Impact of Prolonged High-Intensity Training on Autonomic Regulation and Fatigue in Track and Field Athletes Assessed via Heart Rate Variability
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants and Protocol
2.1.1. Participants
2.1.2. Procedure
2.2. Methods
- Mean RR (ms): Represents the average duration between two consecutive R-peaks in the ECG (RR intervals). A reduction in Mean RR (increased heart rate) after training indicates sympathetic activation and physiological stress. Prolonged decreases during recovery may reflect incomplete recovery or overtraining.
- SDNN (ms): Standard deviation of all NN intervals, representing overall HRV and reflecting both sympathetic and parasympathetic contributions. A sharp post-training decrease may indicate increased load, while slow recovery suggests stress and limited autonomic reserve.
- RMSSD (ms): Root mean square of successive differences between NN intervals. A key marker of parasympathetic (vagal) activity. Reduced RMSSD after exercise indicates suppression of parasympathetic activity [43], commonly observed under acute stress.
- LF/HF Ratio: Ratio of LF to HF components, used as an index of sympathovagal balance. An increased LF/HF post-exercise indicates sympathetic dominance; persistently high values suggest stress and insufficient recovery.
- Detrended Fluctuation Analysis (DFA α1, α2) [46]: DFA was applied to RR interval time series to quantify long-term correlations and assess heart rate dynamics. The scaling exponent α was calculated for short-term (α1) and long-term (α2) intervals to evaluate autonomic regulation. DFA provides insights into the fractal properties of HRV, complementing traditional time- and frequency-domain metrics. Short-term (α1) and long-term (α2) scaling exponents were calculated by plotting the log-log relationship between root-mean-square fluctuation F(n) and window size n, with α1 derived from small windows and α2 from larger windows.
- DFA α1: Measures the short-term fractal structure of heart rate. It is sensitive to changes in autonomic regulation during exercise. Elevated post-exercise values indicate loss of “physiological complexity” and increased sympathetic control.
- DFA α2: Reflects the long-term fractal structure of HRV. Reduced values are associated with accumulated fatigue, overtraining, and increased stress, while excessively high values may indicate decreased adaptability of autonomic regulation.
- Sample Entropy (SampEn): Provides an estimate of the complexity and unpredictability of the heart rate time series [47]. A decrease in SampEn after exercise indicates a more predictable and monotonous rhythm, reflecting physiological stress. Persistently low values during recovery may indicate high levels of fatigue.
- Hurst Exponent (H): Measures long-term correlations in the RR interval time series, allowing assessment of persistent trends and overall physiological adaptation. A shift of the Hurst exponent toward or below 0.5 indicates a more chaotic rhythm, associated with fatigue and reduced physiological adaptability.
- REC (%)—recurrence rate, proportion of recurrent points;
- DET (%)—determinism, proportion of recurrent points forming diagonal lines;
- LAM (%)—laminarity, proportion of recurrent points forming vertical lines;
- Lmax—length of the longest diagonal line (excluding the main diagonal);
- ENTR—Shannon entropy of the diagonal line length distribution.
2.3. Statistical Analysis
3. Results
- Group 1: Records with slightly deviating values from normal ranges, indicating mild to moderate fatigue (695 records, 72.4%). This is the largest group, representing athletes in very good physical condition.
- Group 2: Records with moderately deviating values from normal ranges, showing strong fatigue or overreaching (211 records, 22%). This smaller group includes athletes experiencing a high level of post-training fatigue.
- Group 3: Records with markedly deviating values from normal ranges, suggesting a potential risk of cardiac issues (54 records, 5.6%). This group represents exceptions requiring close attention. These 54 recordings originated from three athletes, with atypical changes observed only in part of their sessions rather than consistently across all of their records.
- Acute stress after exercise;
- Temporary inability to recover quickly;
- Potential risk of too frequent or intense training without sufficient rest.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
HR | heart rate |
RR | RR interval |
SDNN | standard deviation of normal-to-normal intervals |
RMSSD | root mean square of successive differences |
LF | low-frequency power |
HF | high-frequency power |
nLF, nHF | normalized low- and high-frequency power |
LF/HF | low-frequency to high-frequency ratio |
SD1, SD2 | Poincaré plot indices |
DFA α1 | short-term detrended fluctuation analysis exponent |
DFA α2 | long-term detrended fluctuation analysis exponent |
SampEn | sample entropy |
RQA | recurrence quantification analysis |
REC | recurrence rate |
DET | determinism |
LAM | laminarity |
TT | trapping time |
References
- Malik, M.; Camm, A.J.; Bigger, J.T.; Breithardt, G.; Cerutti, S.; Cohen, R.J.; Coumel, P.; Fallen, E.L.; Kennedy, H.L.; Kleiger, R.E.; et al. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Eur. Heart J. 1996, 17, 354–381. [Google Scholar] [CrossRef]
- Rajendra Acharya, U.; Paul Joseph, K.; Kannathal, N.; Lim, C.M.; Suri, J.S. Heart rate variability: A review. Med. Biol. Eng. Comput. 2006, 44, 1031–1051. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.G. The role of heart rate variability in sports physiology. Exp. Ther. Med. 2016, 11, 1531–1536. [Google Scholar] [CrossRef] [PubMed]
- Bellenger, C.R.; Fuller, J.T.; Thomson, R.L.; Davison, K.; Robertson, E.Y.; Buckley, J.D. Monitoring athletic training status through autonomic heart rate regulation: A systematic review and meta-analysis. Sports Med. 2016, 46, 1461–1486. [Google Scholar] [CrossRef]
- Nakamura, F.Y.; Gantois, P.; Giannaki, C.; Vlahoyiannis, A.; Bogdanis, G.C. Heart rate variability as a means of assessing workload effects and recovery during exercise training. In Fundamentals of Recovery, Regeneration, and Adaptation to Exercise Stress: An Integrated Approach; Apostolopoulos, N.C., Bogdanis, G.C., Seagrave, L.R., Plyley, M.J., Eds.; Springer: Cham, Switzerland, 2025; pp. 1–25. [Google Scholar] [CrossRef]
- Chiang, J.K.; Lin, Y.C.; Hung, T.Y.; Kao, H.H.; Kao, Y.H. The impact on autonomic nervous system activity during and following exercise in adults: A meta-regression study and trial sequential analysis. Medicina 2024, 60, 1223. [Google Scholar] [CrossRef]
- Addleman, J.S.; Lackey, N.S.; DeBlauw, J.A.; Hajduczok, A.G. Heart rate variability applications in strength and conditioning: A narrative review. J. Funct. Morphol. Kinesiol. 2024, 9, 93. [Google Scholar] [CrossRef]
- Sundas, A.; Contreras, I.; Navarro-Otano, J.; Soler, J.; Beneyto, A.; Vehi, J. Heart rate variability over the decades: A scoping review. PeerJ 2025, 13, e19347. [Google Scholar] [CrossRef]
- Young, H.A.; Benton, D. Heart-rate variability: A biomarker to study the influence of nutrition on physiological and psychological health? Behav. Pharmacol. 2018, 29, 140–151. [Google Scholar] [CrossRef] [PubMed]
- Park, E.J.; Yoo, S.D. Nutritional Biomarkers and Heart Rate Variability in Patients with Subacute Stroke. Nutrients 2022, 14, 5320. [Google Scholar] [CrossRef]
- Dikariyanto, V.; Smith, L.; Chowienczyk, P.J.; Berry, S.E.; Hall, W.L. Snacking on Whole Almonds for Six Weeks Increases Heart Rate Variability during Mental Stress in Healthy Adults: A Randomized Controlled Trial. Nutrients 2020, 12, 1828. [Google Scholar] [CrossRef]
- Thayer, J.F.; Ahs, F.; Fredrikson, M.; Sollers, J.J., 3rd; Wager, T.D. A meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and health. Neurosci. Biobehav. Rev. 2012, 36, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Ren, C.; O’Neill, M.S.; Park, S.K.; Sparrow, D.; Vokonas, P.; Schwartz, J. Ambient temperature, air pollution, and heart rate variability in an aging population. Am. J. Epidemiol. 2011, 173, 1013–1021. [Google Scholar] [CrossRef] [PubMed]
- Damoun, N.; Amekran, Y.; Taiek, N.; Hangouche, A.J.E. Heart rate variability measurement and influencing factors: Towards the standardization of methodology. Glob. Cardiol. Sci. Pract. 2024, 2024, e202435. [Google Scholar] [CrossRef] [PubMed]
- Bigalke, J.A.; Cleveland, E.L.; Barkstrom, E.; Gonzalez, J.E.; Carter, J.R. Core body temperature changes before sleep are associated with nocturnal heart rate variability. J. Appl. Physiol 2023, 135, 136–145. [Google Scholar] [CrossRef]
- Mowery, N.T.; Morris, J.A., Jr.; Jenkins, J.M.; Ozdas, A.; Norris, P.R. Core temperature variation is associated with heart rate variability independent of cardiac index: A study of 278 trauma patients. J. Crit. Care. 2011, 26, e9–e534. [Google Scholar] [CrossRef]
- Plews, D.J.; Laursen, P.B.; Kilding, A.E.; Buchheit, M. Heart rate variability in elite triathletes: Is variation in variability the key to effective training? A case comparison. Eur. J. Appl. Physiol. 2012, 112, 3729–3741. [Google Scholar] [CrossRef]
- Carrasco-Poyatos, M.; González-Quílez, A.; Altini, M.; Granero-Gallegos, A. Heart rate variability-guided training in professional runners: Effects on performance and vagal modulation. Physiol. Behav. 2022, 244, 113654. [Google Scholar] [CrossRef]
- Dupuy, A.; Birat, A.; Maurelli, O.; Garnier, Y.M.; Blazevich, A.J.; Rance, M.; Ratel, S. Post-exercise heart rate recovery and parasympathetic reactivation are comparable between prepubertal boys and well-trained adult male endurance athletes. Eur. J. Appl. Physiol. 2022, 122, 345–355. [Google Scholar] [CrossRef]
- DeBlauw, J.A.; Drake, N.B.; Kurtz, B.K.; Crawford, D.A.; Carper, M.J.; Wakeman, A.; Heinrich, K.M. High-intensity functional training guided by individualized heart rate variability results in similar health and fitness improvements as predetermined training with less effort. J. Funct. Morphol. Kinesiol. 2021, 6, 102. [Google Scholar] [CrossRef]
- Bellenger, C.R.; Thomson, R.L.; Davison, K.; Robertson, E.Y.; Buckley, J.D. The impact of functional overreaching on post-exercise parasympathetic reactivation in runners. Front. Physiol. 2021, 11, 614765. [Google Scholar] [CrossRef]
- Kiviniemi, A.M.; Hautala, A.J.; Kinnunen, H.; Nissilä, J.; Virtanen, P.; Karjalainen, J.; Tulppo, M.P. Daily exercise prescription on the basis of HR variability among men and women. Med. Sci. Sports Exerc. 2010, 42, 1355–1363. [Google Scholar] [CrossRef]
- Vesterinen, V.; Nummela, A.; Heikura, I.; Laine, T.; Hynynen, E.; Botella, J.; Häkkinen, K. Individual endurance training prescription with heart rate variability. Med. Sci. Sports Exerc. 2016, 48, 1347–1354. [Google Scholar] [CrossRef]
- Ruiz, J.P.M.; Rubio-Arias, J.; Clemente-Suarez, V.J.; Ramos-Campo, D.J. Effectiveness of training prescription guided by heart rate variability versus predefined training for physiological and aerobic performance improvements: A systematic review and meta-analysis. Appl. Sci. 2020, 10, 8532. [Google Scholar] [CrossRef]
- Kiviniemi, A.M.; Hautala, A.J.; Kinnunen, H.; Tulppo, M.P. Endurance training guided individually by daily heart rate variability measurements. Eur. J. Appl. Physiol. 2007, 101, 743–751. [Google Scholar] [CrossRef] [PubMed]
- Michael, S.; Graham, K.S.; Davis, G.M. Cardiac Autonomic Responses during Exercise and Post-Exercise Recovery Using Heart Rate Variability and Systolic Time Intervals—A Review. Front. Physiol. 2017, 8, 301. [Google Scholar] [CrossRef] [PubMed]
- Sandercock, G.R.H.; Brodie, D.A. The Use of Heart Rate Variability Measures to Assess Autonomic Control during Exercise. Scand. J. Med. Sci. Sports 2006, 16, 302–313. [Google Scholar] [CrossRef] [PubMed]
- McNarry, M.A.; Lewis, M.J. Heart Rate Variability Reproducibility during Exercise. Physiol. Meas. 2012, 33, 1123–1133. [Google Scholar] [CrossRef]
- Rogers, B.; Giles, D.; Draper, N.; Hoos, O. A New Detection Method Defining the Aerobic Threshold for Endurance Exercise and Training Prescription Based on Fractal Correlation Properties of Heart Rate Variability. Front. Physiol. 2021, 11, 1806. [Google Scholar] [CrossRef]
- Gronwald, T.; Rogers, B.; Hoos, O. Fractal Correlation Properties of Heart Rate Variability: A New Biomarker for Intensity Distribution in Endurance Exercise and Training Prescription? Front. Physiol. 2020, 11, 1152. [Google Scholar] [CrossRef]
- Seiler, S.; Haugen, O.; Kuffel, E. Autonomic Recovery after Exercise in Trained Athletes: Intensity and Duration Effects. Med. Sci. Sports Exerc. 2007, 39, 1366–1373. [Google Scholar] [CrossRef]
- Perkins, S.E.; Jelinek, H.F.; Al-Aubaidy, H.A.; De Jong, B.; Fell, J. Immediate and Long-Term Effects of Endurance and High-Intensity Interval Exercise on Linear and Nonlinear Heart Rate Variability. J. Sci. Med. Sport. 2017, 20, 312–316. [Google Scholar] [CrossRef]
- Nuuttila, O.-P.; Kyröläinen, H.; Häkkinen, K. Acute Physiological Responses to Four Running Sessions Performed at Different Intensity Zones. Int. J. Sports Med. 2021, 42, 513–522. [Google Scholar] [CrossRef]
- Buchheit, M.; Millet, G.P.; Parisy, A.; Pourchez, S.; Laursen, P.B.; Ahmaidi, S. Supramaximal Training and Postexercise Parasympathetic Reactivation in Adolescents. Med. Sci. Sports Exerc. 2008, 40, 362–371. [Google Scholar] [CrossRef] [PubMed]
- Hynynen, E.; Vesterinen, V.; Rusko, H.; Nummela, A. Effects of Moderate and Heavy Endurance Exercise on Nocturnal HRV. Int. J. Sports Med. 2010, 31, 428–432. [Google Scholar] [CrossRef]
- Davletyarova, K.; Vacher, P.; Nicolas, M.; Basset, F.A.; Bieuzen, F. Associations between Heart Rate Variability-Derived Indexes and Training Load. J. Strength. Cond. Res. 2022, 36, 2005–2010. [Google Scholar] [CrossRef]
- Sánchez, R.P.; Alonso-Pérez-Chao, E.; Calleja-González, J.; Jiménez Sáiz, S.L. Heart Rate Variability in Basketball: The Golden Nugget of Holistic Adaptation? Appl. Sci. 2024, 14, 10013. [Google Scholar] [CrossRef]
- Lundstrom, C.J.; Foreman, N.A.; Biltz, G. Practices and Applications of Heart Rate Variability Monitoring in Endurance Athletes. Int. J. Sports Med. 2023, 44, 9–19. [Google Scholar] [CrossRef]
- Turcu, A.M.; Ilie, A.C.; Ștefăniu, R.; Țăranu, S.M.; Sandu, I.A.; Alexa-Stratulat, T.; Pîslaru, A.I.; Alexa, I.D. The Impact of Heart Rate Variability Monitoring on Preventing Severe Cardiovascular Events. Diagnostics 2023, 13, 2382. [Google Scholar] [CrossRef] [PubMed]
- De Maria, B.; Dalla Vecchia, L.A.; Porta, A.; La Rovere, M.T. Autonomic Dysfunction and Heart Rate Variability with Holter Monitoring: A Diagnostic Look at Autonomic Regulation. Herzschrittmacherther. Elektrophysiol. 2021, 32, 315–319. [Google Scholar] [CrossRef]
- Georgieva-Tsaneva, G.; Gospodinova, E.; Cheshmedzhiev, K. Examination of Cardiac Activity with ECG Monitoring Using Heart Rate Variability Methods. Diagnostics 2024, 14, 926. [Google Scholar] [CrossRef] [PubMed]
- Georgieva-Tsaneva, G.; Gospodinova, E.; Gospodinov, M.; Cheshmedzhiev, K. Cardio-Diagnostic Assisting Computer System. Diagnostics 2020, 10, 322. [Google Scholar] [CrossRef]
- Schmitt, L.; Regnard, J.; Millet, G.P. Monitoring Fatigue Status with HRV Measures in Elite Athletes: An Avenue beyond RMSSD? Front. Physiol. 2015, 6, 343. [Google Scholar] [CrossRef]
- Li, K.; Rüdiger, H.; Ziemssen, T. Spectral Analysis of Heart Rate Variability: Time Window Matters. Front. Neurol. 2019, 10, 545. [Google Scholar] [CrossRef]
- Mateo-March, M.; Moya-Ramón, M.; Javaloyes, A.; Sánchez-Muñoz, C.; Clemente-Suárez, V.J. Validity of Detrended Fluctuation Analysis of Heart Rate Variability to Determine Intensity Thresholds in Elite Cyclists. Eur. J. Sport. Sci. 2022, 23, 580–587. [Google Scholar] [CrossRef]
- Rogers, B.; Gronwald, T. Fractal correlation properties of heart rate variability as a biomarker for intensity distribution and training prescription in endurance exercise: An update. Front. Physiol. 2022, 13, 879071. [Google Scholar] [CrossRef]
- Bakhchina, A.V.; Arutyunova, K.R.; Sozinov, A.A.; Demidovsky, A.V.; Alexandrov, Y.I. Sample entropy of the heart rate reflects properties of the system organization of behaviour. Entropy 2018, 20, 449. [Google Scholar] [CrossRef] [PubMed]
- Zimatore, G.; Serantoni, C.; Gallotta, M.C.; Meucci, M.; Mourot, L.; Ferrari, D.; Baldari, C.; De Spirito, M.; Maulucci, G.; Guidetti, L. Recurrence quantification analysis-based methodology in automatic aerobic threshold detection: Applicability and accuracy across age groups, exercise protocols and health conditions. Appl. Sci. 2024, 14, 9216. [Google Scholar] [CrossRef]
- Błażkiewicz, M.; Hadamus, A.; Borkowski, R. Recurrence quantification analysis as a form of postural control assessment: A systematic review. Appl. Sci. 2023, 13, 5587. [Google Scholar] [CrossRef]
- Gospodinova, E.; Lebamovski, P.; Georgieva-Tsaneva, G.; Negreva, M. Evaluation of the Methods for Nonlinear Analysis of Heart Rate Variability. Fractal Fract. 2023, 7, 388. [Google Scholar] [CrossRef]
- Martinis, M. Changes in the Hurst exponent of heart rate variability during physical activity. Phys. Rev. E 2004, 70, 012903. [Google Scholar] [CrossRef]
- Byun, S.; Kim, A.Y.; Jang, E.H.; Kim, S.; Choi, K.W.; Yu, H.Y.; Jeon, H.J. Entropy analysis of heart rate variability and its application to recognize major depressive disorder: A pilot study. Technol. Health Care 2019, 27 (Suppl. 1), 407–424. [Google Scholar] [CrossRef]
- Zimatore, G.; Falcioni, L.; Gallotta, M.C.; Bonavolontà, V.; Campanella, M.; De Spirito, M.; Maulucci, G.; Guidetti, L. Recurrence quantification analysis of heart rate variability to detect both ventilatory thresholds. PLoS ONE 2021, 16, e0249504. [Google Scholar] [CrossRef] [PubMed]
- Dimitriev, D.; Saperova, E.V.; Dimitriev, A.; Karpenko, Y. Recurrence quantification analysis of heart rate during mental arithmetic stress in young females. Front. Physiol. 2020, 11, 40. [Google Scholar] [CrossRef]
- Stanley, J.; Peake, J.M.; Buchheit, M. Cardiac parasympathetic reactivation following exercise: Implications for training prescription. Sports Med. 2013, 43, 1259–1277. [Google Scholar] [CrossRef]
- Kaikkonen, P.; Nummela, A.; Rusko, H. Heart rate variability dynamics during early recovery after different endurance exercises. Eur. J. Appl. Physiol. 2007, 102, 79–86. [Google Scholar] [CrossRef]
- Gronwald, T.; Hoos, O. Correlation properties of heart rate variability during endurance exercise: A systematic review. Ann. Noninvasive Electrocardiol. 2020, 25, e12697. [Google Scholar] [CrossRef]
- Abad, C.C.C.; Pereira, L.A.; Zanetti, V.; Kobal, R.; Loturco, I.; Nakamura, F.Y. Short-Term Cardiac Autonomic Recovery after a Repeated Sprint Test in Young Soccer Players. Sports 2019, 7, 102. [Google Scholar] [CrossRef] [PubMed]
- Špenko, M.; Potočnik, I.; Edwards, I.; Potočnik, N. Training History, Cardiac Autonomic Recovery from Submaximal Exercise and Associated Performance in Recreational Runners. Int. J. Environ. Res. Public. Health. 2022, 19, 9797. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.Y.; Hong, W.J.; Jin, S.M.; Hur, K.Y.; Jee, J.H.; Bae, J.C.; Kim, J.H.; Lee, M.K. Delayed heart rate recovery after exercise predicts development of metabolic syndrome: A retrospective cohort study. J. Diabetes Investig. 2022, 13, 167–176. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Georgieva-Tsaneva, G.; Cheshmedzhiev, K.; Tsanev, Y.-A.; Dechev, M.; Popovska, E. Healthcare monitoring using an Internet of Things-based cardio system. IoT 2025, 6, 10. [Google Scholar] [CrossRef]
- Georgieva-Tsaneva, G.; Gospodinova, E.; Cheshmedzhiev, K. Cardiodiagnostics based on photoplethysmographic signals. Diagnostics 2022, 12, 412. [Google Scholar] [CrossRef]
- Alugubelli, N.; Abuissa, H.; Roka, A. Wearable devices for remote monitoring of heart rate and heart rate variability—What we know and what is coming. Sensors 2022, 22, 8903. [Google Scholar] [CrossRef] [PubMed]
- Dobbs, W.C.; Fedewa, M.V.; MacDonald, H.V.; Holmes, C.J.; Cicone, Z.S.; Plews, D.J.; Esco, M.R. The accuracy of acquiring heart rate variability from portable devices: A systematic review and meta-analysis. Sports Med. 2019, 49, 417–435. [Google Scholar] [CrossRef] [PubMed]
- Hinde, K.; White, G.; Armstrong, N. Wearable devices suitable for monitoring twenty-four-hour heart rate variability in military populations. Sensors 2021, 21, 1061. [Google Scholar] [CrossRef] [PubMed]
Parameter | Pre-Training n = 695 [Mean ± std] | Pre 95% CI | Post-Training n = 695 [Mean ± std] | Post 95% CI | 2-h Recovery n = 695 [Mean ± std] | 2-h 95% CI | p Value Pre/Post/2-h (ANOVA) | Holm–Bonferroni adj. p | |
---|---|---|---|---|---|---|---|---|---|
Mean RR [ms] | 882.19 ± 47.81 | [878.6, 885.8] | 528.33 ± 33.11 | [526.0, 530.7] | 743.28 ± 48.92 | [741.1, 745.4] | <0.001 0.0006 | 0.0054 | 0.62 |
HR | 68.14 ± 15.02 | [67.0, 69.3] | 113.63 ± 14.9 | [112.5, 114.8] | 93.31 ± 23.06 | [92.0, 94.6] | <0.001 0.0007 | 0.0056 | 0.59 |
SDNN [ms] | 57.47 ± 18.23 | [56.1, 58.8] | 44.38 ± 8.11 | [43.8, 44.9] | 54.33 ± 7.28 | [54.1, 54.6] | <0.001 0.0009 | 0.0056 | 0.55 |
RMSSD [ms] | 44.32 ± 12.56 | [43.4, 45.2] | 26.86 ± 5.34 | [26.6, 27.1] | 40.84 ± 6.92 | [40.7, 41.0] | <0.001 0.0001 | 0.0014 | 0.58 |
nLF [nu] | 60.31 ± 11.95 | [59.4, 61.2] | 65.62 ± 14.28 | [64.9, 66.3] | 62.44 ± 2.79 | [62.3, 62.6] | <0.05 0.01 | 0.0400 | 0.08 |
nHF [nu] | 39.65 ± 9.14 | [39.0, 40.3] | 34.51 ± 7.45 | [34.0, 35.0] | 38.99 ± 8.76 | [38.8, 39.2] | <0.001 0.0001 | 0.0014 | 0.09 |
LF/HF [-] | 1.53 ± 0.31 | [1.51, 1.55] | 1.91 ± 0.82 | [1.89, 1.93] | 1.56 ± 0.27 | [1.55, 1.57] | <0.05 0.02 | 0.0400 | 0.07 |
SD1 [ms] | 31.28 ± 8.09 | [30.7, 31.9] | 18.58 ± 2.03 | [18.5, 18.7] | 29.33 ± 6.14 | [29.2, 29.5] | <0.001 0.0001 | 0.0014 | 0.56 |
SD2 [ms] | 74.77 ± 21.04 | [73.3, 76.2] | 59.18 ± 10.04 | [58.6, 59.7] | 71.55 ± 14.19 | [71.4, 71.7] | <0.001 0.0009 | 0.0056 | 0.34 |
SD2/SD1 [-] | 2.38 ± 0.42 | [2.35, 2.41] | 3.11 ± 0.26 | [3.09, 3.13] | 2.48 ± 0.17 | [2.48, 2.49] | <0.001 0.0007 | 0.0056 | 0.29 |
Hurst [-] | 0.84 ± 0.2 | [0.83, 0.85] | 0.72 ± 0.18 | [0.71, 0.73] | 0.76 ± 0.21 | [0.76, 0.77] | <0.05 0.02 | 0.0400 | 0.21 |
DFA α1 [-] | 1.16 ± 0.07 | [1.16, 1.17] | 0.81 ± 0.08 | [0.81, 0.82] | 0.97 ± 0.11 | [0.96, 0.98] | <0.001 0.0004 | 0.0040 | 0.61 |
DFA α2 [-] | 0.79 ± 0.13 | [0.78, 0.80] | 0.92 ± 0.16 | [0.91, 0.93] | 0.96 ± 0.19 | [0.95, 0.97] | <0.05 0.01 | 0.0400 | 0.25 |
SampEn [-] | 1.53 ± 0.42 | [1.50, 1.56] | 0.89 ± 0.38 | [0.88, 0.90] | 1.06 ± 0.29 | [1.05, 1.07] | <0.001 0.0003 | 0.0033 | 0.57 |
Parameter | Pre-Training n = 695 [Mean ± std] | Pre 95% CI | Post-Training n = 695 [Mean ± std] | Post 95%CI | 2-h Recovery n = 695 [Mean ± std] | 2-h 95%CI | p Value Pre/Post/2-h (ANOVA) | Bonferroni adj. p | |
---|---|---|---|---|---|---|---|---|---|
REC (%) | 15.98 ± 6.64 | [15.5–16.5] | 16.2 ± 3.09 | [16.0–16.4] | 16.1 ± 5.21 | [15.7–16.5] | NS 1 | NS 0.2000 | 0.01 |
DET (%) | 29.80 ± 8.02 | [29.2–30.4] | 60.91 ± 23.04 | [59.2–62.6] | 49.55 ± 18.83 | [48.1–51.0] | <0.01 | 0.0120 | 0.48 |
LAM (%) | 36.37 ± 11.06 | [35.6–37.1] | 74.26 ± 21.35 | [73.3–75.2] | 58.23 ± 12.97 | [57.3–59.2] | <0.01 | 0.0080 | 0.52 |
TT | 2.33 ± 0.73 | [2.28–2.38] | 3.07 ± 0.19 | [3.06–3.08] | 2.91 ± 0.82 | [2.90–2.92] | <0.05 | 0.0200 | 0.22 |
Entropy | 4.62 ± 0.32 | [4.60–4.64] | 3.81 ± 0.24 | [3.80–3.82] | 4.35 ± 0.29 | [4.34–4.36] | <0.001 | 0.0025 | 0.5 |
Parameter | Pre-Training n = 211 [Mean ± std] | Pre 95% CI | Post-Training n = 211 [Mean ± std] | Post 95% CI | 2-h Recovery n = 211 [Mean ± std] | 2-h 95% CI | p Value Pre/Post/2-h (ANOVA) | Holm–Bonferroni adj. p | |
---|---|---|---|---|---|---|---|---|---|
Mean RR [ms] | 724.19 ± 47.81 | [718.0, 730.4] | 522.50 ± 35.31 | [517.8, 527.2] | 600.10 ± 50.25 | [593.3, 606.9] | <0.001 0.0003 | 0.0039 | 0.6 |
HR | 82.87 ± 12.64 | [81.2, 84.6] | 115.20 ± 14.52 | [113.2, 117.2] | 100.50 ± 21.86 | [97.7, 103.3] | <0.001 0.0004 | 0.0040 | 0.58 |
SDNN [ms] | 55.21 ± 24.08 | [52.0, 58.4] | 42.00 ± 8.51 | [40.8, 43.2] | 47.90 ± 9.23 | [47.0, 48.8] | <0.01 0.006 | 0.0250 | 0.41 |
RMSSD [ms] | 42.04 ± 13.11 | [40.2, 43.9] | 25.10 ± 5.14 | [24.4, 25.8] | 31.40 ± 6.56 | [30.6, 32.2] | <0.001 0.0003 | 0.0039 | 0.52 |
nLF [nu] | 59.22 ± 12.33 | [57.6, 60.9] | 67.80 ± 13.58 | [66.0, 69.6] | 66.10 ± 12.41 | [64.4, 67.8] | <0.001 0.007 | 0.0063 | 0.1 |
nHF [nu] | 41.02 ± 9.14 | [40.1, 42.0] | 32.10 ± 7.12 | [31.1, 33.1] | 33.00 ± 7.52 | [32.0, 34.0] | <0.001 0.003 | 0.0039 | 0.09 |
LF/HF [-] | 1.44 ± 0.09 | [1.42, 1.46] | 2.11 ± 0.81 | [2.05, 2.17] | 2.00 ± 0.75 | [1.94, 2.06] | <0.01 0.002 | 0.0120 | 0.12 |
SD1 [ms] | 28.77 ± 5.66 | [28.0, 29.5] | 17.80 ± 2.16 | [17.5, 18.1] | 22.20 ± 5.14 | [21.5, 22.9] | <0.01 0.006 | 0.0250 | 0.45 |
SD2 [ms] | 69.52 ± 20.01 | [66.0, 73.0] | 57.07 ± 9.84 | [55.8, 58.3] | 64.00 ± 12.67 | [63.1, 64.9] | <0.001 0.0008 | 0.0064 | 0.3 |
SD2/SD1 [-] | 2.41 ± 0.61 | [2.33, 2.49] | 3.24 ± 0.28 | [3.20, 3.28] | 2.88 ± 0.25 | [2.83, 2.93] | <0.01 0.005 | 0.0250 | 0.28 |
Hurst [-] | 0.79 ± 0.26 | [0.75, 0.83] | 0.72 ± 0.17 | [0.70, 0.74] | 0.76 ± 0.28 | [0.74, 0.78] | <0.05 0.01 | 0.0250 | 0.22 |
DFA α1 [-] | 1.19 ± 0.05 | [1.18, 1.20] | 0.79 ± 0.08 | [0.78, 0.80] | 0.91 ± 0.11 | [0.89, 0.93] | <0.001 0.0001 | 0.0014 | 0.55 |
DFA α2 [-] | 0.83 ± 0.16 | [0.81, 0.85] | 0.94 ± 0.14 | [0.92, 0.96] | 0.86 ± 0.16 | [0.84, 0.88] | <0.05 0.01 | 0.0250 | 0.26 |
SampEn [-] | 2.82 ± 0.22 | [2.79, 2.85] | 1.85 ± 0.36 | [1.80, 1.90] | 1.92 ± 0.28 | [1.89, 1.95] | <0.001 0.0009 | 0.0064 | 0.51 |
Parameter | Pre-Training n = 211 [Mean ± std] | Pre 95%CI | Post-Training n = 211 [Mean ± std] | Post 95%CI | 2-h Recovery n = 211 [Mean ± std] | 2-h 95%CI | p value Pre/Post/2-h (ANOVA) | Holm–Bonferroni adj. p | |
---|---|---|---|---|---|---|---|---|---|
REC (%) | 15.20 ± 6.10 | [14.4–16.0] | 15.8 ± 3.05 | [15.4–16.2] | 15.6 ± 5.10 | [14.9–16.3] | NS 1 | NS 0.3000 | 0.01 |
DET (%) | 31.50 ± 8.30 | [30.4–32.6] | 58.40 ± 22.50 | [55.3–61.5] | 47.20 ± 18.10 | [44.7–49.7] | <0.001 | 0.0210 | 0.46 |
LAM (%) | 38.10 ± 10.90 | [36.7–39.5] | 72.10 ± 20.85 | [70.3–73.9] | 56.40 ± 12.80 | [54.7–58.1] | <0.001 | 0.0160 | 0.5 |
TT | 2.40 ± 0.70 | [2.31–2.49] | 3.00 ± 0.20 | [2.94–3.06] | 2.85 ± 0.80 | [2.74–2.96] | <0.01 | 0.0084 | 0.24 |
Entropy | 4.38 ± 0.30 | [4.34–4.42] | 3.85 ± 0.23 | [3.82–3.88] | 4.12 ± 0.28 | [4.08–4.16] | <0.01 | 0.0200 | 0.31 |
Parameter | Pre-Training n = 54 [Mean ± std] | Pre 95% CI | Post-Training n = 54 [Mean ± std] | Post 95%CI | 2-h Recovery n = 54 [Mean ± std] | 2-h 95% CI | p Value Pre/Post/2-h (ANOVA) | Holm–Bonferroni adj. p | |
---|---|---|---|---|---|---|---|---|---|
Mean RR [ms] | 690.25 ± 55.12 | [675.5, 705.0] | 505.40 ± 34.77 | [496.1, 514.7] | 582.20 ± 49.31 | [568.9, 595.5] | <0.001 0.0006 | 0.0014 | 0.72 |
HR [bpm] | 87.05 ± 11.85 | [83.9, 90.2] | 119.00 ± 13.94 | [115.3, 122.7] | 103.10 ± 20.47 | [97.0, 109.2] | <0.001 0.0007 | 0.0014 | 0.41 |
SDNN [ms] | 48.12 ± 21.33 | [42.4, 53.9] | 39.50 ± 8.12 | [37.3, 41.7] | 45.00 ± 9.02 | [42.6, 47.4] | <0.001 0.0009 | 0.0024 | 0.06 |
RMSSD [ms] | 36.80 ± 12.24 | [33.5, 40.1] | 22.60 ± 4.88 | [21.3, 23.9] | 28.40 ± 6.21 | [26.7, 30.1] | <0.001 0.0001 | 0.0024 | 0.33 |
nLF [nu] | 63.10 ± 11.84 | [59.9, 66.3] | 70.90 ± 13.22 | [67.5, 74.3] | 68.30 ± 12.02 | [65.0, 69.6] | <0.001 0.0009 | 0.0031 | 0.07 |
nHF [nu] | 36.10 ± 8.72 | [33.8, 38.4] | 29.20 ± 6.98 | [27.5, 30.9] | 31.40 ± 7.21 | [29.5, 33.3] | <0.001 0.0001 | 0.0031 | 0.12 |
LF/HF [–] | 1.75 ± 0.35 | [1.66, 1.84] | 2.43 ± 0.78 | [2.22, 2.64] | 2.18 ± 0.70 | [2.0, 2.4] | <0.01 0.002 | 0.0033 | 0.16 |
SD1 [ms] | 26.04 ± 5.32 | [24.6, 27.5] | 16.00 ± 2.08 | [15.4, 16.6] | 20.10 ± 4.97 | [18.8, 21.4] | <0.001 0.0001 | 0.0035 | 0.47 |
SD2 [ms] | 62.84 ± 18.15 | [57.9, 67.8] | 54.80 ± 9.55 | [52.3, 57.3] | 61.00 ± 12.11 | [57.7, 64.3] | <0.001 0.0009 | 0.0055 | 0.06 |
SD2/SD1 [–] | 2.41 ± 0.59 | [2.25, 2.57] | 3.43 ± 0.29 | [3.35, 3.51] | 3.03 ± 0.26 | [3.0, 3.1] | <0.05 0.01 | 0.0100 | 0.51 |
Hurst [–] | 0.74 ± 0.25 | [0.67, 0.81] | 0.69 ± 0.16 | [0.65, 0.73] | 0.72 ± 0.27 | [0.69, 0.75] | <0.05 0.02 | 0.0100 | 0.008 |
DFA α1 [–] | 1.12 ± 0.06 | [1.11, 1.13] | 0.75 ± 0.08 | [0.73, 0.77] | 0.88 ± 0.10 | [0.86, 0.90] | <0.05 0.01 | 0.0300 | 0.78 |
DFA α2 [–] | 0.80 ± 0.15 | [0.76, 0.84] | 0.93 ± 0.13 | [0.90, 0.96] | 0.84 ± 0.15 | [0.80, 0.88] | <0.001 0.0004 | 0.0300 | 0.13 |
SampEn [–] | 2.65 ± 0.21 | [2.59, 2.71] | 1.74 ± 0.34 | [1.65, 1.83] | 1.05 ± 0.26 | [1.0, 1.1] | <0.001 0.0004 | 0.0300 | 0.86 |
Parameter | Pre-Training n = 54 [Mean ± std] | Pre 95%CI | Post-Training n = 54 [Mean ± std] | Post 95%CI | 2-h Recovery n = 54 [Mean ± std] | 2-h 95%CI | p Value Pre/Post (t Test) | Holm–Bonferroni adj. p | p Value Post/2-h (t Test) | |
---|---|---|---|---|---|---|---|---|---|---|
REC (%) | 18.50 ± 5.90 | [16.89–20.11] | 19.10 ± 3.20 | [18.23–19.97] | 19.00 ± 3.15 | [18.14–19.86] | NS 1 | NS 1 | NS 1 | 0.01 |
DET (%) | 45.20 ± 12.50 | [41.79–48.61] | 72.80 ± 21.90 | [66.89–78.71] | 71.50 ± 21.30 | [65.72–77.28] | <0.01 | 0.016 | NS 1 | 0.42 |
LAM (%) | 55.10 ± 14.30 | [51.20–59.00] | 85.40 ± 15.80 | [81.10–89.70] | 84.20 ± 15.60 | [80.92–87.48] | <0.01 | 0.018 | NS 1 | 0.48 |
TT | 2.85 ± 0.65 | [2.67–3.03] | 3.25 ± 0.22 | [3.15–3.35] | 3.21 ± 0.24 | [3.15–3.27] | <0.01 | 0.010 | NS 1 | 0.31 |
Entropy | 3.95 ± 0.28 | [3.87–4.03] | 3.60 ± 0.20 | [3.54–3.66] | 3.62 ± 0.21 | [3.56–3.68] | <0.01 | 0.018 | NS 1 | 0.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Georgieva-Tsaneva, G.; Lebamovski, P.; Tsanev, Y.-A. Impact of Prolonged High-Intensity Training on Autonomic Regulation and Fatigue in Track and Field Athletes Assessed via Heart Rate Variability. Appl. Sci. 2025, 15, 10547. https://doi.org/10.3390/app151910547
Georgieva-Tsaneva G, Lebamovski P, Tsanev Y-A. Impact of Prolonged High-Intensity Training on Autonomic Regulation and Fatigue in Track and Field Athletes Assessed via Heart Rate Variability. Applied Sciences. 2025; 15(19):10547. https://doi.org/10.3390/app151910547
Chicago/Turabian StyleGeorgieva-Tsaneva, Galya, Penio Lebamovski, and Yoan-Aleksandar Tsanev. 2025. "Impact of Prolonged High-Intensity Training on Autonomic Regulation and Fatigue in Track and Field Athletes Assessed via Heart Rate Variability" Applied Sciences 15, no. 19: 10547. https://doi.org/10.3390/app151910547
APA StyleGeorgieva-Tsaneva, G., Lebamovski, P., & Tsanev, Y.-A. (2025). Impact of Prolonged High-Intensity Training on Autonomic Regulation and Fatigue in Track and Field Athletes Assessed via Heart Rate Variability. Applied Sciences, 15(19), 10547. https://doi.org/10.3390/app151910547