Thirteen-Year Cesium-137 Distribution Environmental Analysis in an Undisturbed Area
Abstract
1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Sampling and Measurements
3. Results and Discussion
3.1. 137Cs Activity Concentration
3.2. Projected 137Cs Decay for Reported Data
3.3. 137Cs Decay Behavior for Experimental Data
3.4. Spatial Distribution of 137Cs
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- ATSDR. Agency for Toxic Substances and Disease Registry. In Toxicological Profile for Cesium; U.S. Department of Health and Human Services, Public Health Service: Atlanta, GA, USA, 2004. [Google Scholar]
- Stager, F.; Zok, D.; Schiller, A.K.; Feng, B.; Steinhauser, G. Disproportionately High Contributions of 60-Year-Old Weapons-137Cs Explain the Persistence of Radioactive Contamination in Bavarian Wild Boars. Environ. Sci. Technol. 2023, 57, 13601–13611. [Google Scholar] [CrossRef] [PubMed]
- UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation). Sources, Eeffects and Risks of Ionizing Radiation; UNSCEAR 2000 Report to the General Assembly, with Scientific Annexes Volume I: Sources 2000; United Nations Publications: New York, NY, USA, 2000; p. 659. [Google Scholar]
- UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation). Sources and Eeffects of Ionizing Radiation; United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR 1993 Report to the General Assembly, with Scientific Annexes; United Nations Publications: New York, NY, USA, 1993; 920p. [Google Scholar]
- UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation). Sources, Effects and Risks of Ionizing Radiation; UNSCEAR 2013 Report. Volume I. Report to the General Assembly Scientific Annex A: Levels and effects of radiation exposure due to the nuclear accident after the 2011 great east-Japan earthquake and tsunami; United Nations Publications: New York, NY, USA, 2013; p. 321. [Google Scholar]
- Blagoeva, R.; Zikovsky, L. Geographic and vertical distribution of Cs-137 in soils in Canada. J. Environ. Radioact. 1995, 27, 269–274. [Google Scholar] [CrossRef]
- Aoyama, M.; Hirose, K.; Igarashi, Y. Re-construction and updating our understanding on the global weapons tests Cs-137 fallout. J. Environ. Monit. 2006, 8, 431–438. [Google Scholar] [CrossRef] [PubMed]
- Gilmore, B.J.; Cranley, K. Radionuclide monitoring in Northern Ireland of the Chernobyl nuclear reactor accident. Ulster Med. J. 1987, 56, 45–53. [Google Scholar] [PubMed] [PubMed Central]
- Kevin, D.; John, H. Radiation Levels in Milk and Meat in Ireland after Chernobyl (INIS-XA-C--069); International Atomic Energy Agency (IAEA): Vienna, Austria, 1986. [Google Scholar]
- Cunningham, J.D.; MacNeill, G.; Pollard, D. Chernobyl Its Effect on Ireland (INIS-mf--11216); Nuclear Energy Board: Dublin, Alemania, 1987. [Google Scholar]
- Wróbel, P. Chernobyl in Mexico, the Radioactive Cloud Reaches Through the Sea; Conference Paper. May 2016; Universidad Nacional Autónoma de México: Mexico City, Mexico, 2016; 7p. [Google Scholar]
- Diario Oficial de la Federación. Norma Técnica No. 316. Que Establece los Límites Máximos Permisibles le los Radioistopos de: Sr-90, 1-131, Cs-Total y Pu-239 para Leche Deshidratada de Importación; Secretaria de Salud Distrito Federal: Mexico City, Mexico, 1988. [Google Scholar]
- UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation). Ionizing Radiation: Sources and Biological Effects; United Nations Scientific Committee on the Effects of Atomic Radiation 1982 Report to the General Assembly, with annexes; United Nations Publications: New York, NY, USA, 1982; 770p. [Google Scholar]
- UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation). Sources, Effects and Risks of Ionizing Radiation; UNSCEAR 2020/2021 Report Volume I Report to the General Assembly Scientific Annex A: Evaluation of medical exposure to ionizing radiation; United Nations Publications: New York, NY, USA, 2022; 354p. [Google Scholar]
- Dunne, J.A.; Martin, P.G.; Yamashiki, Y.; Ang, I.X.Y.; Scott, T.B.; Richards, D.A. Spatial pattern of plutonium and radioceasium contamination released during the Fukushima Daiichi nuclear power plant disaster. Sci. Rep. 2018, 8, 16799. [Google Scholar] [CrossRef] [PubMed]
- Wan Mahmood, Z.U.; Yii, M.W.; Khalid, M.A.; Yusof, M.A.W.; Mohamed, N. Marine radioactivity of Cs-134 and Cs-137 in the Malaysian Economic Exclusive Zone after the Fukushima accident. J. Radioanal. Nucl. Chem. 2018, 318, 2165–2172. [Google Scholar] [CrossRef]
- Aoyama, M. Long-range transport of radiocaesium derived from global fallout and the Fukushima accident in the Pacific Ocean since 1953 through 2017—Part I: Source term and surface transport. J. Radioanal. Nucl. Chem. 2018, 318, 1519–1542. [Google Scholar] [CrossRef] [PubMed]
- Brimo, K.; Gonze, M.A.; Pourcelot, L. Long term decrease of 137Cs bioavailability in French pastures: Results from 25 years of monitoring. J. Environ. Radioact. 2019, 208–209, 106029. [Google Scholar] [CrossRef] [PubMed]
- Chao, J.-H.; Tseng, C.-L. Determination of 135Cs by neutron activation analysis. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1996, 372, 275–279. [Google Scholar] [CrossRef]
- Qiao, J.; Hansen, V.; Hou, X.; Aldahan, A.; Possnert, G. Speciation analysis of 129I, 137Cs, 232Th, 238U, 239Pu and 240Pu in environmental soil and sediment. Appl. Radiat. Isot. 2012, 70, 1698–1708. [Google Scholar] [CrossRef] [PubMed]
- Zok, D.; Blenke, T.; Reinhard, S.; Sprott, S.; Kegler, F.; Syrbe, L.; Querfeld, R.; Takagai, Y.; Drozdov, V.; Chyzhevskyi, I.; et al. Determination of Characteristic vs Anomalous 135Cs/137Cs Isotopic Ratios in Radioactively Contaminated Environmental Samples. Environ. Sci. Technol. 2021, 55, 4984–4991. [Google Scholar] [CrossRef] [PubMed]
- FAO/IAEA (Food and Agriculture Organization of the United Nations). Use of 137Cs for Soil Erosion Assessment; Fulajtar, E., Mabit, L., Renschler, C.S., Lee Zhi Yi, A., Eds.; FAO/IAEA: Rome, Italy, 2017; 64p. [Google Scholar]
- Dicen, G.; Guillevic, F.; Gupta, S.; Chaboche, P.-A.; Meusburger, K.; Sabatier, P.; Evrard, O.; Alewell, C. Distribution and sources of fallout 137Cs and 239+240Pu in equatorial and Southern Hemisphere reference soils. Earth Syst. Sci. Data 2025, 17, 1529–1549. [Google Scholar] [CrossRef]
- Garay, A.; Míreles, F.; Quirino, L.L.; Dávila, J.I.; Rios, C.; Lugo, J.F.; Soriano, J.M.; Angoli, A. Radiactividad Gamma Natural y del 137Cs en Suelo del Municipio de Chimaltitán, Jalisco, México. In Proceedings of the Energía Nuclear y Seguridad Radiológica: Nuevos Retos y Perspectivas XIV Congreso Anual de la SNM/XXI Reunión Anual de la SMSR Guadalajara, Jalisco, México, 10–13 September 2003. Memorias en CDROM. [Google Scholar]
- Hernández, R.L. Estudio de la Distribución de 137Cs en Suelos de Zacatecas. Master’s Thesis, Unidad Académica de Estudios Nucleares, Universidad Autónoma de Zacatecas “Francisco García Salinas”, Zacatecas, Mexico, October 2018; 60p. [Google Scholar]
- WebGIS. Geographic Information Systems Resources. Available online: http://www.webgis.com/srtm3.html (accessed on 24 April 2024).
- Portal de Geoinformación 2025. Sistema Nacional de Información sobre Biodiversidad (SNIB). Available online: http://www.conabio.gob.mx/informacion/gis/ (accessed on 17 January 2025).
- Hernandez-Mendez, B.; Angeles-Carranza, A.; Suarez-Contreras, S.; Quintero Ponce, E.; Barcenas Robles, M.; Sanchez Meza, J.C.; Gutierrez Segura, E.E.; Balcazar, M. Natural radionuclides baseline in soil at unconventional oil fields in Mexico. Radiat. Prot. Dosim. 2025, 201, 247–254. [Google Scholar] [CrossRef] [PubMed]
- ANSI N42.14-1999; American National Standard for Calibration and Use of Germanium Spectrometers for the Measurement of Gamma-Ray Emission Rates of Radionuclides. Institute of Electrical and Electronics Engineers, Inc.: New York, NY, USA, 1999.
- OPPD (Omaha Public Power District). Evaluation of Cs-137 Global Fallout in Soils at Fort Calhoun Station; FC-18-003 Revision 1; EEUU: Washington, NE, USA, 2018; p. 15. [Google Scholar]
- Yasumiishi, M.; Nishimura, T.; Aldstadt, J.; Bennett, S.J.; Bittner, T. Assessing the effect of topography on Cs-137 concentrations within forested soils due to the Fukushima Daiichi Nuclear Power Plant accident, Japan. Earth Surf. Dyn. 2021, 9, 861–893. [Google Scholar] [CrossRef]
- Linnik, V.G.; Saveliev, A.A.; Govorun, A.P.; Ivanitsky, O.M.; Sokolov, A.V. Spatial Variability and Topographic Factors of 137Cs Soil Contamination at a Field Scale. Int. J. Ecol. Dev. Fall 2007, 8, F07. [Google Scholar]
- Linnik, V.; Sokolov, A.; Saveliev, A. Patterns and dynamics of Cs-137 soil contamination on the plot scale of the Bryansk Region (Russia): The role of processes, connectivity. Geophys. Res. Abstr. 2014, 16, 5200. [Google Scholar]
- Koarashi, J.; Atarashi-Andoh, M.; Takeuchi, E.; Nishimura, S. Topographic heterogeneity effect on the accumulation of Fukushima-derived radiocesium on forest floor driven by biologically mediated processes. Sci. Rep. 2014, 4, 6853. [Google Scholar] [CrossRef] [PubMed]
- Ismail, M.; Zia, M.A.; Khan, H.M. Investigation of Cs-137 in the environmental soil segments of the Peshawar and Nowshera districts of Khyber Pakhtunkhwa, Pakistan. Int. J. Radiat. Res. 2017, 15, 407–412. [Google Scholar] [CrossRef]
- Łokas, E.; Zwoliński, Z.; Rachlewicz, G.; Gąsiorek, M.; Wilkosz, G.; Samolej, K. Distribution of anthropogenic and naturally occurring radionuclides in soils and lakes of Central Spitsbergen (Arctic). J. Radioanal. Nucl. Chem. 2017, 311, 707–717. [Google Scholar] [CrossRef]
Source | Years | PBq | References |
---|---|---|---|
Nuclear weapon tests (world deposition) | 1945–1993 | 948 | UNSCEAR, 2000 [3] |
Chernobyl accident (local emission) | 1986 | 70 | UNSCEAR, 1993 [4] |
Reprocessing plants (local emission) | 1950–1997 | 42 | UNSCEAR, 2000 [3] |
Fukushima Daiichi accident (local emission) | 2011 | 11 | UNSCEAR, 2013 [5] |
YEAR | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Point | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 |
Bq kg−1 | |||||||||||||
4U | 13.5 | 87.1 | 14.7 | 135.5 | 17.5 | 17.1 | 87.9 | LI | LI | LI | LI | 12.2 | 29.3 |
13U | 80.2 | 29.6 | 66.2 | 52.2 | 28.2 | 88.2 | LI | LI | LI | LI | LI | LI | 46.4 |
2D | 13.0 | 27.6 | 9.2 | 16.6 | 12.7 | 15.7 | 64.5 | 13.3 | 16.6 | 14.5 | 1.7 | 23.1 | 15.1 |
12D | 43.3 | 41.8 | 37.5 | 30.3 | 31.9 | 26.4 | LI | 45.6 | 50.3 | 76.7 | 27.9 | 18.1 | 29.7 |
11D | 39.8 | 32.1 | 30.4 | 27.9 | 34.2 | 26.7 | LI | LI | LI | LI | 10.7 | 23.0 | 30.1 |
10D | 68.1 | 49.5 | 48.3 | 31.9 | 45.0 | 38.5 | LI | LI | LI | LI | LI | 2.9 | 42.5 |
1 | 17.2 | 18.1 | 10.7 | 12.1 | 19.5 | 20.3 | 12.8 | LI | LI | LI | 5.8 | 11.2 | 6.8 |
3 | 6.5 | 25.0 | 4.1 | 3.5 | 5.2 | 2.5 | 4.1 | 7.2 | 4.1 | 8.2 | LI | 7.6 | 6.2 |
5 | .5 | 18.2 | 0.6 | 1.2 | LI | LI | 13.1 | 9.6 | 2.9 | 3.7 | 2.5 | 3.8 | 2.2 |
6 | 11.0 | 3.2 | 7.2 | 6.3 | 12.0 | 7.1 | 1.7 | 1.1 | 0.7 | 6.9 | 1.7 | 16.4 | 6.5 |
7 | 1.8 | 5.9 | 2.1 | 2.2 | 9.7 | 1.6 | 1.5 | LI | LI | LI | 1.7 | 1.9 | 1.2 |
8 | 7.5 | 17.5 | 5.5 | 8.4 | 10.3 | 9.7 | LI | LI | LI | LI | 2.6 | 4.6 | 1.8 |
9 | 5.6 | 5.4 | 2.7 | 3.5 | 10.4 | 9.5 | LI | 4.6 | 4.8 | 11.9 | 10.5 | 7.6 | 14.9 |
14 | 5.4 | 2.1 | 1.7 | 1.6 | 1.2 | 1.7 | 1.4 | LI | LI | LI | LI | LI | 0.8 |
15 | 1.6 | LI | 0.8 | 0.7 | 0.9 | 0.7 | 2.7 | 3.5 | 1.0 | 0.8 | LI | LI | 1.3 |
16 | 1.1 | 2.1 | 0.9 | 0.7 | 1.5 | 1.7 | LI | 13.5 | LI | LI | LI | LI | LI |
17 | LI | 1.2 | 4.5 | 3.0 | 1.4 | 1.5 | 1.6 | 1.9 | 0.9 | LI | LI | 1.8 | LI |
Other Sites | This Study | |||
---|---|---|---|---|
Place | Reference | 137Cs Bq kg−1 | Out points from undisturbed site | 137Cs Bq kg−1 |
Zacatecas, Mexico. | (Hernández, 2018) [25] | 0.49–5.15 | 1.0 km south | 0.8–5.4 |
Jalisco, Mexico. | (Garay et al., 2003) [24] | 0.5–20.4 | 5.8 km southeast | 0.7–4.3 |
Canada. | (Blagoeva, Zikovsky, 1995) [6] | 0.2–212 | 2.0 km southeast | 0.6–13.5 |
USA. | (OPPD, 2018) [30] | 11.1–111 | 1.7 km northwest | 0.8–6.9 |
Data Point | Intersection at Year 1986 | Normalize Point Year 2012 | 137Cs peak Contribution from Fukushima Accident | |
---|---|---|---|---|
Bq kg−1 | Bq kg−1 | Year Peak | Bq kg−1 | |
4U | 67.0 | 29.3 | 2013 | 135.5 ± 14.5 |
13U | 108.7 | 46.4 | 2015 | 88.2 ± 5.5 |
2D | 35.3 | 15.1 | 2016 | 64.5 ± 1.7 |
12D | 69.5 | 29.7 | 2019 | 76.7 ± 2.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suárez-Contreras, S.; Sánchez-Mendieta, V.; Hernández-Méndez, B.; Sánchez-Meza, J.C.; Balcázar, M. Thirteen-Year Cesium-137 Distribution Environmental Analysis in an Undisturbed Area. Appl. Sci. 2025, 15, 9982. https://doi.org/10.3390/app15189982
Suárez-Contreras S, Sánchez-Mendieta V, Hernández-Méndez B, Sánchez-Meza JC, Balcázar M. Thirteen-Year Cesium-137 Distribution Environmental Analysis in an Undisturbed Area. Applied Sciences. 2025; 15(18):9982. https://doi.org/10.3390/app15189982
Chicago/Turabian StyleSuárez-Contreras, Sergio, Víctor Sánchez-Mendieta, Beatriz Hernández-Méndez, Juan Carlos Sánchez-Meza, and Miguel Balcázar. 2025. "Thirteen-Year Cesium-137 Distribution Environmental Analysis in an Undisturbed Area" Applied Sciences 15, no. 18: 9982. https://doi.org/10.3390/app15189982
APA StyleSuárez-Contreras, S., Sánchez-Mendieta, V., Hernández-Méndez, B., Sánchez-Meza, J. C., & Balcázar, M. (2025). Thirteen-Year Cesium-137 Distribution Environmental Analysis in an Undisturbed Area. Applied Sciences, 15(18), 9982. https://doi.org/10.3390/app15189982