On the Out-of-Plane Strength of Masonry Infills Encased in RC Frames
Abstract
Featured Application
Abstract
1. Introduction
- (a)
- The effect of prior IP loading on the OOP capacity (IP–OOP interaction);
- (b)
- The effect of gaps between the infills and RC frames (gapped infills).
2. Out-of-Plane (OOP) Capacity of Masonry Infills
2.1. General Aspects of OOP Behavior
2.2. Design Models for OOP Capacity
2.2.1. Infills Without Prior IP Damage
2.2.2. Infills with Prior IP Damage
References | Equations | |
---|---|---|
Di Domenico et al. [53] | (7) | |
Ricci et al. [54] | (8) | |
Ricci et al. [54] | (9) | |
Furtado et al. [43] | (10) |
3. Experimental Database
4. Analytical Predictions of Out-of-Plane Strength of Infills
4.1. Infills Without Prior IP Loading
4.2. Strength Reduction Due to Prior IP Loading
4.2.1. R-Factor Evaluation
4.2.2. Prediction of IP–OOP Strength
4.3. Infills with Gaps
- For clay brick infills (hw/tw = 15–23), a top gap (2 to 40 mm) reduced the qexp by 16–20%, while side gaps produced even larger reductions.
5. Conclusions
- The models of Dawe and Seah [28] and Ricci et al. [29], broadly recognized for their good predictions, fail to accurately describe the effect of the individual infill properties on the OOP strength of infills without prior IP damage. The model of Ricci et al. results in better overall predictions but omits the infill length and is occasionally un-conservative, without apparent reason. The Dawe and Seah model appears to be over-conservative in the presence of vulnerability factors, namely, a high slenderness ratio and low infill strength. A more comprehensive model for the OOP strength is deemed necessary, possibly including two equations, i.e., for infill with/without increased vulnerability OOP, similar to the proposed R-factor.
- The proposed R-factor (ratio of IP–OOP/OOP strength of infills), accounts for vulnerability characteristics of the OOP behavior of infills, i.e., a high slenderness ratio and low infill strength, within ranges defined from experimental results. The new design equations resulted in the improved IP–OOP strength prediction of the infills in the database, in comparison to other existing models.
- The analytical IP–OOP strength should be calculated as a product of the R-factor with the OOP strength, qu, of an infill without prior IP loading, both obtained from design models. For accurate predictions, design formulas of both the R-factor and qu should be reliable over a broad database without exclusion of any specimens, rather than matching different R-factors with different qu values in search of good statistical indices for the product R × qu.
- Gapped infills are significantly weaker than fully bounded infills, particularly in the presence of a gap between the top and the RC frame. Reductions in the experimental capacity ranged from 16% to over 70%, depending on the unit type, slenderness, and gap location. The Dawe and Seah model resulted in conservative predictions. It appears that the type of units significantly affects the OOP behavior of gapped infills. More experimental work is required to further explore this issue.
- In order to further study the important issue of the OOP behavior of infills, further experimental studies are required, which should also focus on other types of infills, e.g., double-leaf infills and infills with concrete-block units. Furthermore, dynamic tests, especially full-scale tests, are required to more reliably reproduce the actual behavior of infills in major earthquakes.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
RC | Reinforced concrete |
OOP | Out-of-plane |
IP | In-plane |
IP–OOP | In-plane and subsequent out-of-plane loading |
IDR | In-plane drift |
References
- Alcocer, S.; Behrouzi, A.; Brena, S.; Elwood, K.J.; Irfanoglu, A.; Kreger, M.; Lequesne, R.; Mosqueda, G.; Pujol, S.; Puranam, A.; et al. Observations about the seismic response of RC buildings in Mexico City. Earth. Spectra 2020, 36 (Suppl. S2), 154–174. [Google Scholar] [CrossRef]
- Messaoudi, A.; Chebili, R.; Mohamed, H.; Rodrigues, H. Influence of Masonry Infill Wall Position and Openings in the Seismic Response of Reinforced Concrete Frames. Appl. Sci. 2022, 12, 9477. [Google Scholar] [CrossRef]
- Moretti, M.L.; Tassios, T.P. Behavior and ductility of reinforced concrete short columns using global truss model. ACI Struct. J. 2006, 103, 319–327. [Google Scholar] [CrossRef]
- Moretti, M.L.; Tassios, T.P. Behaviour of short columns subjected to cyclic shear displacements: Experimental results. Eng. Struct. 2007, 29, 2018–2029. [Google Scholar] [CrossRef]
- Saatcioglu, M.; Palermo, D.; Ghobarah, A.; Mitchell, D.; Simpson, R.; Adebar, P.; Tremblay, R.; Ventura, C.; Hong, H. Performance of reinforced concrete buildings during the 27 February 2010 Maule (Chile) earthquake. Can. J. Civ. Eng. 2013, 40, 693–710. [Google Scholar] [CrossRef]
- Scawthorn, C. (Ed.) The Marmara, Turkey Earthquake of August 17, 1999: Reconnaissance Report; Technical Report MCEER-00-0001; Multidisciplinary Center for Earthquake Engineering Research, University at Buffalo, State University of New York: Buffalo, NY, USA, 2000. [Google Scholar]
- Sezen, H.; Whittaker, A.S.; Elwood, K.J.; Mosalam, K.M. Performance of reinforced concrete buildings during the August 17, 1999 Kocaeli, Turkey earthquake, and seismic design and construction practise in Turkey. Eng. Struct. 2003, 25, 103–114. [Google Scholar] [CrossRef]
- Ning, N.; Yu, D.; Zhang, C.; Jiang, S. Pushover Analysis on Infill Effects on the Failure Pattern of Reinforced Concrete Frames. Appl. Sci. 2017, 7, 428. [Google Scholar] [CrossRef]
- Moretti, M.L.; Mousafiropoulos, G.; Fotakopoulos, T.; Makarios, T.K. Influence of masonry infills in torsional irregular RC buildings. Part 2: Analysis and results according to the Eurocodes. In Proceedings of the 2013 World Congress on Advances in Structural Engineering and Mechanics, Jeju, Republic of Korea, 8–12 September 2013. [Google Scholar]
- Ozturk, M.; Arslan, M.H.; Korkmaz, H.H. Effect on RC buildings of 6 February 2023 Turkey earthquake doublets and new doctrines for seismic design. Eng. Fail. Anal. 2023, 153, 107521. [Google Scholar] [CrossRef]
- Agnihotri, P.; Singhal, V.; Rai, D.C. Effect of in-plane damage on out-of-plane strength of unreinforced masonry walls. Eng. Struct. 2013, 57, 1–11. [Google Scholar] [CrossRef]
- Akhoundi, F.; Vasconcelos, G.; Lourenco, P.; Palha, C.; Silva, L. Experimental out-of-plane behavior of traditional brick masonry infill walls. In Proceedings of the 1st Iberic Conference on Theoretical and Experimental Mechanics and Materials/11th National Congress on Experimental Mechanics, Porto, Portugal, 4–7 November 2018. [Google Scholar]
- Butenweg, C.; Marinković, M.; Salatić, R. Experimental results of reinforced concrete frames with masonry infills under combined quasi-static in-plane and out-of-plane seismic loading. Bull. Earthq. Eng. 2019, 17, 3397–3422. [Google Scholar] [CrossRef]
- Donà, M.; Minotto, M.; Verlato, N.; Da Porto, F. A new macro-model to analyse the combined in-plane/out-of-plane behaviour of unreinforced and strengthened infill walls. Eng. Struct. 2022, 250, 113487. [Google Scholar] [CrossRef]
- Mazza, F.; Donnici, A. In plane-out of plane single and mutual interaction of masonry infills in the nonlinear seismic analysis of RC framed structures. Eng. Struct. 2022, 257, 113487. [Google Scholar] [CrossRef]
- Tu, Y.H.; Chuang, T.H.; Liu, P.M.; Yang, Y.S. Out-of-plane shaking table tests on unreinforced masonry panels in RC frames. Eng. Struct. 2010, 32, 3925–3935. [Google Scholar] [CrossRef]
- Arêde, A.; Furtado, A.; Melo, J.; Rodrigues, H.; Varum, H.; Pinto, N. Challenges and main features on quasi-static cyclic out-of-plane tests of full-scale infill masonry walls. In Proceedings of the 7th International Conference on Advances in Experimental Structural Engineering, Pavia, Italy, 6–8 September 2017. [Google Scholar]
- Xie, X.; Guo, Z.-X.; Basha, S.H. Out-of-plane behavior of clay brick masonry infills contained within RC frames using 3D-Digital image correlation technique. Constr. Build. Mater. 2023, 376, 131061. [Google Scholar] [CrossRef]
- Dazio, A. The effect of the boundary conditions on the out-of-plane behavior of unreinforced masonry walls. In Proceedings of the14th World Conference on Earthquake Engineering, Beijing, China, 12–17 October 2008. [Google Scholar]
- Rabinovitch, O.; Madah, H. Finite element modeling and shake-table testing of unidirectional infill masonry walls under out-of-plane dynamic loads. Eng. Struct. 2011, 33, 2683–2696. [Google Scholar] [CrossRef]
- De Angelis, A.; Pecce, M.R. Out-of-plane structural identification of a masonry infill wall inside beam-column RC frames. Eng. Struct. 2018, 173, 546–558. [Google Scholar] [CrossRef]
- Liberatore, L.; AlShawa, O. On the application of the yield-line method to masonry infills subjected to combined in-plane and out-of-plane loads. Structures 2021, 32, 1287–1301. [Google Scholar] [CrossRef]
- Al-Ahmar, R.; Kousa, M.A.A.A.; Wardeh, G. Some of recommendations and learned lessons from buildings’ performance during the recent Turkey-Syria earthquake. J. Univ. Duhok 2023, 26, 264–276. [Google Scholar] [CrossRef]
- Garini, E.; Gazetas, G.; Giarlelis, C.; Marinos, V.; Moretti, M.; Palieraki, V.; Pitilakis, D.; Stefanidou, S.; Thanopoulos, P.; Tsiatas, G.; et al. (Eds.) The February 6th, 2023, Kahranmanmaras Earthquake Sequence in Turkiye; Technical Report; Hellenic Association for Earthquake Engineering, National Technical University of Athens, Technical Chamber of Greece: Athens, Greece, 2024; pp. 83–160. Available online: https://www.eltam.org/images/nltr/newsletters/2024/thefebruary6th2023kahranmanmarasearthquakesequenceinturkiyehaee_ntua_tcg.pdf (accessed on 11 April 2024).
- Barbosa, A.R.; Fahnestock, L.A.; Fick, D.R.; Gautam, D.; Soti, R.; Wood, R.; Moaveni, B.; Stavridis, A.; Olsen, M.J.; Rodrigues, H. Performance of Medium-to-High Rise Reinforced Concrete Frame Buildings with Masonry Infill in the 2015 Gorkha, Nepal, Earthquake. Earth. Spectra 2017, 33 (Suppl. S1), 197–218. [Google Scholar] [CrossRef]
- Xie, X.; Qu, Z.; Fu, H.; Zhang, L. Effect of prior in-plane damage on the out-of-plane behavior of masonry infill walls. Eng. Struct. 2021, 226, 111380. [Google Scholar] [CrossRef]
- Chen, Z.; Zhou, Y.; Zhong, G. Investigation on the influence of previous in-plane loading on the out-of-plane behavior of the innovative damped masonry infill wall. Eng. Struct. 2024, 308, 118029. [Google Scholar] [CrossRef]
- Dawe, J.L.; Seah, C.K. Out-of-plane resistance of concrete masonry infilled panels. Can. J. Civ. Eng. 1989, 16, 854–864. [Google Scholar] [CrossRef]
- Ricci, P.; Di Domenico, M.; Verderame, G.M. Empirical based out-of-plane URM infill wall model accounting for the interaction with in-plane demand. Earthq. Eng. Struct. Dyn. 2018, 47, 802–827. [Google Scholar] [CrossRef]
- Pasca, M.; Liberatore, L.; Masiani, R. Reliability of analytical models for the prediction of out-of-plane capacity of masonry infills. Struct. Eng. Mech. 2017, 64, 765–781. [Google Scholar] [CrossRef]
- Drysdale, R.G.; Essawy, A.S. Out-of-Plane Bending of Concrete Block Walls. J. Struct. Eng. 1988, 114, 121–133. [Google Scholar] [CrossRef]
- Gabrielsen, B.; Wilton, C.; Kaplan, K. Response of arching walls and debris from interior walls caused by blast loading. In Final Report No. URS 7030-23; URS Research Company: San Francisco, CA, USA, 1975. [Google Scholar]
- Paulay, T.; Priestley, M.J.N. (Eds.) Seismic Design of Reinforced Concrete and Masonry Buildings; John Wiley & Sons, Inc.: New York, NY, USA, 1992. [Google Scholar]
- Moghaddam, H.; Goudarzi, N. Transverse resistance of masonry infills. ACI Struct. J. 2010, 107, 461–467. [Google Scholar] [CrossRef]
- Leite, J.; Lourenço, P.B.; Mendes, N. Design Proposal for Masonry Infill Walls Subject to Seismic Actions. Appl. Sci. 2022, 12, 503. [Google Scholar] [CrossRef]
- Manfredi, V.; Masi, A. Combining in-plane and out-of-plane behavior of masonry infills in the seismic analysis of RC buildings. Earthq. Struct. 2014, 6, 515–537. [Google Scholar] [CrossRef]
- Anić, F.; Penava, D.; Abrahamczyk, L.; Sarhosis, V. A review of experimental and analytical studies on the out-of-plane behaviour of masonry infilled frames. Bull. Earthq. Eng. 2020, 18, 2191–2246. [Google Scholar] [CrossRef]
- Pradhan, B.; Zizzo, M.; Sarhosis, V.; Cavaleri, L. Out-of-plane behavior of unreinforced masonry infill walls: Review of the experimental studies and analysis of the influencing parameters. Structures 2021, 33, 4387–4406. [Google Scholar] [CrossRef]
- Nasiri, E.; Liu, Y. The out-of-plane behaviour of concrete masonry infills bounded by reinforced concrete frames. Eng. Struct. 2019, 184, 406–420. [Google Scholar] [CrossRef]
- Moreno-Herrera, J.; Varela-Rivera, J.; Fernandez-Baqueiro, L. Out-of-plane design procedure for confined masonry walls. J. Struct. Eng. (ASCE) 2016, 142, 04015126. [Google Scholar] [CrossRef]
- Liberatore, L.; AlShawa, O.; Marson, C.; Pasca, M.; Sorrentino, L. Out-of-plane capacity equations for masonry infill walls accounting for openings and boundary conditions. Eng. Struct. 2020, 207, 110198. [Google Scholar] [CrossRef]
- Asteris, P.G.; Cavaleri, L.; Di Trapani, F.; Tsaris, A.K. Numerical modelling of out-of-plane response of infilled frames: State of the art and future challenges for the equivalent strut macromodels. Eng. Struct. 2017, 132, 110–122. [Google Scholar] [CrossRef]
- Furtado, A.; Rodrigues, H.; Arêde, A.; Varum, H. Out-of-plane behavior of masonry infilled RC frames based on the experimental tests available: A systematic review. Constr. Build. Mater. 2018, 168, 831–848. [Google Scholar] [CrossRef]
- Di Domenico, M.; Ricci, P.; Verderame, G.M. Experimental assessment of the out-of-plane strength of URM infill walls with different slenderness and boundary conditions. Bull. Earthq. Eng. 2019, 17, 3959–3993. [Google Scholar] [CrossRef]
- Furtado, A.; Rodrigues, H.; Arêde, A.; Varum, H. Experimental evaluation of out-of-plane capacity of masonry infill walls. Eng. Struct. 2016, 111, 48–63. [Google Scholar] [CrossRef]
- McDowell, E.L.; McKee, K.E.; Sevin, E. Arching action theory of masonry walls. J. Struct. Div. (ASCE) 1956, 82, 15–18. [Google Scholar] [CrossRef]
- Pradhan, B.; Zizzo, M.; Di Trapani, F.; Cavaleri, L. Out-of-plane behavior of URM infill: Accuracy of available capacity models. J. Struct. Eng. 2022, 148, 1–18. [Google Scholar] [CrossRef]
- The Seismic Assessment of Existing Buildings. Part C: Detailed Seismic Assessment. In Technical Guidelines for Engineering Assessments; New Zealand Society for Earthquake Engineering (NZSEE), Structural Engineering Society New Zealand Inc. (SESOC), New Zealand Geotechnical Society Inc., Ministry of Business, Innovation and Employment, Earthquake Commission; Project Technical Group Chair: Rob Jury, Project Management: Deane McNully, Editorial support: Ann Cunninghame and Sandy Cole; Wellington, New Zealand, 2017. [Google Scholar]
- Angel, R.; Abrams, D.; Shapiro, D.; Uzarski, J.; Webster, M. Behavior of Reinforced Concrete Frames with Masonry Infills; Report No. SRS 589; University of Illinois at Urbana-Champaign: Champaign, IL, USA, 1994.
- Flanagan, R.D.; Bennett, R.M. Bidirectional behavior of structural clay tile infilled frames. J. Struct. Eng. 1999, 125, 236–244. [Google Scholar] [CrossRef]
- Calvi, G.M.; Bolognini, D. Seismic response of reinforced concrete frames infilled with weakly reinforced masonry panels, J. Earthq. Eng. 2001, 5, 153–185. [Google Scholar] [CrossRef]
- Hak, S.; Morandi, P.; Magenes, G. Out-of-plane experimental response of strong masonry infills. In Proceedings of the 2nd European Conference on Earthquake Engineering and Seismology, Istanbul, Turkey, 25–29 August 2014. [Google Scholar]
- Di Domenico, M.; De Risi, M.T.; Ricci, P.; Verderame, G.M.; Manfredi, G. Empirical prediction of the in-plane/out-of-plane interaction effects in clay brick unreinforced masonry infill walls. Eng. Struct. 2021, 227, 111438. [Google Scholar] [CrossRef]
- Ricci, P.; Di Domenico, M.; Verderame, G.M. Experimental investigation of the influence of slenderness ratio and of the in-plane/out-of-plane interaction on the out-of-plane strength of URM infill walls. Constr. Build. Mater. 2018, 191, 507–522. [Google Scholar] [CrossRef]
- Milijaš, A.; Marinković, M.; Butenweg, C.; Klinkel, S. Experimental results of reinforced concrete frames with masonry infills with and without openings under combined quasi-static in-plane and out-of-plane seismic loading. Bull. Earthq. Eng. 2023, 21, 3537–3579. [Google Scholar] [CrossRef]
- De Risi, M.T.; Di Domenico, M.; Ricci, P.; Verderame, G.M.; Manfredi, G. Experimental investigation on the influence of the aspect ratio on the in-plane/out-of-plane interaction for masonry infills in RC frames. Eng. Struct. 2019, 189, 523–540. [Google Scholar] [CrossRef]
- Akhoundi, F.; Vasconcelos, G.; Lourenco, P. Experimental out-of-plane behavior of brick masonry infilled frames. Int. J. Arch. Herit. 2018, 14, 221–237. [Google Scholar] [CrossRef]
- Di Domenico, M.; Ricci, P.; Verderame, G.M. Experimental assessment of the influence of boundary conditions on the out-of-plane response of unreinforced masonry infill walls. J. Earthq. Eng. 2018, 24, 881–919. [Google Scholar] [CrossRef]
- Ricci, P.; Di Domenico, M.; Verderame, G.M. Experimental assessment of the in-plane/out-of-plane interaction in unreinforced masonry infill walls. Eng. Struct. 2018, 173, 960–978. [Google Scholar] [CrossRef]
- Sepasdar, R. Experimental Investigation on the Out-of-Plane Behavior of Concrete Masonry Infilled RC Frames. Master Thesis, Dalhousie University, Halifax, NS, Canada, 2017. [Google Scholar]
- Wang, C. Experimental Investigation on the Out-of-Plane Behavior of Concrete Masonry Infilled Frames. Master Thesis, Dalhousie University, Halifax, NS, Canada, 2017. [Google Scholar]
- Da Porto, F.; Guidi, G.; Dalla Benetta, M.; Verlato, N. Combined in-plane/out-of-plane experimental behavior of reinforced and strengthened infill masonry walls. In Proceedings of the 12th Canadian Masonry Symposium, Vancouver, BC, Canada, 2–5 June 2013. [Google Scholar]
- European Standard EN 1992-1-1; Eurocode 2: Design of Concrete Structures, Part 1-1: General Rules and Rules for Buildings. European Committee for Standardization: Brussels, Belgium, 2004.
- Girgin, Z.C. Modified Failure Criterion to Predict Ultimate Strength of Circular Columns Confined by Different Materials. ACI Struct. J. 2009, 106, 800–809. [Google Scholar] [CrossRef]
- Ozbakkaloglu, T.; Lim, J.C. Axial compressive behavior of FRP-confined concrete: Experimental test database and a new design-oriented model. Compos. Part B Eng. 2013, 55, 607–634. [Google Scholar] [CrossRef]
- Moretti, M.L.; Kono, S.; Obara, T. On the shear strength of reinforced concrete walls. ACI Struct. J. 2020, 117, 293–304. [Google Scholar] [CrossRef]
- Moretti, M.L.; Papatheocharis, T.; Perdikaris, P.T. Design of Reinforced Concrete Infilled Frames. J. Struct. Eng. 2014, 140, 04014062. [Google Scholar] [CrossRef]
- Papatheocharis, T.; Perdikaris, P.T.; Moretti, M.L. Response of RC Frames Strengthened by RC Infill Walls: Experimental Study. J. Struct. Eng. 2019, 145, 04019129. [Google Scholar] [CrossRef]
- Furtado, A.; Rodrigues, H.; Arêde, A.; Varum, H. Impact of the Textile Mesh on the Efficiency of TRM Strengthening Solutions to Improve the Infill Walls Out-of-Plane Behaviour. Appl. Sci. 2020, 10, 8745. [Google Scholar] [CrossRef]
- Manos, G.C.; Katakalos, K.; Soulis, V.; Melidis, L. Earthquake Retrofitting of “Soft-Story” RC Frame Structures with RC Infills. Appl. Sci. 2022, 12, 11597. [Google Scholar] [CrossRef]
- Bojadjiev, J.; Apostolska, R.; Necevska Cvetanovska, G.; Varevac, D.; Bojadjieva, J. Experimental Verification of Innovative, Low-Cost Method for Upgrading of Seismic Resistance of Masonry Infilled RC Frames. Appl. Sci. 2025, 15, 8520. [Google Scholar] [CrossRef]
Values | lw (cm) | hw (cm) | tw (cm) | hw/tw | lw/hw | fwv (MPa) | fwh (MPa) | qexp (kPa) | fb (MPa) | fm (MPa) |
---|---|---|---|---|---|---|---|---|---|---|
Min | 135 | 98 | 4.8 | 8.4 | 1 | 0.53 | 1.08 | 0.52 | 1.6 | 2.8 |
Max | 422 | 295 | 35 | 34.1 | 1.83 | 11.51 | 4.63 | 66.30 | 24.0 | 17.6 |
Experimental Study | Specimen Name | Column Section (cm) | Beam Section (cm) | fc (MPa) | Ec (GPa) | Loading | OOP Load Appl. a | IP Drift (IDR) (%) | OOP Drift (%) |
---|---|---|---|---|---|---|---|---|---|
Milijaš et al. [55] | Τ1 | 25/25 | 25/45 | C30/37 | 32.84 c | OOP | abg | — | 0.71 |
T2 | 25/25 | 25/45 | C30/37 | 32.84 c | IP–OOP | abg | 1.20 | 1.46 d | |
Di Domenico et al. [53] | 120S-OOP | 27/20 | 27/20 | 42.9 | 34.05 c | OOP | 4 pts | — | 0.74 |
120S-IPM-OOP | 27/20 | 27/20 | 42.9 | 34.05 c | IP–OOP | 4 pts | 0.69 | 1.15 | |
120S-IPH-OOP | 27/20 | 27/20 | 42.9 | 34.05 c | IP–OOP | 4 pts | 1.03 | 3.07 | |
De Risi et al. [56] | OOP | 27/20 | 27/20 | 42.9 | 34.05 c | OOP | 4 pts | — | 0.65 |
IPL-OOP | 27/20 | 27/20 | 42.9 | 34.05 c | IP–OOP | 4 pts | 0.15 | 1.14 | |
IPM-OOP | 27/20 | 27/20 | 42.9 | 34.05 c | IP–OOP | 4 pts | 0.28 | 1.41 | |
IPH-OOP | 27/20 | 27/20 | 42.9 | 34.05 c | IP–OOP | 4 pts | 0.51 | 1.97 | |
Akhoundi et al. [57] | SIF-O-1L-B | 16/16 | 27/16 | C20/25 | 29.96 c | OOP | abg | — | 2.96 d |
SIF-IO (0.3) | 16/16 | 27/16 | C20/25 | 29.96 c | IP–OOP | abg | 0.30 | 3.00 d | |
SIF-IO (0.5) | 16/16 | 27/16 | C20/25 | 29.96 c | IP–OOP | abg | 0.50 | 6.16 d | |
SIF-IO (1.0) | 16/16 | 27/16 | C20/25 | 29.96 c | IP–OOP | abg | 1.00 | 7.37 d | |
Ricci et al. [54] | 120_OOP_4E | 27/20 | 27/20 | 46.2 | 34.82 c | OOP | 4 pts | — | 0.87 |
120_IP + OOP_L | 27/20 | 27/20 | 46.2 | 34.82 c | IP–OOP | 4 pts | 0.21 | 1.06 | |
120_IP + OOP_M | 27/20 | 27/20 | 46.2 | 34.82 c | IP–OOP | 4 pts | 0.50 | 2.87 | |
120_IP + OOP_H | 27/20 | 27/20 | 46.2 | 34.82 c | IP–OOP | 4 pts | 0.89 | 3.46 | |
Di Domenico et al. [58] | OOP_4E | 27/20 | 27/20 | 36.0 | 32.31 c | OOP | 4 pts | — | 0.59 |
Ricci et al. [59] | IP + OOP_L | 27/20 | 27/20 | 36.0 | 32.31 c | IP–OOP | 4 pts | 0.16 | 0.74 |
IP + OOP_Μ | 27/20 | 27/20 | 36.0 | 32.31 c | IP–OOP | 4 pts | 0.37 | 3.50 | |
IP + OOP_H | 27/20 | 27/20 | 36.0 | 32.31 c | IP–OOP | 4 pts | 0.58 | 2.82 | |
Sepasdar [60] | IF-ND | 18/18 | 18/18 | 35.8 | 16.91 | OOP | abg | — | 2.55 |
IF-D1 | 18/18 | 18/18 | 35.8 | 16.91 | IP–OOP | abg | 0.66 | 1.35 | |
IF-D2 | 18/18 | 18/18 | 36.6 | 20.36 | IP–OOP | abg | 2.71 | 2.02 | |
Wang [61] | IF-RC-ID | 18/18 | 18/18 | 35.8 | 16.91 | IP–OOP | abg | 1.37 | 1.57 |
Furtado et al. [45] | Inf_02 | 30/30 | 50/30 | 26.8 | 24.70 | OOP | abg | — | 1.13 d |
Inf_03 | 30/30 | 50/30 | 26.8 | 24.70 | IP–OOP | abg | 0.50 | 0.11 d | |
Calvi & Bolognini [51] | 10 | 30/30 | 25/70 | 25.0 | 31.48 c | OOP | 4 pts | — | 0.39 d |
2 | 30/30 | 25/70 | 25.0 | 31.48 c | IP–OOP | 4 pts | 1.20 | — | |
6 | 30/30 | 25/70 | 25.0 | 31.48 c | IP–OOP | 4 pts | 0.40 | 1.37 d | |
Angel et al. [49] | 1 | 31/31 | 31/25 | 55.16 | 36.72 c | OOP | abg | — | 1.40 d |
2b | 31/31 | 31/25 | 55.16 | 36.72 c | IP–OOP | abg | 0.34 | 2.50 d | |
3b | 31/31 | 31/25 | 55.16 | 36.72 c | IP–OOP | abg | 0.22 | 1.80 d | |
Hak et al. [52] | TA1 | 35/35 | 35/35 | 30.00 b | 30.59 c | IP–OOP | m | 1.50 | 4.16 d |
TA2 | 35/35 | 35/35 | 30.00 b | 30.59 c | IP–OOP | m | 2.50 | 4.77 d | |
TA3 | 35/35 | 35/35 | 30.00 b | 30.59 c | IP–OOP | m | 1.00 | 1.95 d | |
Da Porto et al. [62] | URM-D | 30/30 | 25/50 | 30.00 b | 30.59 c | IP–OOP | 4 pts | 0.50 | 1.82 |
URM-U | 30/30 | 25/50 | 30.00 b | 30.59 c | IP–OOP | 4 pts | 1.20 | 2.63 | |
Angel et al. [49] | 6b | 31/31 | 31/25 | 55.16 | 36.72 c | IP–OOP | abg | 0.25 | 2.90 d |
Experimental Study | Specimen Name | Unit | lw (cm) | hw (cm) | tw (cm) | fwv (MPa) | fwh (MPa) | qexp (kPa) |
---|---|---|---|---|---|---|---|---|
Milijaš et al. [55] | Τ1 | cbvh | 277 | 252 | 30 | 2.40 | — | 25.16 |
T2 | cbvh | 277 | 252 | 30 | 2.40 | — | 12.89 | |
Di Domenico et al. [53] | 120S-OOP | cbhh | 183 | 183 | 12 | 1.29 | 1.64 | 9.94 |
120S-IPM-OOP | cbhh | 183 | 183 | 12 | 1.29 | 1.64 | 6.90 | |
120S-IPH-OOP | cbhh | 183 | 183 | 12 | 1.29 | 1.64 | 6.00 | |
De Risi et al. [56] | OOP | cbhh | 183 | 183 | 8 | 2.37 | 4.63 | 8.80 |
IPL-OOP | cbhh | 183 | 183 | 8 | 2.37 | 4.63 | 9.39 | |
IPM-OOP | cbhh | 183 | 183 | 8 | 2.37 | 4.63 | 6.72 | |
IPH-OOP | cbhh | 183 | 183 | 8 | 2.37 | 4.63 | 5.74 | |
Akhoundi et al. [57] | SIF-O-1L-B | cbhh | 241.5 | 164 | 8 | 1.17 | — | 10.05 |
SIF-IO (0.3) | cbhh | 241.5 | 164 | 8 | 1.17 | — | 8.58 | |
SIF-IO (0.5) | cbhh | 241.5 | 164 | 8 | 1.17 | — | 6.67 | |
SIF-IO (1.0) | cbhh | 241.5 | 164 | 8 | 1.17 | — | 5.13 | |
Ricci et al. [54] | 120_OOP_4E | cbhh | 235 | 183 | 12 | 1.65 | 2.12 | 9.74 |
120_IP + OOP_L | cbhh | 235 | 183 | 12 | 1.65 | 2.12 | 9.67 | |
120_IP + OOP_M | cbhh | 235 | 183 | 12 | 1.65 | 2.12 | 6.49 | |
120_IP + OOP_H | cbhh | 235 | 183 | 12 | 1.65 | 2.12 | 5.37 | |
Di Domenico et al. [58] | OOP_4E | cbhh | 235 | 183 | 8 | 1.80 | 2.21 | 5.12 |
Ricci et al. [59] | IP + OOP_L | cbhh | 235 | 183 | 8 | 1.81 | 2.45 | 5.44 |
IP + OOP_Μ | cbhh | 235 | 183 | 8 | 1.81 | 2.45 | 2.44 | |
IP + OOP_H | cbhh | 235 | 183 | 8 | 1.81 | 2.45 | 1.37 | |
Sepasdar [60] | IF-ND | cmu | 135 | 98 | 9 | 9.40 | — | 66.30 |
IF-D1 | cmu | 135 | 98 | 9 | 9.70 | — | 44.40 | |
IF-D2 | cmu | 135 | 98 | 9 | 9.70 | — | 26.40 | |
Wang [61] | IF-RC-ID | cmu | 135 | 98 | 9 | 7.90 | — | 37.60 |
Furtado et al. [45] | Inf_02 | cbhh | 420 | 230 | 15 | 0.53 | — | 7.14 |
Inf_03 | cbhh | 420 | 230 | 15 | 0.53 | — | 1.86 | |
Calvi & Bolognini [51] | 10 | cbhh | 420 | 275 | 13.5 | 1.10 | 1.11 | 2.92 |
2 | cbhh | 420 | 275 | 13.5 | 1.10 | 1.11 | 0.52 | |
6 | cbhh | 420 | 275 | 13.5 | 1.10 | 1.11 | 0.78 | |
Angel et al. [49] | 1 | rcb | 243.8 | 162.6 | 4.8 | 11.51 | — | 8.19 |
2b | rcb | 243.8 | 162.6 | 4.8 | 10.86 | — | 4.00 | |
3b | rcb | 243.8 | 162.6 | 4.8 | 10.14 | — | 6.00 | |
Hak et al. [52] | TA1 | cbvh | 422 | 295 | 35 | 4.64 | 1.08 | 13.54 |
TA2 | cbvh | 422 | 295 | 35 | 4.64 | 1.08 | 8.25 | |
TA3 | cbvh | 422 | 295 | 35 | 4.64 | 1.08 | 13.17 | |
Da Porto et al. [62] | URM-D | cbvh | 415 | 265 | 30 | 6.00 | 1.19 | 22.73 |
URM-U | cbvh | 415 | 265 | 30 | 6.00 | 1.19 | 18.46 | |
Angel et al. [49] | 6b | rcb | 243.8 | 162.6 | 9.8 | 4.59 | — | 12.40 |
qpred (kPa) | qpred/qexp | |||||||
---|---|---|---|---|---|---|---|---|
Experimental Study | Specimen Name | hw/tw | hw/lw | qexp (kPa) | Dawe and Seah Equation (1) | Ricci et al. Equation (6) | Dawe and Seah Equation (1) | Ricci et al. Equation (6) |
Milijaš et al. [55] | Τ1 | 8.4 | 0.91 | 25.16 | 30.5 | 25.3 | 1.21 | 1.01 |
Di Domenico et al. [53] | 120S-OOP | 15.3 | 1 | 9.94 | 8.4 | 12.2 | 0.84 | 1.23 |
De Risi et al. [56] | OOP | 22.9 | 1 | 8.80 | 5.9 | 7.9 | 0.67 | 0.90 |
Akhoundi et al. [57] | SIF-O-1L-B | 20.5 | 0.68 | 10.05 | 2.4 | 8.6 | 0.24 | 0.85 |
Ricci et al. [54] | 120_OOP_4E | 15.3 | 0.78 | 9.74 | 7.2 | 13.3 | 0.74 | 1.37 |
Di Domenico et al. [58] | OOP_4E | 22.9 | 0.78 | 5.12 | 3.3 | 7.2 | 0.65 | 1.41 |
Sepasdar [60] | IF-ND | 10.9 | 0.73 | 66.30 | 53.7 | 98.6 | 0.81 | 1.49 |
Furtado et al. [45] | Inf_02 | 15.3 | 0.55 | 7.14 | 2.4 | 6.5 | 0.34 | 0.91 |
Calvi & Bolognini [51] | 10 | 20.4 | 0.65 | 2.92 | 2.0 | 4.2 | 0.68 | 1.43 |
Angel et al. [49] | 1 | 34.1 | 0.67 | 8.19 | 6.6 | 8.6 | 0.81 | 1.05 |
Hak et al. [52] | — a | 8.4 | 0.70 | — | 38.0 | 25.6 | — | — |
Da Porto et al. [62] | — a | 8.8 | 0.64 | — | 39.0 | 30.1 | — | — |
Angel et al. [49] | — a | 16.5 | 0.67 | — | 14.2 | 19.8 | — | — |
Mean | 0.70 | 1.17 | ||||||
Standard Deviation | 0.26 | 0.24 | ||||||
Correlation | 0.97 | 0.99 | ||||||
AAE (%) | 34.33 | 23.20 | ||||||
IAE (%) | 27.10 | 29.40 |
Rpred | |||||||
---|---|---|---|---|---|---|---|
Experimental Study | Specimen Name | IDR (%) | Rexp | Di Domenico et al. Equation (7) | Ricci et al. Equation (8) | Ricci et al. Equation (9) | Proposed Rmod Equation (14) |
Milijaš et al. [55] | T2 | 1.20 | 0.51 a | 0.77 | 0.81 | 0.54 | 0.53 |
Di Domenico et al. [53] | 120S-IPM-OOP | 0.69 | 0.69 | 0.73 | 0.53 | 0.53 | 0.62 |
120S-IPH-OOP | 1.03 | 0.60 | 0.55 | 0.40 | 0.36 | 0.55 | |
De Risi et al. [56] | IPL-OOP | 0.15 | 1.07 | 1.00 | 0.88 | 1.00 | 1.00 |
IPM-OOP | 0.28 | 0.76 | 0.76 | 0.57 | 0.56 | 0.83 | |
IPH-OOP | 0.51 | 0.65 | 0.49 | 0.38 | 0.32 | 0.69 | |
Akhoundi et al. [57] | SIF-IO (0.3) | 0.30 | 0.85 | 0.51 | 0.63 | 0.53 | 0.81 |
SIF-IO (0.5) | 0.50 | 0.66 | 0.35 | 0.44 | 0.32 | 0.69 | |
SIF-IO (1.0) | 1.00 | 0.51 | 0.21 | 0.27 | 0.16 | 0.56 | |
Ricci et al. [54] | 120_IP + OOP_L | 0.21 | 0.99 | 1.00 | 1.00 | 1.00 | 0.90 |
120_IP + OOP_M | 0.50 | 0.67 | 0.84 | 0.66 | 0.72 | 0.69 | |
120_IP + OOP_H | 0.89 | 0.55 | 0.55 | 0.45 | 0.41 | 0.58 | |
Ricci et al. [59] | IP + OOP_L | 0.16 | 1.06 | 0.94 | 0.84 | 0.97 | 0.93 |
IP + OOP_Μ | 0.37 | 0.48 | 0.51 | 0.47 | 0.43 | 0.42 | |
IP + OOP_H | 0.58 | 0.27 | 0.37 | 0.34 | 0.28 | 0.28 | |
Sepasdar [60] | IF-D1 | 0.66 | 0.67 | 0.95 | 0.86 | 0.81 | 0.63 |
IF-D2 | 2.71 | 0.40 | 0.34 | 0.33 | 0.21 | 0.41 | |
Wang [61] | IF-RC-ID | 1.37 | 0.57 | 0.56 | 0.52 | 0.40 | 0.51 |
Furtado et al. [45] | Inf_03 | 0.50 | 0.26 | 0.66 | 0.66 | 0.72 | 0.32 |
Calvi & Bolognini [51] | 2 | 1.20 | 0.18 | 0.18 | 0.24 | 0.14 | 0.14 |
6 | 0.40 | 0.27 | 0.39 | 0.52 | 0.40 | 0.39 | |
Angel et al. [49] | 2b | 0.34 | 0.49 | 0.45 | 0.29 | 0.46 | 0.45 |
3b | 0.22 | 0.73 | 0.62 | 0.39 | 0.72 | 0.69 | |
Correlation | 0.72 | 0.63 | 0.72 | 0.97 | |||
AAE (%) | 26.42 | 35.05 | 31.40 | 9.86 | |||
IAE (%) | 21.60 | 28.80 | 25.80 | 8.30 |
qu, IP–OOP = qpred × Rmod (kPa) | (qpred × Rmod)/qexp | |||||
---|---|---|---|---|---|---|
Experimental Study | Specimen Name | qexp (kPa) | Dawe and Seah Equation (1) | Ricci et al. Equation (6) | Dawe and Seah Equation (1) | Ricci et al. Equation (6) |
Milijaš et al. [55] | T2 | 12.89 | 16.0 | 13.3 | 1.24 | 1.03 |
Di Domenico et al. [53] | 120S-IPM-OOP | 6.90 | 5.2 | 7.6 | 0.76 | 1.11 |
120S-IPH-OOP | 6.00 | 4.6 | 6.8 | 0.77 | 1.13 | |
De Risi et al. [56] | IPL-OOP | 9.39 | 5.9 | 8.0 | 0.63 | 0.85 |
IPM-OOP | 6.72 | 4.8 | 6.6 | 0.72 | 0.98 | |
IPH-OOP | 5.74 | 4.0 | 5.5 | 0.70 | 0.95 | |
Akhoundi et al. [57] | SIF-IO(0.3) | 8.58 | 1.9 | 6.9 | 0.22 | 0.81 |
SIF-IO(0.5) | 6.67 | 1.6 | 5.9 | 0.25 | 0.89 | |
SIF-IO(1.0) | 5.13 | 1.3 | 4.8 | 0.26 | 0.93 | |
Ricci et al. [54] | 120_IP + OOP_L | 9.67 | 6.5 | 12.1 | 0.67 | 1.25 |
120_IP + OOP_M | 6.49 | 5.0 | 9.2 | 0.76 | 1.42 | |
120_IP + OOP_H | 5.37 | 4.1 | 7.7 | 0.77 | 1.43 | |
Ricci et al. [59] | IP + OOP_L | 5.44 | 3.1 | 6.7 | 0.57 | 1.23 |
IP + OOP_Μ | 2.44 | 1.4 | 3.1 | 0.58 | 1.25 | |
IP + OOP_H | 1.37 | 0.9 | 2.0 | 0.68 | 1.46 | |
Sepasdar [60] | IF-D1 | 44.40 | 34.0 | 62.5 | 0.77 | 1.41 |
IF-D2 | 26.40 | 22.0 | 40.3 | 0.83 | 1.53 | |
Wang [61] | IF-RC-ID | 37.60 | 27.1 | 49.8 | 0.72 | 1.32 |
Furtado et al. [45] | Inf_03 | 1.86 | 0.8 | 2.1 | 0.42 | 1.11 |
Calvi & Bolognini [51] | 2 | 0.52 | 0.3 | 0.6 | 0.54 | 1.13 |
6 | 0.78 | 0.8 | 1.6 | 1.00 | 2.11 | |
Angel et al. [49] | 2b | 4.00 | 3.0 | 3.9 | 0.75 | 0.97 |
3b | 6.00 | 4.6 | 6.0 | 0.76 | 1.00 | |
Hak et al. [52] | TA1 | 13.54 | 18.6 | 12.6 | 1.38 | 0.93 |
TA2 | 8.25 | 15.9 | 10.7 | 1.93 | 1.30 | |
TA3 | 13.17 | 21.1 | 14.2 | 1.61 | 1.08 | |
Da Porto et al. [62] | URM-D | 22.73 | 26.9 | 20.8 | 1.19 | 0.91 |
URM-U | 18.46 | 20.5 | 15.8 | 1.11 | 0.86 | |
Angel et al. [49] | 6b | 12.40 | 12.2 | 16.9 | 0.98 | 1.37 |
Mean | 0.81 | 1.16 | ||||
Standard Deviation | 0.38 | 0.27 | ||||
Correlation | 0.91 | 0.98 | ||||
AAE (%) | 35.69 | 22.74 | ||||
IAE (%) | 30.70 | 24.50 |
Dawe and Seah | |||||||||
---|---|---|---|---|---|---|---|---|---|
Experimental Study | Specimen Name | Top Gap (mm) | Side Gaps (mm) | hw/tw | hw/lw | fwv (kPa) | qexp (kPa) | qu (kPa) | qu/qexp |
Di Domenico et al. [58] | OOP_4E | — | — | 22.9 | 0.78 | 1.80 | 5.12 | 3.3 | 0.65 |
OOP_3E | 2 | — | 22.9 | 0.78 | 2.21 c | 4.09 | 1.5 | 0.36 | |
Di Domenico et al. [44] | 80_OOP_3Eb | 40 | — | 22.9 | 0.78 | 2.88 c | 4.28 | 1.8 | 0.42 |
Di Domenico et al. [58] | OOP_2E | — | NR b | 22.9 | 0.78 | 1.81 | 3.39 | 2.1 | 0.61 |
Ricci et al. [54] | 120–OOP_4E | — | — | 15.3 | 0.78 | 1.65 | 9.74 | 7.2 | 0.74 |
Di Domenico et al. [44] | 120_OOP_3E | 40 | — | 15.3 | 0.78 | 2.12 c | 7.81 | 3.3 | 0.42 |
120_OOP_2E | — | 30 | 15.3 | 0.78 | 2.21 | 5.58 | 5.6 | 1.00 | |
Akhoundi et al. [57] | SIF-O-1L-B | — | — | 20.5 | 0.68 | 1.17 | 10.05 | 2.4 | 0.24 |
SIF-O-1L-A | 0 a | — | 20.5 | 0.68 | 1.17 d | 8.81 | 0.6 | 0.06 | |
Sepasdar [60] | IF-ND | — | — | 10.9 | 0.73 | 9.40 | 66.3 | 53.7 | 0.81 |
Wang [61] | IF-RC-TG (3E) | 10 | — | 10.9 | 0.73 | 9.00 d | 18.5 | 18.8 | 1.02 |
IF-RC-SG (2E) | — | 5 | 10.9 | 0.73 | 9.00 | 36.5 | 34.0 | 0.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kouzelis, L.; Moretti, M.L. On the Out-of-Plane Strength of Masonry Infills Encased in RC Frames. Appl. Sci. 2025, 15, 10382. https://doi.org/10.3390/app151910382
Kouzelis L, Moretti ML. On the Out-of-Plane Strength of Masonry Infills Encased in RC Frames. Applied Sciences. 2025; 15(19):10382. https://doi.org/10.3390/app151910382
Chicago/Turabian StyleKouzelis, Lampros, and Marina L. Moretti. 2025. "On the Out-of-Plane Strength of Masonry Infills Encased in RC Frames" Applied Sciences 15, no. 19: 10382. https://doi.org/10.3390/app151910382
APA StyleKouzelis, L., & Moretti, M. L. (2025). On the Out-of-Plane Strength of Masonry Infills Encased in RC Frames. Applied Sciences, 15(19), 10382. https://doi.org/10.3390/app151910382