Empirical Rules for Oscillation and Harmonic Approximation of Fractional Kelvin–Voigt Oscillators
Abstract
Featured Application
Abstract
1. Introduction
2. Problem Formulation and Numerical Methodology
2.1. Analytical Solutions
2.2. Asymptotic Behavior of the FKV Oscillator
2.3. Computational Approach
Algorithm 1. Iterative computation of components and and classification flag. | |
line | pseudocode |
1 | Input: ; Output: arrays x1RL, x2RL, flag isVibrating |
2 | , , , |
3 | (x1prev,x2prev) getComponents (, T/n, T) |
4 | repeat |
5 | , (x1curr,x2curr) getComponents (, T/n, T) |
6 | |
7 | x1prev x1curr, x2prev x2curr |
8 | until |
9 | z1 getZeros(x1curr), z2 getZeros(x2curr) |
10 | if length(z1) = 0 or length(z2) ≤ 1 then |
11 | isVibrating0, x1RLx1curr, x2RL x2curr |
12 | else |
13 | isVibrating 1, 2 times the average of the mean spacing between zero crossings in z1 and in z2, |
14 | (x1RL,x2RL) getComponents (, T/n, T) |
15 | end if |
2.4. Aims and Scope of the Study
- Formulate a criterion for classifying an FKV oscillator as oscillating or non-oscillating based on its parameters To this end, we seek a surface that separates the two types of behavior: oscillations occur when , and no oscillations are present when For comparison, in the classical harmonic oscillator, the analogous transition is defined by the condition , where is the damping ratio.
- Derive simple formulas for estimating the parameters and of the classical harmonic oscillator that best approximates a given FKV oscillator. These expressions should provide a direct way to match the behavior of the FKV model using standard oscillator parameters.
- Identify the region in the parameter space where the FKV oscillator can be accurately approximated by a classical harmonic oscillator. This will help determine when the use of a simpler classical model is justified.
3. Results
3.1. Validation of the Numerical Algorithm
3.2. Oscillation Classification Criterion
- If , then the FKV oscillator with parameters is vibrating.
- If an oscillator with is vibrating, then so is the oscillator with for .
- If an oscillator with is vibrating, then so is the oscillator with for .
- If an oscillator with is vibrating, then so is the oscillator with for .
- If , then the oscillator with is vibrating.
- (a)
- identify values and (, ) such that FKV oscillator with parameters vibrates, while FKV oscillator with does not.
- (b)
- while : compute . If the oscillator with vibrates set ; otherwise, set .
3.3. Empirical Formulas for Equivalent Harmonic Oscillator Parameters
- The maximum relative difference for relation (21) is 0.11, achieved for the FKV oscillator with parameters . The average relative difference is 0.006, with the coefficient of determination
- The maximum relative difference for relation (23) is 0.16, achieved for . The average relative difference is 0.018, with .
4. Discussion
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
FKV | Fractional Kelvin–Voigt |
HO | Harmonic oscillator |
References
- Zubair, M. Fractional Diffusion Equations and Anomalous Diffusion. Contemp. Phys. 2018, 59, 406–407. [Google Scholar] [CrossRef]
- Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models; World Scientific: Singapore, 2010; ISBN 9781848163300. [Google Scholar]
- Povstenko, Y.; Kyrylych, T.; Woźna-Szcześniak, B.; Yatsko, A. Fractional Heat Conduction with Heat Absorption in a Solid with a Spherical Cavity under Time-Harmonic Heat Flux. Appl. Sci. 2024, 14, 1627. [Google Scholar] [CrossRef]
- Sun, H.G.; Zhang, Y.; Baleanu, D.; Chen, W.; Chen, Y.Q. A New Collection of Real World Applications of Fractional Calculus in Science and Engineering. Commun. Nonlinear Sci. Numer. Simul. 2018, 64, 213–231. [Google Scholar] [CrossRef]
- Shah, P.; Agashe, S. Review of Fractional PID Controller. Mechatronics 2016, 38, 29–41. [Google Scholar] [CrossRef]
- Gritsenko, D.; Paoli, R. Theoretical Analysis of Fractional Viscoelastic Flow in Circular Pipes: General Solutions. Appl. Sci. 2020, 10, 9093. [Google Scholar] [CrossRef]
- Bagley, R.L.; Torvik, P.J. A Theoretical Basis for the Application of Fractional Calculus to Viscoelasticity. J. Rheol. 1983, 27, 201–210. [Google Scholar] [CrossRef]
- Permoon, M.R.; Haddadpour, H.; Javadi, M. Nonlinear Vibration of Fractional Viscoelastic Plate: Primary, Subharmonic, and Superharmonic Response. Int. J. Non-Linear Mech. 2018, 99, 154–164. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Z.; Wang, X.; Yu, J. The Fractional Kelvin-Voigt Model for Circumferential Guided Waves in a Viscoelastic FGM Hollow Cylinder. Appl. Math. Model. 2021, 89, 299–313. [Google Scholar] [CrossRef]
- Freundlich, J. Transient Vibrations of a Fractional Zener Viscoelastic Cantilever Beam with a Tip Mass. Meccanica 2021, 56, 1971–1988. [Google Scholar] [CrossRef]
- Abouelregal, A.E.; Salem, M.G. The Thermal Vibration of Small-Sized Rotating Fractional Viscoelastic Beams Positioned on a Flexible Foundation in the Light of the Moore–Gibson–Thompson Model. J. Ocean Eng. Sci. 2022; in press. [Google Scholar] [CrossRef]
- Paunović, S.; Cajić, M.; Karličić, D.; Mijalković, M. A Novel Approach for Vibration Analysis of Fractional Viscoelastic Beams with Attached Masses and Base Excitation. J. Sound Vib. 2019, 463, 114955. [Google Scholar] [CrossRef]
- Vazirzadeh, M.; Rouzegar, J.; Heydari, M.H. A Refined Fractional Viscoelastic Model for Vibration Analysis of Moderately-Thick Plates. Mech. Res. Commun. 2024, 135, 104224. [Google Scholar] [CrossRef]
- Permoon, M.R.; Farsadi, T. Free Vibration of Three-Layer Sandwich Plate with Viscoelastic Core Modelled with Fractional Theory. Mech. Res. Commun. 2021, 116, 103766. [Google Scholar] [CrossRef]
- Qiu, M.; Lei, D.; Ou, Z. Nonlinear Vibration Analysis of Fractional Viscoelastic Nanobeam. J. Vib. Eng. Technol. 2023, 11, 4015–4038. [Google Scholar] [CrossRef]
- Rossikhin, Y.A.; Shitikova, M.V. Application of Fractional Derivatives to the Analysis of Damped Vibrations of Viscoelastic Single Mass Systems. Acta Mech. 1997, 120, 109–125. [Google Scholar] [CrossRef]
- Rossikhin, Y.A.; Shitikova, M.V. Application of Fractional Calculus for Dynamic Problems of Solid Mechanics: Novel Trends and Recent Results. Appl. Mech. Rev. 2010, 63, 010801. [Google Scholar] [CrossRef]
- Łabędzki, P. Fractional Kelvin–Voigt Model for Beam Vibrations: Numerical Simulations and Approximation Using a Classical Model. Electronics 2025, 14, 1918. [Google Scholar] [CrossRef]
- Łabędzki, P.; Pawlikowski, R. On the Equivalence between Fractional and Classical Oscillators. Commun. Nonlinear Sci. Numer. Simul. 2023, 116, 106871. [Google Scholar] [CrossRef]
- Chen, D.-X. Oscillation Criteria of Fractional Differential Equations. Adv. Differ. Equ. 2012, 2012, 33. [Google Scholar] [CrossRef]
- Abdalla, B.; Abdeljawad, T. Oscillation Criteria for Kernel Function Dependent Fractional Dynamic Equations. Discret. Contin. Dyn. Syst.-S 2021, 14, 3337. [Google Scholar] [CrossRef]
- Liu, C.; Wang, J.; Zhang, W.; Yang, X.-D.; Guo, X.; Liu, T.; Su, X. Synchronization of Broadband Energy Harvesting and Vibration Mitigation via 1:2 Internal Resonance. Int. J. Mech. Sci. 2025, 301, 110503. [Google Scholar] [CrossRef]
- Liu, C.; Zhao, R.; Yu, K.; Lee, H.P.; Liao, B. A Quasi-Zero-Stiffness Device Capable of Vibration Isolation and Energy Harvesting Using Piezoelectric Buckled Beams. Energy 2021, 233, 121146. [Google Scholar] [CrossRef]
- Shabani, M.; Jahani, K.; Di Paola, M.; Sadeghi, M.H. Frequency Domain Identification of the Fractional Kelvin-Voigt’s Parameters for Viscoelastic Materials. Mech. Mater. 2019, 137, 103099. [Google Scholar] [CrossRef]
- Yuan, J.; Zhang, Y.; Liu, J.; Shi, B.; Gai, M.; Yang, S. Mechanical Energy and Equivalent Differential Equations of Motion for Single-Degree-of-Freedom Fractional Oscillators. J. Sound Vib. 2017, 397, 192–203. [Google Scholar] [CrossRef]
- Ding, W.; Hollkamp, J.P.; Patnaik, S.; Semperlotti, F. On the Fractional Homogenization of One-Dimensional Elastic Metamaterials with Viscoelastic Foundation. Arch. Appl. Mech. 2022, 93, 261–286. [Google Scholar] [CrossRef]
- Kilbas, A.; Srivastava, H.; Trujillo, J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006; Volume 129, ISBN 978-0-444-51832-3. [Google Scholar]
- Łabędzki, P. FKV Oscillator—Database. Available online: https://github.com/pawlab1978/FKV_oscillator (accessed on 1 August 2025).
- Podlubny, I. Fractional Differential Equations, Volume 198: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their; Elsevier: Amsterdam, The Netherlands, 1998; Volume 198, ISBN 978-0125588409. [Google Scholar]
- Inman, D.J. Engineering Vibration, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1994. [Google Scholar]
- Dinov, I.D. Data Science and Predictive Analytics: Biomedical and Health Applications Using R, 2nd ed.; Springer: Cham, Switzerland, 2023. [Google Scholar]
Scenario | ||||||
---|---|---|---|---|---|---|
0.1 | (I) | 0.66 | 0.6 | |||
(II) | 0.1 | 0.01 | ||||
0.09 | (I) | 0.12 | 0.09 | |||
(II) | 0.14 | 0.16 | ||||
0.095 | (I) | 0.11 | 0.07 | |||
(II) | 0.14 | 0.09 | ||||
0.03 | (I) | 0.077 | 0.073 | |||
(II) | 0.04 | 0.04 | ||||
0.08 | (I) | 0.099 | 0.038 | |||
(II) | 0.12 | 0.05 | ||||
0.077 | (I) | 0.13 | 0.11 | |||
(II) | 0.09 | 0.06 | ||||
0.07 | (I) | 0.25 | 0.31 | |||
(II) | 0.038 | 0.09 | ||||
0.097 | (I) | 0.12 | 0.06 | |||
(II) | 0.57 | 0.64 | ||||
0.0008 | (I) | 0.006 | 0.006 | |||
(II) | 0.006 | 0.006 | ||||
0.098 | (I) | 0.12 | 0.06 | |||
(II) | 0.23 | 0.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łabędzki, P. Empirical Rules for Oscillation and Harmonic Approximation of Fractional Kelvin–Voigt Oscillators. Appl. Sci. 2025, 15, 10385. https://doi.org/10.3390/app151910385
Łabędzki P. Empirical Rules for Oscillation and Harmonic Approximation of Fractional Kelvin–Voigt Oscillators. Applied Sciences. 2025; 15(19):10385. https://doi.org/10.3390/app151910385
Chicago/Turabian StyleŁabędzki, Paweł. 2025. "Empirical Rules for Oscillation and Harmonic Approximation of Fractional Kelvin–Voigt Oscillators" Applied Sciences 15, no. 19: 10385. https://doi.org/10.3390/app151910385
APA StyleŁabędzki, P. (2025). Empirical Rules for Oscillation and Harmonic Approximation of Fractional Kelvin–Voigt Oscillators. Applied Sciences, 15(19), 10385. https://doi.org/10.3390/app151910385