Moderate Physical Activity Generates Changes in Retina and Choroid in Low-Fit Adults
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Ophthalmological Tests
2.2.1. Retinal Thickness Analysis by OCT
2.2.2. Choroidal Thickness Analysis
2.2.3. Retinal Vascular Analysis by OCTA
2.2.4. Physical Working Capacity Test
2.3. Sample Size Calculation
2.4. Statistical Analysis
3. Results
3.1. Demographics and Parameters of Aerobic Capacity and Cardiovascular Health
3.2. Macular Thickness of the Retinal Layers
3.3. Choroidal Thickness
3.4. Analysis of Foveal Avascular Zone
3.5. Vascular OCTA Study
3.6. Correlations Between Cardiovascular and Ophthalmologic Measures Post Stress Test
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AMD | age-related macular degeneration |
BMO | opening Bruch’s Membrane |
DBP | diastolic blood pressure |
DCP | deep capillary plexus |
DR | diabetic retinopathy |
FAZ | Foveal avascular zone |
GCL | ganglion cell layer |
HDL | high-density lipoprotein |
HIIT | high-intensity interval training |
HR | heart rate |
ICA | internal carotid artery |
ICRT | incremental continuous exercise test |
INL | Inner nuclear layer |
IPL | inner plexiform layer |
IOP | intraocular pressure |
IR | interquartile range |
OBF | ocular blood Flow |
OCT | Optical Coherence Tomography |
OCTA | Optical Coherence Tomography Angiography |
OCTAVA | OCTA Vascular Analyser |
OPP | ocular perfusion pressure |
ONH | optic disc |
ONL | Outer nuclear layer |
OPL | outer plexiform layer |
PA | Physical activity |
PWC | Physical Working Capacity |
pRNFL | Peripapillary retinal nerve fiber layer |
RNFL | retinal nerve fiber layer |
RPE | retinal pigment epithelium |
SBP | systolic blood pressure |
SVC | superficial Vascular complex |
VD | vascular density |
VO2 max | maximal oxygen capacity |
References
- Patel, H.; Alkhawam, H.; Madanieh, R.; Shah, N.; Kosmas, C.E.; Vittorio, T.J. Aerobic vs Anaerobic Exercise Training Effects on the Cardiovascular System. World J. Cardiol. 2017, 9, 134. [Google Scholar] [CrossRef]
- Crews, D.J.; Landers, D.M. A Meta-Analytic Review of Aerobic Fitness and Reactivity to Psychosocial Stressors. Med. Sci. Sports Exerc. 1987, 19, S11–S120. [Google Scholar] [CrossRef]
- Rosenthal, M.; Haskell, W.L.; Solomon, R.; Widstrom, A.; Reaven, G.M. Demonstration of a Relationship between Level of Physical Training and Insulin-Stimulated Glucose Utilization in Normal Humans. Diabetes 1983, 32, 408–411. [Google Scholar] [CrossRef] [PubMed]
- Mcardle, W.D.; Katch, F.I.; Katch, V.L. Fundamentos de Fisiología del Ejercicio, 2nd ed.; Mcardle, W.D., Katch, F.I., Katch, V.L., Eds.; McGraw-Hill Interamericana de España: Madrid, Spain, 2004. [Google Scholar]
- Cui, B.; Zhu, Y.; Zhang, X.; He, K.; Shi, Y.; Yu, J.; Zhou, W.; Zhu, Y.; Yan, H. Association of Physical Activity with Retinal Thickness and Vascular Structure in Elderly Chinese Population. Ophthalmic Res. 2022, 66, 281–292. [Google Scholar] [CrossRef] [PubMed]
- McGuinness, M.B.; Le, J.; Mitchell, P.; Gopinath, B.; Cerin, E.; Saksens, N.T.M.; Schick, T.; Hoyng, C.B.; Guymer, R.H.; Finger, R.P. Physical Activity and Age-Related Macular Degeneration: A Systematic Literature Review and Meta-Analysis. Am. J. Ophthalmol. 2017, 180, 29–38. [Google Scholar] [CrossRef]
- Wang, Y.X.; Wei, W.B.; Xu, L.; Jonas, J.B. Physical Activity and Eye Diseases. The Beijing Eye Study. Acta Ophthalmol. 2019, 97, 325–331. [Google Scholar] [CrossRef]
- Fernandez-Rio, J.; González-Villora, S.; Valero-Valenzuela, A.; Anton-Candanedo, A.; Merino-Barrero, J.A.; de los Ríos, J.V.S.; López Gajardo, M.A. Accelerometry-Measured Physical Activity in Amateur Footballers. Is It Enough to Obtain Health Benefits? Sustainability 2020, 12, 4477. [Google Scholar] [CrossRef]
- Noonan, V.; Dean, E. Submaximal Exercise Testing: Clinical Application and Interpretation. Phys. Ther. 2000, 80, 782–807. [Google Scholar] [CrossRef] [PubMed]
- Dahl, H.A.; Rodahl, K.; Stromme, S.B.; Åstrand, P.-O. Textbook of Work Physiology: Physiological Bases of Exercise; Human Kinetics: Champaign, IL, USA, 2003; ISBN 0736001409. [Google Scholar]
- McArdle, W.D.; Katch, F.I.; Katch, V.L. Fisiologia del Ejercicio; Energia, Nutricion y Rendimiento Humano; Deporte, A., Ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 1990; ISBN 84-206-5704-2. [Google Scholar]
- Astrand, P.; Rodahl, K.; Dahl, H.A.; Stromme, S.B. Manual de Fisiología del Ejercicio; Editorial Médica Panamericana: Madrid, Spain, 2010; ISBN 8499100120. [Google Scholar]
- Karakucuk, Y.; Okudan, N.; Bozkurt, B.; Belviranlı, M.; Sezer, T.; Gorçuyeva, S. Quantitative Assessment of the Effect of Acute Anaerobic Exercise on Macular Perfusion via Swept-Source Optical Coherence Tomography Angiography in Young Football Players. Int. Ophthalmol. 2020, 40, 1377–1386. [Google Scholar] [CrossRef]
- López Chicharro, J.; Fernández Vaquero, A. Fisiología Del Ejercicio, 4th ed.; Panamericana: Madrid, Spain, 2023; ISBN 9788491107491. [Google Scholar]
- Ikemura, T.; Suzuki, K.; Nakamura, N.; Yada, K.; Hayashi, N. Fluid Intake Restores Retinal Blood Flow Early After Exhaustive Exercise in Healthy Subjects. Eur. J. Appl. Physiol. 2018, 118, 1053–1061. [Google Scholar] [CrossRef]
- Li, S.; Pan, Y.; Xu, J.; Li, X.; Spiegel, D.P.; Bao, J.; Chen, H. Effects of Physical Exercise on Macular Vessel Density and Choroidal Thickness in Children. Sci. Rep. 2021, 11, 2015. [Google Scholar] [CrossRef]
- Dervişoğulları, M.S.; Totan, Y.; Kulak, A.E.; Güler, E. Acute Effects of Exercise on Choroidal Thickness and Ocular Pulse Amplitude. Ann. Clin. Anal. Med. 2019, 10, 62–66. [Google Scholar] [CrossRef]
- Alnawaiseh, M.; Lahme, L.; Treder, M.; Rosentreter, A.; Eter, N. Short-Term Effects of Exercise on Optic Nerve and Macular Perfusion Measured by Optical Coherence Tomography Angiography. Retina 2017, 37, 1642–1646. [Google Scholar] [CrossRef] [PubMed]
- Alten, F.; Nelis, P.; Schmitz, B.; Brand, S.M.; Eter, N. Optical Coherence Tomography Angiography as a Future Diagnostic Tool in Sports Medicine? Ophthalmologe 2019, 116, 722–727. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.V.; Semoun, O.; Pedinielli, A.; Jung, C.; Miere, A.; Souied, E.H. Optical Coherence Tomography Angiography Quantitative Assessment of Exercise-Induced Variations in Retinal Vascular Plexa of Healthy Subjects. Investig. Ophthalmol. Vis. Sci. 2019, 60, 1412–1419. [Google Scholar] [CrossRef]
- Lefferts, W.K.; Hughes, W.E.; Heffernan, K.S. Effect of Acute High-Intensity Resistance Exercise on Optic Nerve Sheath Diameter and Ophthalmic Artery Blood Flow Pulsatility. J. Hum. Hypertens. 2015, 29, 744–748. [Google Scholar] [CrossRef]
- Szalai, I.; Csorba, A.; Jing, T.; Horváth, E.; Bosnyák, E.; Györe, I.; Nagy, Z.Z.; DeBuc, D.C.; Tóth, M.; Somfai, G.M. The Assessment of Acute Chorioretinal Changes Due to Intensive Physical Exercise in Senior Elite Athletes. J. Aging Phys. Act. 2022, 31, 497–505. [Google Scholar] [CrossRef] [PubMed]
- Insa-Sánchez, G.; Fuentes-Broto, L.; Cobos, A.; Orduna Hospital, E.; Segura, F.; Sanchez-Cano, A.; Perdices, L.; Pinilla, I. Choroidal Thickness and Volume Modifications Induced by Aerobic Exercise in Healthy Young Adults. Ophthalmic Res. 2021, 64, 604–612. [Google Scholar] [CrossRef]
- Salobrar-Garcia, E.; Méndez-Hernández, C.; de Hoz, R.; Ramírez, A.I.; López-Cuenca, I.; Fernández-Albarral, J.A.; Rojas, P.; Wang, S.; García-Feijoo, J.; Gil, P.; et al. Ocular Vascular Changes in Mild Alzheimer’s Disease Patients: Foveal Avascular Zone, Choroidal Thickness, and ONH Hemoglobin Analysis. J. Pers. Med. 2020, 10, 231. [Google Scholar] [CrossRef]
- López-Cuenca, I.; Salobrar-García, E.; Sánchez-Puebla, L.; Espejel, E.; Del Arco, L.G.; Rojas, P.; Elvira-Hurtado, L.; Fernández-Albarral, J.A.; Ramírez-Toraño, F.; Barabash, A.; et al. Retinal Vascular Study Using OCTA in Subjects at High Genetic Risk of Developing Alzheimer’s Disease and Cardiovascular Risk Factors. J. Clin. Med. 2022, 11, 3248. [Google Scholar] [CrossRef]
- Tian, F.; Li, Y.; Wang, J.; Chen, W. Blood Vessel Segmentation of Fundus Retinal Images Based on Improved Frangi and Mathematical Morphology. Comput. Math. Methods Med. 2021, 2021, 4761517. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Huang, M.; Fu, J.; Lou, C.; Feng, C. Frangi Based Multi-Scale Level Sets for Retinal Vascular Segmentation. Comput. Methods Programs Biomed. 2020, 197, 105752. [Google Scholar] [CrossRef] [PubMed]
- Mauget-Faÿsse, M.; Arej, N.; Paternoster, M.; Zuber, K.; Derrien, S.; Thevenin, S.; Alonso, A.S.; Salviat, F.; Lafolie, J.; Vasseur, V. Retinal and Choroidal Blood Flow Variations after an Endurance Exercise: A Real-Life Pilot Study at the Paris Marathon. J. Sci. Med. Sport. 2021, 24, 1100–1104. [Google Scholar] [CrossRef]
- Liang, X.; Yan, Y.; Wu, X.; Li, S.; Hu, A. OCTA Quantitative Assessment of Exercise-Induced Variations and Recovery in Retinal Microvasculature of Healthy Subjects with or without Masks. Microvasc. Res. 2024, 155, 104719. [Google Scholar] [CrossRef]
- Hua, D.; Xu, Y.; Heiduschka, P.; Zhang, W.; Zhang, X.; Zeng, X.; Zhu, X.; He, T.; Zheng, H.; Xiao, X.; et al. Retina Vascular Perfusion Dynamics During Exercise With and Without Face Masks in Healthy Young Adults: An OCT Angiography Study. Transl. Vis. Sci. Technol. 2021, 10, 23. [Google Scholar] [CrossRef]
- Sayin, N.; Kara, N.; Pekel, G.; Altinkaynak, H. Choroidal Thickness Changes after Dynamic Exercise as Measured by Spectral-Domain Optical Coherence Tomography. Indian J. Ophthalmol. 2015, 63, 445–450. [Google Scholar] [CrossRef]
- Alwassia, A.; Adhi, M.; Zhang, J.; Regatieri, C.V.; Al-Quthami, A.; Salem, D.; Fujimoto, J.; Duker, J.S. Exercise-Induced Acute Changes in Systolic Blood Pressure Do Not Alter Choroidal Thickness as Measured by a Portable Spectral-Domain Optical Coherence Tomography Device. Retina 2013, 33, 160–165. [Google Scholar] [CrossRef]
- Taibbi, G.; Cromwell, R.L.; Zanello, S.B.; Yarbough, P.O.; Ploutz-Snyder, R.J.; Godley, B.F.; Vizzeri, G. Ophthalmological Evaluation of Integrated Resistance and Aerobic Training During 70-Day Bed Rest. Aerosp. Med. Hum. Perform. 2017, 88, 633–640. [Google Scholar] [CrossRef]
- Luksch, A.; Polska, E.; Imhof, A.; Schering, J.; Fuchsjäger-Mayrl, G.; Wolzt, M.; Schmetterer, L. Role of NO in Choroidal Blood Flow Regulation during Isometric Exercise in Healthy Humans. Invest. Ophthalmol. Vis. Sci. 2003, 44, 734–739. [Google Scholar] [CrossRef] [PubMed]
- Okuno, T.; Sugiyama, T.; Kohyama, M.; Kojima, S.; Oku, H.; Ikeda, T. Ocular Blood Flow Changes after Dynamic Exercise in Humans. Eye 2006, 20, 796–800. [Google Scholar] [CrossRef]
- Balducci, S.; Sacchetti, M.; Haxhi, J.; Orlando, G.; D’Errico, V.; Fallucca, S.; Menini, S.; Pugliese, G. Physical Exercise as Therapy for Type 2 Diabetes Mellitus. Diabetes Metab. Res. Rev. 2014, 30 (Suppl. S1), 13–23. [Google Scholar] [CrossRef]
- Maessen, M.F.H.; Verbeek, A.L.M.; Bakker, E.A.; Thompson, P.D.; Hopman, M.T.E.; Eijsvogels, T.M.H. Lifelong Exercise Patterns and Cardiovascular Health. Mayo Clin. Proc. 2016, 91, 745–754. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Tong, T.K.; Qiu, W.; Zhang, X.; Zhou, S.; Liu, Y.; He, Y. Comparable Effects of High-Intensity Interval Training and Prolonged Continuous Exercise Training on Abdominal Visceral Fat Reduction in Obese Young Women. J. Diabetes Res. 2017, 2017, 5071740. [Google Scholar] [CrossRef]
- Guthold, R.; Stevens, G.A.; Riley, L.M.; Bull, F.C. Worldwide Trends in Insufficient Physical Activity from 2001 to 2016: A Pooled Analysis of 358 Population-Based Surveys with 1·9 Million Participants. Lancet Glob Health 2018, 6, e1077–e1086. [Google Scholar] [CrossRef]
- Nelis, P.; Schmitz, B.; Klose, A.; Rolfes, F.; Alnawaiseh, M.; Krüger, M.; Eter, N.; Brand, S.M.; Alten, F. Correlation Analysis of Physical Fitness and Retinal Microvasculature by OCT Angiography in Healthy Adults. PLoS ONE 2019, 14, e0225769. [Google Scholar] [CrossRef]
- Karaküçük, Y.; Okudan, N.; Bozkurt, B.; Belviranli, M.; Tobakçal, F. Evaluation of the Effect of High-Intensity Interval Training on Macular Microcirculation via Swept-Source Optical Coherence Tomography Angiography in Young Football Players. Indian J. Ophthalmol. 2021, 69, 2334–2339. [Google Scholar] [CrossRef]
- Schmitz, B.; Nelis, P.; Rolfes, F.; Alnawaiseh, M.; Klose, A.; Krüger, M.; Eter, N.; Brand, S.M.; Alten, F. Effects of High-Intensity Interval Training on Optic Nerve Head and Macular Perfusion Using Optical Coherence Tomography Angiography in Healthy Adults. Atherosclerosis 2018, 274, 8–15. [Google Scholar] [CrossRef]
- Berry, E.C.; Marshall, H.N.; Mullany, S.; Torres, S.D.; Schmidt, J.; Thomson, D.; Knight, L.S.W.; Hollitt, G.L.; Qassim, A.; Ridge, B.; et al. Physical Activity Is Associated With Macular Thickness: A Multi-Cohort Observational Study. Investig. Ophthalmol. Vis. Sci. 2023, 64, 11. [Google Scholar] [CrossRef]
- Lee, S.S.Y.; McVeigh, J.; Straker, L.; Howie, E.K.; Yazar, S.; Haynes, A.; Green, D.J.; Hewitt, A.W.; Mackey, D.A. Physical Activity and Cardiovascular Fitness During Childhood and Adolescence: Association With Retinal Nerve Fibre Layer Thickness in Young Adulthood. J. Glaucoma 2021, 30, 813–819. [Google Scholar] [CrossRef] [PubMed]
- Tun, Y.Z.; Aimmanee, P. A Complete Review of Automatic Detection, Segmentation, and Quantification of Neovascularization in Optical Coherence Tomography Angiography Images. Diagnostics 2023, 13, 3407. [Google Scholar] [CrossRef] [PubMed]
- Bek, T.; Jeppesen, S.K. Reduced Oxygen Extraction in the Retinal Periphery When the Arterial Blood Pressure Is Increased by Isometric Exercise in Normal Persons. Investig. Ophthalmol. Vis. Sci. 2021, 62, 11. [Google Scholar] [CrossRef]
- Jeppesen, P.; Sanye-Hajari, J.; Bek, T. Increased Blood Pressure Induces a Diameter Response of Retinal Arterioles That Increases with Decreasing Arteriolar Diameter. Investig. Ophthalmol. Vis. Sci. 2007, 48, 328–331. [Google Scholar] [CrossRef]
- Skov Jensen, P.; Aalkjaer, C.; Bek, T. Differential Effects of Nitric Oxide and Cyclo-Oxygenase Inhibition on the Diameter of Porcine Retinal Vessels with Different Caliber during Hypoxia Ex Vivo. Exp. Eye Res. 2017, 160, 38–44. [Google Scholar] [CrossRef]
- Wolfensberger, T.J.; Holz, F.G.; Ationu, A.; Carter, N.D.; Bird, A.C. Natriuretic Peptides and Their Receptors in Human Neural Retina and Retinal Pigment Epithelium. Ger. J. Ophthalmol. 1994, 3, 248–252. [Google Scholar] [PubMed]
- García de Lacoba, M.; Fernández-Durango, R.; Triviño, A.; Ramírez, J.M.; Ramírez, A.I.; Salazar, J.J.; Fernández-Cruz, A.; Gutkowska, J. Existence of Atrial Natriuretic Peptide in Choroid, Retina and Ciliary Body in Rabbits. Rev. Esp. Fisiol. 1991, 47, 91–96. [Google Scholar] [PubMed]
- Palm, D.E.; Keil, L.C.; Sassani, J.W.; Severs, W.B. Immunoreactive Atrial Natriuretic Peptide in the Retina of Rats and Rabbits. Brain Res. 1989, 504, 142–144. [Google Scholar] [CrossRef]
- Rollin, R.; Madeiro, A.; Roldán-Pallarés, M.; Fernández-Cruz, A.; Fernández-Durango, R. Natriuretic Peptide System in the Human Retina. Mol. Vis. 2004, 10, 15–22. [Google Scholar] [PubMed]
- Menna, F.; De Luca, L.; Lupo, S.; Meduri, A.; Vingolo, E.M. Variations in Intraocular Pressure Among Athletes Across Different Sports Disciplines. J. Clin. Med. 2025, 14, 3211. [Google Scholar] [CrossRef]
- Salazar, J.J.; Ramírez, A.I.; De Hoz, R.; Salobrar-Garcia, E.; Rojas, P.; Fernández-Albarral, J.A.; López-Cuenca, I.; Rojas, B.; Triviño, A.; Ramírez, J.M. Anatomy of the Human Optic Nerve: Structure and Function. Opt. Nerve 2018, 203, 22–30. [Google Scholar]
- Lauermann, J.L.; Eter, N.; Alten, F. Optical Coherence Tomography Angiography Offers New Insights into Choriocapillaris Perfusion. Ophthalmologica 2018, 239, 74–84. [Google Scholar] [CrossRef]
- Poukens, V.; Glasgow, B.; Demer, J.L. Nonvascular Contractile Cells in Sclera and Choroid of Humans and Monkeys. Investig. Ophthalmol. Vis. Sci. 1998, 39, 1765–1774. [Google Scholar]
- Hirata, M.; Tsujikawa, A.; Matsumoto, A.; Hangai, M.; Ooto, S.; Yamashiro, K.; Akiba, M.; Yoshimura, N. Macular Choroidal Thickness and Volume in Normal Subjects Measured by Swept-Source Optical Coherence Tomography. Investig. Ophthalmol. Vis. Sci. 2011, 52, 4971–4978. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Cano, A.; Orduna, E.; Segura, F.; Lopez, C.; Cuenca, N.; Abecia, E.; Pinilla, I. Choroidal Thickness and Volume in Healthy Young White Adults and the Relationships between Them and Axial Length, Ammetropy and Sex. Am. J. Ophthalmol. 2014, 158, 574–583.e1. [Google Scholar] [CrossRef] [PubMed]
- Ikuno, Y.; Kawaguchi, K.; Nouchi, T.; Yasuno, Y. Choroidal Thickness in Healthy Japanese Subjects. Investig. Ophthalmol. Vis. Sci. 2010, 51, 2173–2176. [Google Scholar] [CrossRef]
- Kinoshita, T.; Mori, J.; Okuda, N.; Imaizumi, H.; Iwasaki, M.; Shimizu, M.; Miyamoto, H.; Akaiwa, K.; Semba, K.; Sonoda, S.; et al. Effects of Exercise on the Structure and Circulation of Choroid in Normal Eyes. PLoS ONE 2016, 11, e0168336. [Google Scholar] [CrossRef]
- Lacolley, P.; Regnault, V.; Segers, P.; Laurent, S. Vascular Smooth Muscle Cells and Arterial Stiffening: Relevance in Development, Aging, and Disease. Physiol. Rev. 2017, 97, 1555–1617. [Google Scholar] [CrossRef]
- Triviño, A.; de Hoz, R.; Rojas, B.; Salazar, J.J.; Ramirez, A.I.; Ramirez, J.M. NPY and TH Innervation in Human Choroidal Whole-Mounts. Histol. Histopathol. 2005, 20, 393–402. [Google Scholar] [CrossRef]
- Jablonski, M.M.; Iannaccone, A.; Reynolds, D.H.; Gallaher, P.; Allen, S.; Wang, X.F.; Reiner, A. Age-Related Decline in VIP-Positive Parasympathetic Nerve Fibers in the Human Submacular Choroid. Investig. Ophthalmol. Vis. Sci. 2007, 48, 479–485. [Google Scholar] [CrossRef]
- Christensen, N.J.; Galbo, H. Sympathetic Nervous Activity during Exercise. Annu. Rev. Physiol. 1983, 45, 139–153. [Google Scholar] [CrossRef]
- Kur, J.; Newman, E.A.; Chan-Ling, T. Cellular and Physiological Mechanisms Underlying Blood Flow Regulation in the Retina and Choroid in Health and Disease. Prog. Retin. Eye Res. 2012, 31, 377–406. [Google Scholar] [CrossRef]
- MacDonald, J.R. Potential Causes, Mechanisms, and Implications of Post Exercise Hypotension. J. Hum. Hypertens. 2002, 16, 225–236. [Google Scholar] [CrossRef] [PubMed]
- Jones, H.; Atkinson, G.; Leary, A.; George, K.; Murphy, M.; Waterhouse, J. Reactivity of Ambulatory Blood Pressure to Physical Activity Varies with Time of Day. Hypertension 2006, 47, 778–784. [Google Scholar] [CrossRef] [PubMed]
- Pressler, A.; Hanssen, H.; Dimitrova, M.; Krumm, M.; Halle, M.; Scherr, J. Acute and Chronic Effects of Marathon Running on the Retinal Microcirculation. Atherosclerosis 2011, 219, 864–868. [Google Scholar] [CrossRef] [PubMed]
Do you wear glasses? Yes/No |
Do you know if you have myopia, hypermetropy or astigmatism? |
Do you know how many diopters? |
Do you have any ocular pathology? Yes/No |
Do you have any type of ocular treatment? Yes/No |
Do you have any types of ocular surgery performed? Yes/No |
Being free of ocular disease or retinal pathology |
No evidence or suspicion of glaucoma |
Without any congenital malformations |
Best corrected visual acuity greater than 0.5 |
Spherocylindrical refractive error less than ±5D |
Intraocular pressure less than 20 mmHg |
Sex | 18 Women/12 Men | ||
---|---|---|---|
Age (years) | 58.00 (55.00–63.50) | ||
Weight (kg) | 64.00 (54.40–73.70) | ||
Height (cm) | 159.00 (154.80–168.20) | ||
BMI | 24.10 (22.60–26.50) | ||
Before the stress test | After the stress test | p-value | |
Median (IR) | Median (IR) | ||
Heart rate (bpm) | 64.00 (60.00–68.00) | 142.00 (133.00–148.00) | <0.0001 **** |
SBP (mmHg) | 130.00 (125.00–135.00) | 142.00 (133.00–148.00) | 0.0174 * |
DBP (mmHg) | 80.00 (80.00–90.00) | 85.00 (75.00–90.00) | 0.6177 |
Absolute VO2max (L/min) | 1.250 | ||
Relative VO2max (mL/kg/min) | 21.06 |
Before Stress Test | After Stress Test | p-Value | ||
---|---|---|---|---|
Median (RI) | Median (RI) | |||
FAZ | FAZ SVP | 0.39 (0.263–0.480) | 0.375 (0.255–0.425) | 0.230 |
FAZ DVP | 0.20 (0.090–0.295) | 0.195 (0.090–0.298) | 0.671 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Cuenca, I.; de Hoz, R.; Elvira-Hurtado, L.; Matamoros, J.A.; Sanchez-Puebla, L.; Fernandez-Albarral, J.A.; Ramírez, A.I.; Salazar, J.J.; Ramirez, J.M.; Miguel-Tobal, F.; et al. Moderate Physical Activity Generates Changes in Retina and Choroid in Low-Fit Adults. Appl. Sci. 2025, 15, 10458. https://doi.org/10.3390/app151910458
López-Cuenca I, de Hoz R, Elvira-Hurtado L, Matamoros JA, Sanchez-Puebla L, Fernandez-Albarral JA, Ramírez AI, Salazar JJ, Ramirez JM, Miguel-Tobal F, et al. Moderate Physical Activity Generates Changes in Retina and Choroid in Low-Fit Adults. Applied Sciences. 2025; 15(19):10458. https://doi.org/10.3390/app151910458
Chicago/Turabian StyleLópez-Cuenca, Inés, Rosa de Hoz, Lorena Elvira-Hurtado, José A. Matamoros, Lidia Sanchez-Puebla, José A. Fernandez-Albarral, Ana I. Ramírez, Juan J. Salazar, José M. Ramirez, Francisco Miguel-Tobal, and et al. 2025. "Moderate Physical Activity Generates Changes in Retina and Choroid in Low-Fit Adults" Applied Sciences 15, no. 19: 10458. https://doi.org/10.3390/app151910458
APA StyleLópez-Cuenca, I., de Hoz, R., Elvira-Hurtado, L., Matamoros, J. A., Sanchez-Puebla, L., Fernandez-Albarral, J. A., Ramírez, A. I., Salazar, J. J., Ramirez, J. M., Miguel-Tobal, F., & Salobrar-Garcia, E. (2025). Moderate Physical Activity Generates Changes in Retina and Choroid in Low-Fit Adults. Applied Sciences, 15(19), 10458. https://doi.org/10.3390/app151910458