Can Hospitals Cooperate to Improve Predictions Without Sharing Data? A Federated Learning Approach for Frailty Screening
Abstract
1. Introduction
2. Materials and Methods
2.1. FRELSA Dataset
2.2. Experiment Settings
3. Results
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Extended Results
Accuracy | Precision | Recall | F-Score | AUROC | PR-AUC | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
LogReg | Local | FedAvg | Local | FedAvg | Local | FedAvg | Local | FedAvg | Local | FedAvg | Local | FedAvg |
South East | 0.758 | 0.796 | 0.758 | 0.796 | 0.745 | 0.793 | 0.748 | 0.788 | 0.81 | 0.86 | 0.811 | 0.865 |
East of England | 0.724 | 0.732 | 0.726 | 0.735 | 0.719 | 0.737 | 0.718 | 0.738 | 0.81 | 0.803 | 0.813 | 0.808 |
South West | 0.75 | 0.752 | 0.749 | 0.759 | 0.744 | 0.753 | 0.745 | 0.751 | 0.811 | 0.835 | 0.813 | 0.837 |
North West | 0.726 | 0.718 | 0.729 | 0.717 | 0.726 | 0.715 | 0.724 | 0.713 | 0.819 | 0.774 | 0.818 | 0.774 |
West Midlands | 0.683 | 0.744 | 0.683 | 0.74 | 0.682 | 0.729 | 0.681 | 0.727 | 0.754 | 0.821 | 0.759 | 0.825 |
Yorksh. & Hum. | 0.71 | 0.703 | 0.707 | 0.702 | 0.696 | 0.701 | 0.698 | 0.703 | 0.766 | 0.796 | 0.771 | 0.81 |
East Midlands | 0.724 | 0.816 | 0.727 | 0.821 | 0.722 | 0.812 | 0.721 | 0.809 | 0.789 | 0.897 | 0.787 | 0.898 |
London | 0.715 | 0.765 | 0.719 | 0.766 | 0.717 | 0.761 | 0.714 | 0.756 | 0.771 | 0.828 | 0.776 | 0.829 |
North East | 0.726 | 0.691 | 0.728 | 0.693 | 0.726 | 0.69 | 0.725 | 0.687 | 0.781 | 0.78 | 0.782 | 0.783 |
Federated | 0.74 | 0.741 | 0.737 | 0.735 | 0.816 | 0.818 | ||||||
Full dataset | 0.74 | 0.743 | 0.737 | 0.737 | 0.817 | 0.82 | ||||||
MLP | Local | FedAvg | Local | FedAvg | Local | FedAvg | Local | FedAvg | Local | FedAvg | Local | FedAvg |
South East | 0.763 | 0.79 | 0.762 | 0.795 | 0.751 | 0.789 | 0.754 | 0.787 | 0.843 | 0.892 | 0.849 | 0.895 |
East of England | 0.774 | 0.897 | 0.783 | 0.895 | 0.766 | 0.891 | 0.767 | 0.891 | 0.845 | 0.933 | 0.844 | 0.919 |
South West | 0.791 | 0.831 | 0.792 | 0.835 | 0.782 | 0.832 | 0.782 | 0.832 | 0.86 | 0.932 | 0.883 | 0.939 |
North West | 0.779 | 0.816 | 0.781 | 0.819 | 0.775 | 0.818 | 0.775 | 0.817 | 0.85 | 0.903 | 0.879 | 0.947 |
West Midlands | 0.725 | 0.791 | 0.725 | 0.801 | 0.724 | 0.79 | 0.721 | 0.79 | 0.814 | 0.862 | 0.812 | 0.85 |
Yorksh. & Hum. | 0.752 | 0.832 | 0.75 | 0.835 | 0.739 | 0.825 | 0.742 | 0.827 | 0.809 | 0.931 | 0.818 | 0.946 |
East Midlands | 0.754 | 0.904 | 0.754 | 0.908 | 0.75 | 0.906 | 0.749 | 0.906 | 0.847 | 0.998 | 0.852 | 0.998 |
London | 0.737 | 0.869 | 0.744 | 0.876 | 0.747 | 0.857 | 0.734 | 0.862 | 0.84 | 0.938 | 0.838 | 0.924 |
North East | 0.739 | 0.808 | 0.745 | 0.809 | 0.737 | 0.827 | 0.736 | 0.807 | 0.831 | 0.889 | 0.845 | 0.977 |
Federated | 0.836 | 0.84 | 0.835 | 0.834 | 0.919 | 0.928 | ||||||
Full dataset | 0.844 | 0.847 | 0.841 | 0.843 | 0.923 | 0.931 |
Appendix B. MLP Hyperparameters
Hyperparameter | Optimal Value |
---|---|
Learn rate | |
Hidden layers | 2 |
Neurons l1 | 512 |
Learn rate l1 | |
Dropout l1 | 0.4 |
Neurons l2 | 128 |
Learn rate l2 | |
Dropout l2 | 0.5 |
References
- Esteva, A.; Robicquet, A.; Ramsundar, B.; Kuleshov, V.; DePristo, M.; Chou, K.; Cui, C.; Corrado, G.; Thrun, S.; Dean, J. A guide to deep learning in healthcare. Nat. Med. 2019, 25, 24–29. [Google Scholar] [CrossRef]
- Poongodi, T.; Sumathi, D.; Suresh, P.; Balusamy, B. Deep learning techniques for electronic health record (EHR) analysis. In Bio-Inspired Neurocomputing; Springer: Berlin/Heidelberg, Germany, 2021; pp. 73–103. [Google Scholar] [CrossRef]
- European Union. Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 (General Data Protection Regulation). Official Journal of the European Union, L 119, 2016, pp. 1–88. EUR-Lex. Available online: https://eur-lex.europa.eu/eli/reg/2016/679/oj (accessed on 8 September 2025).
- Hash, J.; Bowen, P.; Johnson, L.; Smith, C.; Steinberg, D. An Introductory Resource Guide for Implementing the Health Insurance Portability and Accountability Act (HIPAA) Security Rule. 2005. Available online: http://www.med.a51.nl/sites/default/files/pdf/NIST.SP.800-66r2.pdf (accessed on 8 September 2025).
- Konečný, J.; McMahan, H.B.; Yu, F.X.; Richtarik, P.; Suresh, A.T.; Bacon, D. Federated Learning: Strategies for Improving Communication Efficiency. arXiv 2016, arXiv:1610.05492. [Google Scholar] [CrossRef]
- Rahman, A.; Hossain, M.; Muhammad, G.; Kundu, D.; Debnath, T.; Rahman, M.; Khan, M.; Tiwari, P.; Band, S. Federated learning-based AI approaches in smart healthcare: Concepts, taxonomies, challenges and open issues. Clust. Comput. 2023, 26, 2271–2311. [Google Scholar] [CrossRef] [PubMed]
- Dhade, P.; Shirke, P. Federated Learning for Healthcare: A Comprehensive Review. Eng. Proc. 2023, 59, 230. [Google Scholar] [CrossRef]
- Chen, X.; Zhu, G.; Deng, Y.; Fang, Y. Federated Learning Over Multihop Wireless Networks With In-Network Aggregation. IEEE Trans. Wirel. Commun. 2022, 21, 4622–4634. [Google Scholar] [CrossRef]
- Nguyen, D.C.; Ding, M.; Pathirana, P.N.; Seneviratne, A.; Li, J.; Vincent Poor, H. Federated Learning for Internet of Things: A Comprehensive Survey. IEEE Commun. Surv. Tutor. 2021, 23, 1622–1658. [Google Scholar] [CrossRef]
- Wang, S.; Liu, F.; Xia, H. Content-based vehicle selection and resource allocation for federated learning in IoV. In Proceedings of the 2021 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), Nanjing, China, 29 March 2021; IEEE: New York, NY, USA, 2021; pp. 1–7. [Google Scholar] [CrossRef]
- Qi, P.; Chiaro, D.; Guzzo, A.; Ianni, M.; Fortino, G.; Piccialli, F. Model aggregation techniques in federated learning: A comprehensive survey. Future Gener. Comput. Syst. 2024, 150, 272–293. [Google Scholar] [CrossRef]
- Zhou, X.; Liang, W.; Wang, K.I.K.; Yan, Z.; Yang, L.T.; Wei, W.; Ma, J.; Jin, Q. Decentralized P2P Federated Learning for Privacy-Preserving and Resilient Mobile Robotic Systems. IEEE Wirel. Commun. 2023, 30, 82–89. [Google Scholar] [CrossRef]
- Sheller, M.J.; Reina, G.A.; Edwards, B.; Martin, J.; Bakas, S. Multi-institutional deep learning modeling without sharing patient data: A feasibility study on brain tumor segmentation. In Proceedings of the Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 4th International Workshop, BrainLes 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, 16 September 2018; Revised Selected Papers, Part I 4. Springer: Berlin/Heidelberg, Germany, 2019; pp. 92–104. [Google Scholar] [CrossRef]
- Clegg, A.; Young, J.; Iliffe, S.; Rikkert, M.O.; Rockwood, K. Frailty in elderly people. Lancet 2013, 381, 752–762. [Google Scholar] [CrossRef]
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in Older Adults: Evidence for a Phenotype. J. Gerontol. Ser. A 2001, 56, M146–M157. [Google Scholar] [CrossRef]
- Eskandari, M.; Parvaneh, S.; Ehsani, H.; Fain, M.; Toosizadeh, N. Frailty Identification Using Heart Rate Dynamics: A Deep Learning Approach. IEEE J. Biomed. Health Inform. 2022, 26, 3409–3417. [Google Scholar] [CrossRef]
- Le Pogam, M.A.; Seematter-Bagnoud, L.; Niemi, T.; Assouline, D.; Gross, N.; Trächsel, B.; Rousson, V.; Peytremann-Bridevaux, I.; Burnand, B.; Santos-Eggimann, B. Development and validation of a knowledge-based score to predict Fried’s frailty phenotype across multiple settings using one-year hospital discharge data: The electronic frailty score. eClinicalMedicine 2022, 44, 101260. [Google Scholar] [CrossRef]
- Florez-Revuelta, F.; Mihailidis, A.; Ziefle, M.; Colonna, L.; Spinsante, S. Privacy-Aware and Acceptable Lifelogging services for older and frail people: The PAAL project. In Proceedings of the 2018 IEEE 8th International Conference on Consumer Electronics—Berlin (ICCE-Berlin), Berlin, Germany, 2–5 September 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Qi, P.; Chiaro, D.; Piccialli, F. FL-FD: Federated learning-based fall detection with multimodal data fusion. Inf. Fusion 2023, 99, 101890. [Google Scholar] [CrossRef]
- Afandy, P.F.; Ng, P.C.; Plataniotis, K.N. Federated Learning for Hierarchical Fall Detection and Human Activity Recognition. In Proceedings of the 2024 IEEE 10th World Forum on Internet of Things (WF-IoT), Ottawa, ON, Canada, 10–13 November 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Ouyang, X.; Shuai, X.; Li, Y.; Pan, L.; Zhang, X.; Fu, H.; Cheng, S.; Wang, X.; Cao, S.; Xin, J.; et al. ADMarker: A Multi-Modal Federated Learning System for Monitoring Digital Biomarkers of Alzheimer’s Disease. In Proceedings of the 30th Annual International Conference on Mobile Computing and Networking, Washington, DC, USA, 18–22 November 2024; pp. 404–419. [Google Scholar]
- Umair, M.; Khan, M.S.; Hanif, M.; Ghaban, W.; Nafea, I.; Mohammed, S.N.; Saeed, F. Privacy-Preserving Dementia Classification from EEG via Hybrid-Fusion EEGNetv4 and Federated Learning. Front. Comput. Neurosci. 2025, 19, 1617883. [Google Scholar] [CrossRef]
- Deng, T.; Hamdan, H.; Yaakob, R.; Kasmiran, K.A. Personalized federated learning for in-hospital mortality prediction of multi-center ICU. IEEE Access 2023, 11, 11652–11663. [Google Scholar] [CrossRef]
- Kerkouche, R.; Acs, G.; Castelluccia, C.; Genevès, P. Privacy-preserving and bandwidth-efficient federated learning: An application to in-hospital mortality prediction. In Proceedings of the Conference on Health, Inference, and Learning, Virtual, 8–10 April 2021; pp. 25–35. [Google Scholar]
- Leghissa, M.; Carrera, Á.; Iglesias, C.A. FRELSA: A dataset for frailty in elderly people originated from ELSA and evaluated through machine learning models. Int. J. Med. Inform. 2024, 192, 105603. [Google Scholar] [CrossRef]
- ELSA. English Longitudinal Study of Ageing. 2024. Available online: https://www.elsa-project.ac.uk/ (accessed on 23 April 2024).
- Steptoe, A.; Breeze, E.; Banks, J.; Nazroo, J. Cohort Profile: The English Longitudinal Study of Ageing. Int. J. Epidemiol. 2012, 42, 1640–1648. [Google Scholar] [CrossRef]
- Banks, J.; Batty, G.D.; Breedvelt, J.; Coughlin, K.; Crawford, R.; Marmot, M.; Nazroo, J.; Oldfield, Z.; Steel, N.; Steptoe, A.; et al. English Longitudinal Study of Ageing: Waves 0–10, 1998–2023. 2025. Available online: https://beta.ukdataservice.ac.uk/datacatalogue/doi/?id=5050#!#31 (accessed on 8 September 2025).
- Yang, Q.; Liu, Y.; Chen, T.; Tong, Y. Federated Machine Learning: Concept and Applications. ACM Trans. Intell. Syst. Technol. 2019, 10, 1–9. [Google Scholar] [CrossRef]
- Urbanowicz, R.J.; Olson, R.S.; Schmitt, P.; Meeker, M.; Moore, J.H. Benchmarking relief-based feature selection methods for bioinformatics data mining. J. Biomed. Inform. 2018, 85, 168–188. [Google Scholar] [CrossRef]
- McMahan, H.B.; Moore, E.; Ramage, D.; y Arcas, B.A. Federated Learning of Deep Networks using Model Averaging. CoRR 2016, abs/1602.05629. Available online: https://openreview.net/forum?id=emqdv1Dlsf (accessed on 8 September 2025).
- Li, T.; Sahu, A.K.; Zaheer, M.; Sanjabi, M.; Talwalkar, A.; Smith, V. Federated optimization in heterogeneous networks. Proc. Mach. Learn. Syst. 2020, 2, 429–450. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Q.; Liang, H.; Joshi, G.; Poor, H.V. Tackling the objective inconsistency problem in heterogeneous federated optimization. In Proceedings of the Advances in Neural Information Processing Systems 33 (NeurIPS 2020), Virtual, 6–12 December 2020; Volume 33, pp. 7611–7623. [Google Scholar] [CrossRef]
- Karimireddy, S.P.; Kale, S.; Mohri, M.; Reddi, S.; Stich, S.; Suresh, A.T. Scaffold: Stochastic controlled averaging for federated learning. In Proceedings of the International Conference on Machine Learning, PMLR, Virtual, 13–18 July 2020; pp. 5132–5143. [Google Scholar] [CrossRef]
- Zhang, B.; Mao, Y.; Xu, H.; Chen, Y.; Muazu, T.; He, X.; Wu, J. Overcoming Forgetting Using Adaptive Federated Learning for IIoT Devices With Non-IID Data. IEEE Internet Things J. 2025, 12, 21025–21037. [Google Scholar] [CrossRef]
- Li, Q.; He, B.; Song, D. Model-contrastive federated learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Virtual, 19–25 June 2021; pp. 10713–10722. [Google Scholar] [CrossRef]
- Fallah, A.; Mokhtari, A.; Ozdaglar, A. Personalized federated learning: A meta-learning approach. arXiv 2020, arXiv:2002.07948. [Google Scholar] [CrossRef]
- Li, X.; Huang, K.; Yang, W.; Wang, S.; Zhang, Z. On the Convergence of FedAvg on Non-IID Data. arXiv 2019, arXiv:1907.02189. [Google Scholar] [CrossRef]
- Casella, B.; Esposito, R.; Cavazzoni, C.; Aldinucci, M. Benchmarking FedAvg and FedCurv for Image Classification Tasks. arXiv 2023, arXiv:2303.17942. [Google Scholar] [CrossRef]
- de Enciso, J.; Leghissa, M.; Araque, O.; Carrera, A. Exploring temporal features in health records for frailty detection. In Proceedings of the Actas XLII Congreso Anual de la Sociedad Española de Ingeniería Biomédica (CASEIB 2024), SEIB, Sevilla, Spain, 13–15 November 2024; pp. 273–276. [Google Scholar]
- Yao, J.; Sharma, A. Continual Federated Learning for Dynamic Data Environments. In Proceedings of the 2024 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM), Victoria, BC, Canada, 21–23 August 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Beutel, D.J.; Topal, T.; Mathur, A.; Qiu, X.; Fernandez-Marques, J.; Gao, Y.; Sani, L.; Kwing, H.L.; Parcollet, T.; Gusmão, P.P.d.; et al. Flower: A Friendly Federated Learning Research Framework. arXiv 2020, arXiv:2007.14390. [Google Scholar] [CrossRef]
- Vellido, A. The importance of interpretability and visualization in machine learning for applications in medicine and health care. Neural Comput. Appl. 2020, 32, 18069–18083. [Google Scholar] [CrossRef]
- Akiba, T.; Sano, S.; Yanase, T.; Ohta, T.; Koyama, M. Optuna: A Next-generation Hyperparameter Optimization Framework. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 2623–2631. [Google Scholar] [CrossRef]
Robust (2766) | Pre-Frail (2116) | Frail (402) | |
---|---|---|---|
South East (895) | 507 (56.6%) | 341 (38.1%) | 47 (5.3%) |
East of England (703) | 377 (53.6%) | 282 (40.1%) | 44 (6.3%) |
South West (680) | 376 (55.3%) | 254 (37.4%) | 50 (7.4%) |
North West (598) | 295 (49.3%) | 248 (41.5%) | 55 (9.2%) |
West Midlands (577) | 265 (45.9%) | 254 (44.0%) | 58 (10.1%) |
Yorksh. & Hum. (548) | 313 (57.1%) | 202 (36.9%) | 33 (6.0%) |
East Midlands (544) | 288 (52.9%) | 221 (40.6%) | 35 (6.4%) |
London (418) | 193 (46.2%) | 183 (43.8%) | 42 (10.0%) |
North East (321) | 152 (47.4%) | 131 (40.8%) | 38 (11.8%) |
Precision | Recall | F-Score | ||||
---|---|---|---|---|---|---|
LogReg | Local | FedAvg | Local | FedAvg | Local | FedAvg |
South East | 0.758 | 0.796 | 0.745 | 0.793 | 0.748 | 0.788 |
East of England | 0.726 | 0.735 | 0.719 | 0.737 | 0.718 | 0.738 |
South West | 0.749 | 0.759 | 0.744 | 0.753 | 0.745 | 0.751 |
North West | 0.729 | 0.717 | 0.726 | 0.715 | 0.724 | 0.713 |
West Midlands | 0.683 | 0.74 | 0.682 | 0.729 | 0.681 | 0.727 |
Yorksh. & Hum. | 0.707 | 0.702 | 0.696 | 0.701 | 0.698 | 0.703 |
East Midlands | 0.727 | 0.821 | 0.722 | 0.812 | 0.721 | 0.809 |
London | 0.719 | 0.766 | 0.717 | 0.761 | 0.714 | 0.756 |
North East | 0.728 | 0.693 | 0.726 | 0.69 | 0.725 | 0.687 |
Federated | 0.741 | 0.737 | 0.735 | |||
Full dataset | 0.743 | 0.737 | 0.737 |
Precision | Recall | F-Score | ||||
---|---|---|---|---|---|---|
MLP | Local | FedAvg | Local | FedAvg | Local | FedAvg |
South East | 0.762 | 0.795 | 0.751 | 0.789 | 0.754 | 0.787 |
East of England | 0.783 | 0.895 | 0.766 | 0.891 | 0.767 | 0.891 |
South West | 0.792 | 0.835 | 0.782 | 0.832 | 0.782 | 0.832 |
North West | 0.781 | 0.819 | 0.775 | 0.818 | 0.775 | 0.817 |
West Midlands | 0.725 | 0.801 | 0.724 | 0.79 | 0.721 | 0.79 |
Yorksh. & Hum. | 0.75 | 0.835 | 0.739 | 0.825 | 0.742 | 0.827 |
East Midlands | 0.754 | 0.908 | 0.75 | 0.906 | 0.749 | 0.906 |
London | 0.744 | 0.876 | 0.747 | 0.857 | 0.734 | 0.862 |
North East | 0.745 | 0.809 | 0.737 | 0.827 | 0.736 | 0.807 |
Federated | 0.84 | 0.835 | 0.834 | |||
Full dataset | 0.847 | 0.841 | 0.843 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leghissa, M.; Carrera, Á.; Iglesias, C.Á. Can Hospitals Cooperate to Improve Predictions Without Sharing Data? A Federated Learning Approach for Frailty Screening. Appl. Sci. 2025, 15, 9939. https://doi.org/10.3390/app15189939
Leghissa M, Carrera Á, Iglesias CÁ. Can Hospitals Cooperate to Improve Predictions Without Sharing Data? A Federated Learning Approach for Frailty Screening. Applied Sciences. 2025; 15(18):9939. https://doi.org/10.3390/app15189939
Chicago/Turabian StyleLeghissa, Matteo, Álvaro Carrera, and Carlos Á. Iglesias. 2025. "Can Hospitals Cooperate to Improve Predictions Without Sharing Data? A Federated Learning Approach for Frailty Screening" Applied Sciences 15, no. 18: 9939. https://doi.org/10.3390/app15189939
APA StyleLeghissa, M., Carrera, Á., & Iglesias, C. Á. (2025). Can Hospitals Cooperate to Improve Predictions Without Sharing Data? A Federated Learning Approach for Frailty Screening. Applied Sciences, 15(18), 9939. https://doi.org/10.3390/app15189939