Biol. Med. 2025, 189, 109926. [Google Scholar] [CrossRef] [PubMed]
- Manikantan, K.; Jaganathan, S. A Model for Diagnosing Autism Patients Using Spatial and Statistical Measures Using rs-fMRI and sMRI by Adopting Graphical Neural Networks. Diagnostics 2023, 13, 1143. [Google Scholar] [CrossRef]
- Song, J.; Chen, Y.; Yao, Y.; Chen, Z.; Guo, R.; Yang, L.; Sui, X.; Wang, Q.; Li, X.; Cao, A.; et al. Combining Radiomics and Machine Learning Approaches for Objective ASD Diagnosis: Verifying White Matter Associations with ASD. 2024. Available online: https://arxiv.org/abs/2405.16248v1 (accessed on 31 March 2025).
- Ali, M.T.; ElNakieb, Y.; Elnakib, A.; Shalaby, A.; Mahmoud, A.; Ghazal, M.; Yousaf, J.; Abu Khalifeh, H.; Casanova, M.; Barnes, G.; et al. The Role of Structure MRI in Diagnosing Autism. Diagnostics 2022, 12, 165. [Google Scholar] [CrossRef]
- Dong, Y.; Batalle, D.; Deprez, M. A Framework for Comparison and Interpretation of Machine Learning Classifiers to Predict Autism on the ABIDE Dataset. Hum. Brain Mapp. 2025, 46, e70190. [Google Scholar] [CrossRef]
- Raj, A.; Ratnaik, R.; Sengar, S.S.; Fredo, A.R.J. Characterizing ASD Subtypes Using Morphological Features from sMRI with Unsupervised Learning. Stud. Health Technol. Inf. 2025, 327, 1403–1407. [Google Scholar] [CrossRef]
- He, C.; Cortes, J.; Ding, Y.; Shan, X.; Zou, M.; Chen, H.; Chen, H.; Wang, X.; Duan, X. Combining functional, structural, and morphological networks for multimodal classification of developing autistic brains. Brain Imaging Behav. 2025, 1–13. [Google Scholar] [CrossRef] [PubMed]
Author | Topic | MRI Modality | Dataset Size | Performance | Model Type |
---|---|---|---|---|---|
(Yahata et al., 2016) [60] | DL | rs-fMRI | HC = 107, autism = 74 | Accuracy = 85% AUC = 0.93 F1 score = N/A | Sparse Logistic Regression (SLR) |
(Jahani et al., 2024) [61] | DL | sMRI, rs-fMRI | HC = 359, autism = 343 | Accuracy = 72.9% AUC = 0.84 F1 score = N/A | Multi-Channel 3D-DenseNet |
(Abraham et al., 2017) [62] | DL | rs-fMRI | HC = 468, autism = 403 | Accuracy = 67% AUC = N/A F1 score = N/A | SVC (Support Vector Classification) |
(Heinsfeld et al., 2018) [37] | DL | rs-fMRI | HC = 530, autism = 505 | Accuracy = 70% AUC = N/A F1 score = N/A | Deep Neural Network (Stacked Denoising Autoencoders + MLP) |
(Zhao et al., 2018) [63] | DL | rs-fMRI | HC = 46, autism = 54 | Accuracy = 81% AUC = N/A F1 score = 83% | SVM Ensemble Classifier |
(Z. Xiao et al., 2018) [64] | DL | rs-fMRI | HC = 42, autism = 42 | Accuracy = 88.10% AUC = N/A F1 score = N/A | Stacked Autoencoder (SAE) with Softmax Classifier |
(Yan Tang et al., 2021) [65] | DL | sMRI | HC = 450, autism = 421 | Accuracy = 72.5% AUC = 0.74 F1 score = 0.75 | Self-Attention Deep Learning Model using Graph-Based Structural Covariance Networks (SCNs) |
(H. Li et al., 2018) [66] | DL | rs-fMRI | HC = 161, autism = 149 | Accuracy = 70.4% AUC = 0.74 F1 score = N/A | Deep Transfer Learning NN (DTL-NN), Stacked Sparse Autoencoder, Softmax Regression |
(X. Li et al., 2018) [67] | DL | task fMRI | HC = 48, autism = 82 | Accuracy = 85.7% AUC = N/A F1 score = N/A | 2CC3D Deep Convolutional Neural Network |
(Wang et al., 2019) [68] | DL | rs-fMRI | HC = 553, autism = 501 | Accuracy = 93.59% AUC = N/A F1 score = N/A | Stacked Sparse Auto-Encoder (SSAE) with Softmax Classifier |
(Yang et al., 2019) [69] | DL | rs-fMRI | HC = 530, autism = 505 | Accuracy = 75.27% AUC = N/A F1 score = N/A | DNN (MLP) |
(Ke et al., 2020) [41] | DL | sMRI | HC = 1046, autism = 946 | Accuracy = 66% AUC = N/A F1 score = N/A | 3D CNN, RAM, RNN, STN, CAM |
(Thomas et al., 2020) [40] | DL | rs-fMRI | HC = 542, autism = 620 | Accuracy = 66% AUC = N/A F1 score = 67 | Three-dimensional convolutional neural network (3D-CNN), linear SVM |
(Sherkatghanad et al., 2020) [70] | DL | rs-fMRI | HC = 530, autism = 505 | Accuracy = 70.22% AUC = 0.75 F1 score = N/A | CNN |
(Sewani and Kashef, 2020) [71] | DL | rs-fMRI | HC = 573, autism = 539 | Accuracy = 84.05% AUC = 0.78 F1 score = N/A | Autoencoder-CNN |
(Niu et al., 2020) [39] | DL | rs-fMRI | HC = 401, autism = 408 | Accuracy = 73.2% AUC = N/A F1 score = 73.6 | Multichannel Deep Attention Neural Network (DANN) |
(M. Leming et al., 2020) [72] | DL | rs-fMRI | HC = 15,903, autism = 1711 | Accuracy = 67.03% AUC = N/A F1 score = N/A | CNN (Convolutional Neural Network) Ensemble |
(Rakić et al., 2020) [73] | DL | sMRI, rs-fMRI | HC = 449, autism = 368 | Accuracy = 85.06% AUC = N/A F1 score = N/A | Stacked Autoencoders + Multilayer Perceptrons |
(Ahammed et al., 2021) [74] | DL | rs-fMRI | HC = 105, autism = 79 | Accuracy = 94.7% AUC = 94.7 F1 score = 95 | DarkautismNet (Based on Modified DarkNet-19) |
(Gao et al., 2021) [75] | DL | sMRI | HC = 567, autism = 518 | Accuracy = 71.8% AUC = N/A F1 score = 0.68 | ResNet (Deep Convolutional Neural Network) |
(Almuqhim and Saeed, 2021) [76] | DL | rs-fMRI | HC = 530, autism = 505 | Accuracy = 70.8% AUC = N/A F1 score = N/A | autism-SAENet (Sparse Autoencoder + Deep Neural Network) |
(Husna et al., 2021) [42] | DL | rs-fMRI | HC = 1146, autism = 1060 | Accuracy = 87.0% AUC = N/A F1 score = N/A | Convolutional Neural Network (CNN): VGG-16 and ResNet-50 |
(M. J. Leming et al., 2021) [77] | DL | sMRI | HC = 12,623, autism = 1555 | Accuracy = 69.71% AUC = 73.54% F1 score = N/A | CNN |
(Jung et al., 2023) [78] | DL | rs-fMRI | HC = 462, autism = 418 | Accuracy = 78.1% AUC = 84.2 F1 score = N/A | Stacked Autoencoder (SAE), MLP-Based Classifier |
(Vidya et al., 2025) [79] | DL | rs-fMRI | HC = 476, autism = 408 | Accuracy = 98.2% AUC = N/A F1 score = 97 | Stacked Sparse Autoencoder with Softmax Classifier |
(Khan and Katarya, 2025) [80] | DL | rs-fMRI | HC = 505, autism = 530 | Accuracy = 93.4% AUC = N/A F1 score = N/A | CNN and BERT |
(Ashraf et al., 2025) [81] | DL | sMRI | HC = 1090, autism = 1012 | Accuracy = 93.49% AUC = N/A F1 score = N/A | CNN (NeuroNet57), fineKNN Classifier |
(Manikantan and Jaganathan, 2023) [82] | hybrid | rs-fMRI, sMRI | HC = 573, autism = 539 | Accuracy = 81.23% AUC = N/A F1 score = N/A | Graph Convolutional Network (GCN) |
(Song et al., 2024) [83] | hybrid | sMRI | HC = 62, autism = 85 | Accuracy = 89.47% AUC = 0.89 F1 score = N/A | SVM, CNN, RF, LR, KNN |
(Zheng et al., 2025) [45] | hybrid | sMRI, rs-fMRI | HC = 111, autism = 103 | Accuracy = 70.7% AUC = 0.81 F1 score = N/A | Autoencoder-Dual Branch |
hybrid |
(Reiter et al., 2020) [46] | radiomics-ML | rs-fMRI | HC = 350, autism = 306 | Accuracy = 73.7% AUC = N/A F1 score = N/A | Random Forest (RF), Conditional Random Forest (CRF) |
(Anderson et al., 2011) [47] | radiomics-ML | rs-fMRI | HC = 53, autism = 48 | Accuracy = 79% AUC = N/A F1 score = N/A | Linear classifier |
(Plitt et al., 2015) [48] | radiomics-ML | rs-fMRI | HC = 148, autism = 148 | Accuracy = 76.67% AUC = N/A F1 score = N/A | L2-regularized logistic regression (L2LR), Linear SVM (L-SVM) |
(X. Xiao et al., 2015) [33] | radiomics-ML | sMRI | HC = 0, autism = 46 | Accuracy = 80.9% AUC = 0.88 F1 score = N/A | Random Forest |
(Chaddad, Desrosiers, Hassan, et al., 2017) [34] | radiomics-ML | sMRI | HC = 30, autism = 34 | Accuracy = 75% AUC = 80.06 F1 score = N/A | SVM, Random Forest |
(Zhang et al., 2018) [49] | radiomics-ML | DTI | HC = 79, autism = 70 | Accuracy = 78.33% AUC = N/A F1 score = N/A | Random Forest |
(Soussia and Rekik, 2018) [50] | radiomics-ML | sMRI | HC = 186, autism = 155 | Accuracy = 61.69% AUC = N/A F1 score = N/A | Unsupervised SIMLR (Similarity Learning via Multiple Kernels), Ensemble SVM |
(Dekhil et al., 2019) [51] | radiomics-ML | rs-fMRI, sMRI | HC = 113, autism = 72 | Accuracy = 81% AUC = 81.92 F1 score = N/A | K-Nearest Neighbors (KNN), Random Forest (RF) |
(Spera et al., 2019) [52] | radiomics-ML | rs-fMRI | HC = 88, autism = 102 | Accuracy = 77% AUC = 83 F1 score = N/A | Linear SVM |
(Kazeminejad and Sotero, 2019) [53] | radiomics-ML | rs-fMRI | HC = 403, autism = 413 | Accuracy = 95% AUC = N/A F1 score = N/A | SVM (Gaussian Kernel) |
(Chaitra et al., 2020) [54] | radiomics-ML | rs-fMRI | HC = 556, autism = 432 | Accuracy = 70.1% AUC = N/A F1 score = N/A | SVM |
(Squarcina et al., 2021) [55] | radiomics-ML | sMRI | HC = 36, autism = 40 | Accuracy = 84.2% AUC = N/A F1 score = N/A | Support Vector Machine (SVM) with RBF kernel |
(Ali et al., 2022) [84] | radiomics-ML | sMRI | HC = 336, autism = 328 | Accuracy = 71.6% AUC = N/A F1 score = N/A | Neural Network (NN) |
(Dong et al., 2025) [85] | radiomics-ML | rs-fMRI | HC = 467, autism = 403 | Accuracy = 72.2% AUC = 0.77 F1 score = N/A | SVM, FCN, AE-FCN, GCN, EV-GCN |
(Raj et al., 2025) [86] | radiomics-ML | sMRI | HC = 0, autism = 51 | Accuracy = N/A AUC = N/A F1 score = N/A | K-Means Clustering |
(He et al., 2025) [87] | radiomics-ML | DTI, sMRI, rs-fMRI | HC = 47, autism = 50 | Accuracy = 82.69% AUC = N/A F1 score = N/A | SVM |
(Chaddad, Desrosiers, and Toews, 2017) [35] | radiomics-statistics | sMRI | HC = 573, autism = 539 | Accuracy = N/A AUC = N/A F1 score = N/A | N/A |
(Sarovic et al., 2020) [56] | radiomics-statistics | sMRI | HC = 21, autism = 24 | Accuracy = 78.9% AUC = 0.792 F1 score = N/A | SVM, Logistic Regression, Decision Tree |
(Tang et al., 2022) [36] | radiomics-statistics | DTI, sMRI | HC = 60, autism = 60 | Accuracy = N/A AUC = 91.7% F1 score = N/A | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nalentzi, K.; Ioannidis, G.S.; Bougias, H.; Bisdas, S.; Balafouta, M.; Sgouropoulou, C.; Klontzas, M.E.; Marias, K.; Papavasileiou, P. Radiomics vs. Deep Learning in Autism Classification Using Brain MRI: A Systematic Review. Appl. Sci. 2025, 15, 10551. https://doi.org/10.3390/app151910551
Nalentzi K, Ioannidis GS, Bougias H, Bisdas S, Balafouta M, Sgouropoulou C, Klontzas ME, Marias K, Papavasileiou P. Radiomics vs. Deep Learning in Autism Classification Using Brain MRI: A Systematic Review. Applied Sciences. 2025; 15(19):10551. https://doi.org/10.3390/app151910551
Chicago/Turabian StyleNalentzi, Katerina, Georgios S. Ioannidis, Haralabos Bougias, Sotirios Bisdas, Myrsini Balafouta, Cleo Sgouropoulou, Michail E. Klontzas, Kostas Marias, and Periklis Papavasileiou. 2025. "Radiomics vs. Deep Learning in Autism Classification Using Brain MRI: A Systematic Review" Applied Sciences 15, no. 19: 10551. https://doi.org/10.3390/app151910551
APA StyleNalentzi, K., Ioannidis, G. S., Bougias, H., Bisdas, S., Balafouta, M., Sgouropoulou, C., Klontzas, M. E., Marias, K., & Papavasileiou, P. (2025). Radiomics vs. Deep Learning in Autism Classification Using Brain MRI: A Systematic Review. Applied Sciences, 15(19), 10551. https://doi.org/10.3390/app151910551