Advanced Graph–Physics Hybrid Framework (AGPHF) for Holistic Integration of AI-Driven Graph- and Physics- Methodologies to Promote Resilient Wastewater Management in Dynamic Real-World Conditions
Abstract
1. Introduction
- Comprehensive integration of graph-based and physics-informed models into cohesive, end-to-end wastewater treatment systems remains unaccomplished.
- Multilayer graph models integrating infrastructure and microbial consortia data remain absent.
- Robust uncertainty quantification within AI-driven wastewater treatment processes is currently insufficiently addressed.
- Real-world closed-loop validation of AI-based control methods is severely lacking.
- The cybersecurity considerations integrated into AI-enhanced wastewater treatment systems are minimal.
- Standardized ontologies for graph and physics-based wastewater treatment methodologies remain underdeveloped.
- Unified Framework: Developed and deployed a modular pipeline that tightly integrates graph neural networks (GNNs), physics-informed neural networks (PINNs), multi-agent reinforcement learning (MARL), and digital twin architectures, enabling end-to-end learning, simulation, and closed-loop control for advanced wastewater treatment operations.
- Empirical Validation Across Scales: Demonstrated robust dissolved organic carbon (DOC) removal, consistently surpassing in membrane-aerated biofilm reactor–reverse osmosis (MABR–RO) pilot deployments, as well as sustained potable-grade permeate under variable influent and meteorological conditions.
- Swarm and RL-Optimized Advanced Oxidation: Implemented swarm intelligence and MARL-based optimization for hybrid electro-ozone/Fenton advanced oxidation processes (AOPs), achieving chemical oxygen demand (COD) abatement in less than 60 min, verified with full-scale high-strength wastewater streams.
- Graph-Based Predictive Control: Designed GNN-enabled controllers for membrane bioreactors (MBRs) to anticipate fouling and adaptively regulate aeration, resulting in persistent flux stabilization with <5% relative tracking error, validated across diurnal and shock-loading cycles.
- Physics-Informed Energy Reduction: Integrated physics-informed neuroevolutionary models into digital twins at the plant scale, realizing average aeration energy reductions of to without compromising effluent regulatory targets.
- Uncertainty and Trade-Off Quantification: Quantified operational trade-offs between energy efficiency, effluent quality, and process stability, providing percentile-resolved performance benchmarks and revealing controller sensitivities to meteorological and influent perturbations.
2. Materials and Methods
2.1. Dataset
2.2. Modeling Sequence
2.3. Graph–Physics Hybrid Pipeline
- Data Acquisition: Gather historical SCADA records and full-scale plant telemetry, merging disparate time scales into a unified sequence. Employ missing data imputation and outlier filtering.
- Feature Engineering: Compute statistical moments, physicochemical gradients, and domain-specific indices. Encode graph-structured features for input into neural models.
- Model Initialization: Select architectures: Graph Attention Networks (GATs), Spatio-Temporal GCNs (ST-GCNs), Capsule Graph Networks (CapsGNs), PINNs, and MARL-based digital twins. Initialize hyperparameters via Latin hypercube sampling.
- Training: Iteratively optimize model weights using Adam or stochastic gradient descent, subject to composite loss objectives:
- –
- Data fidelity;
- –
- Physical law consistency (for PINN);
- –
- Boundary and initial constraints.
- Simulation and Prediction: Generate forecasted effluent quality, energy consumption, and microbial dynamics using the trained models on test sets. Schedule aeration and dosing via learned policies.
- Control Feedback: Integrate model predictions with real-time plant control, enabling digital-twin synchronization and adaptive set-point regulation.
- Evaluation: Aggregate results across diurnal cycles, calculate percentile metrics, and cross-validate using independent datasets.
- Input: Raw SCADA data, historical plant logs, environmental telemetry
- Output: Optimized operational policy, validated predictions
- 1.
- Preprocess data:
- a.
- Merge tables by timestamp, impute missing values
- b.
- Filter outliers, scale features
- 2.
- Construct graph representation:
- a.
- Define node/edge types for physical assets and process variables
- b.
- Compute edge attributes (e.g., flow, substrate gradient)
- 3.
- Initialize models:For each architecture in {GAT, ST-GCN, CapsGN, PINN, MARL-DT}:
- a.
- Set hyperparameters (random sampling within design bounds)
- b.
- Initialize weights
- 4.
- Train models:For each epoch:
- a.
- Forward pass: compute outputs, losses (data, PDE, BC, IC)
- b.
- Backpropagate and update weights
- c.
- Enforce physical/operational constraints
- 5.
- Simulate closed-loop:For each test cycle:
- a.
- Predict effluent, energy, microbial metrics
- b.
- Adjust operational setpoints via MARL agent
- c.
- Log feedback for further refinement
- 6.
- Evaluate performance:
- a.
- Compute median and percentile metrics (RMSE, COD removal, energy saving)
- b.
- Compare across models
- c.
- Diagnose trade-offs
- 7.
- Select optimal policy for deployment
2.4. Graph Neural Network Models
2.5. Physics-Informed Neural Networks
2.6. Reaction–Diffusion Dynamics
2.7. Flow Dynamics
2.8. Multi-Agent Reinforcement Learning
2.9. Limitations
2.10. Computational Efficiency
3. Results
3.1. Primary Characterization
3.2. Sensitivity Analysis and Reliability Assurance of Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Mustafa, M.; Epelle, E.I.; Macfarlane, A.; Cusack, M.J.; Burns, A.; Yaseen, M. Innovative approaches to greywater micropollutant removal: AI-driven solutions and future outlook. RSC Adv. 2025, 15, 12125–12151. [Google Scholar] [CrossRef] [PubMed]
- Cairone, S.; Hasan, S.W.; Choo, K.H.; Li, C.W.; Zorpas, A.A.; Ksibi, M.; Zarra, T.; Belgiorno, V.; Naddeo, V. Enhancing membrane fouling control in wastewater treatment processes through artificial intelligence modeling: Research progress and future perspectives. Euro-Mediterr. J. Environ. Integr. 2024, 9, 1887–1905. [Google Scholar] [CrossRef]
- Sravan, J.S.; Matsakas, L.; Sarkar, O. Advances in biological wastewater treatment processes: Focus on low-carbon energy and resource recovery in biorefinery context. Bioengineering 2024, 11, 281. [Google Scholar] [CrossRef] [PubMed]
- Alkhaldi, A.; Alsultan, A.; Peng, Z. Redox-Mediated Electrodialysis for Removal and Recovery of Ammonium and Phosphate from Wastewater. ECS Meet. Abstr. 2025, 247, 1479. [Google Scholar] [CrossRef]
- Hermes, L.; Artelt, A.; Vrachimis, S.G.; Polycarpou, M.M.; Hammer, B. A Benchmark for Physics-informed Machine Learning of Chlorine Concentration States in Water Distribution Networks. SN Comput. Sci. 2025, 6, 522. [Google Scholar] [CrossRef]
- Mu, T.; Duan, F.; Ning, B.; Zhou, B.; Liu, J.; Huang, M. ST-GPINN: A spatio-temporal graph physics-informed neural network for enhanced water quality prediction in water distribution systems. NPJ Clean Water 2025, 8, 74. [Google Scholar] [CrossRef]
- Wei, Y.; Law, A.W.K.; Yang, C. Real-time data-processing framework with model updating for digital twins of water treatment facilities. Water 2022, 14, 3591. [Google Scholar] [CrossRef]
- Chen, K.J.; Kao, C.M. Optimization of municipal wastewater treatment plants management through digital twin modeling. J. Environ. Eng. 2025, 151, 01825001. [Google Scholar] [CrossRef]
- Xiong, F.; Su, Z.; Tang, Y.; Dai, T.; Wen, D. Global WWTP Microbiome-based Integrative Information Platform: From experience to intelligence. Environ. Sci. Ecotechnol. 2023, 20, 100370. [Google Scholar] [CrossRef]
- Msomi, N.S.; Levy, J.I.; Matteson, N.L.; Ndlovu, N.; Ntuli, P.; Baer, A.; Pilz, D.; Mabasa, V.; Gwala, S.; Singh, N.; et al. Wastewater-integrated pathogen surveillance dashboards enable real-time, transparent, and interpretable public health risk assessment and dissemination. PLoS Glob. Public Health 2025, 5, e0004443. [Google Scholar] [CrossRef]
- Bel-Ghaddar, Y.; Chahinian, N.; Seriai, A.; Begdouri, A.; Abdou, R.; Delenne, C. Graph Convolutional Networks: Application to Database Completion of Wastewater Networks. Water 2021, 13, 1681. [Google Scholar] [CrossRef]
- Yin, W.X.; Chen, K.H.; Lv, J.Q.; Chen, J.J.; Liu, S.; Song, Y.P.; Zhao, Y.W.; Huang, F.; Bao, H.X.; Wang, H.; et al. Deciphering and Mitigating of Dynamic Greenhouse Gas Emission in Urban Drainage Systems with Knowledge-Infused Graph Neural Network. Environ. Sci. Technol. 2025, 59, 3592–3602. [Google Scholar] [CrossRef] [PubMed]
- Ju, W.; Yi, S.; Wang, Y.; Xiao, Z.; Mao, Z.; Li, H.; Gu, Y.; Qin, Y.; Yin, N.; Wang, S.; et al. A Survey of Graph Neural Networks in Real world: Imbalance, Noise, Privacy and OOD Challenges. arXiv 2024, arXiv:2403.04468. [Google Scholar] [CrossRef]
- Carletti, G.; Giulianelli, E.; Lippolis, A.S.; Lodi, G.; Nuzzolese, A.G.; Picone, M.; Settanta, G. The Water Health Open Knowledge Graph. Sci. Data 2025, 12, 274. [Google Scholar] [CrossRef]
- Ibrahim, M.; Elhafiz, R.; Al-Wadi, A. Reinforcement Learning-Based Attack Graph Analysis for Wastewater Treatment Plant. IEEE Trans. Ind. Appl. 2023, 59, 7858–7867. [Google Scholar] [CrossRef]
- Ashraf, I.; Artelt, A.; Hammer, B. Scalable and Robust Physics-Informed Graph Neural Networks for Water Distribution Systems. arXiv 2025, arXiv:2502.12164. [Google Scholar]
- Tr’avn’ikov’a, V.; Wolff, D.; Dirkes, N.; Elgeti, S.; von Lieres, E.; Behr, M. A Model Hierarchy for Predicting the Flow in Stirred Tanks with Physics-Informed Neural Networks. Am. Inst. Math. Sci. 2024, 2, 91–129. [Google Scholar]
- Wang, D.; Ma, H.; Ren, J.; Han, H.; Qiao, J. Online Digital Twin Adaptive Critic Design With Long Short-Term Memory for Wastewater Treatment Plants. IEEE Trans. Autom. Sci. Eng. 2025, 22, 15241–15250. [Google Scholar] [CrossRef]
- Wang, A.; Li, H.; He, Z.; Tao, Y.; Wang, H.; Yang, M.; Savić, D.A.; Daigger, G.T.; Ren, N. Digital Twins for Wastewater Treatment: A Technical Review. Engineering 2024, 36, 21–35. [Google Scholar] [CrossRef]
- Han, H.; Xu, Y.; Liu, Z.; Sun, H.; Qiao, J. Knowledge-Data-Driven Robust Fault-Tolerant Control for Sludge Bulking in Wastewater Treatment Process. IEEE Trans. Ind. Inform. 2024, 20, 10280–10291. [Google Scholar] [CrossRef]
- Sitzenfrei, R. A Graph-Based Optimization Framework for Large Water Distribution Networks. Water 2023, 15, 2896. [Google Scholar] [CrossRef]
- Alevizos, V.; Yue, Z.; Edralin, S.; Xu, C.; Gerolimos, N.; Papakostas, G.A. Biomimicry-Inspired Automated Machine Learning Fit-for-Purpose Wastewater Treatment for Sustainable Water Reuse. Water 2025, 17, 1395. [Google Scholar] [CrossRef]
- Bagehrzadeh, F. Full Scale Wastewater Treatment Plant Data; Mendeley Data, V1; Bosch Sicherheitssysteme GmbH: Grasbrunn, Germany, 2021. [Google Scholar] [CrossRef]
- Knappe, J.; Somlai, C.; Gill, L. Assessing the spatial and temporal variability of GHG emissions from different configurations of on-site wastewater treatment system using discrete and continuous gas flux measurement. Biogeosci. Discuss. 2021, 2021, 1–29. [Google Scholar]
- Wang, Q.; Sheng, Y.; Zhang, Y.; Zhong, X.; Liu, H.; Huang, Z.; Li, D.; Wu, H.; Ni, Y.; Zhang, J.; et al. Complete long-term monitoring of greenhouse gas emissions from a full-scale industrial wastewater treatment plant with different cover configurations. J. Environ. Manag. 2024, 360, 121206. [Google Scholar] [CrossRef]
- Rozema, E.R.; VanderZaag, A.C.; Wood, J.D.; Drizo, A.; Zheng, Y.; Madani, A.; Gordon, R.J. Constructed wetlands for agricultural wastewater treatment in Northeastern North America: A review. Water 2016, 8, 173. [Google Scholar] [CrossRef]
- Perushkina, E. The influence of seasonality on the technological parameters of biological wastewater treatment at existing wastewater treatment plants. BIO Web Conf. 2024, 95, 02009. [Google Scholar] [CrossRef]
- Arnell, M.; Ahlström, M.; Wärff, C.; Saagi, R.; Jeppsson, U. Plant-wide modelling and analysis of WWTP temperature dynamics for sustainable heat recovery from wastewater. Water Sci. Technol. 2021, 84, 1023–1036. [Google Scholar] [CrossRef]
- vo Buttlar, J.; Zscheischler, J.; Mahecha, M.D. An extended approach for spatiotemporal gapfilling: Dealing with large and systematic gaps in geoscientific datasets. Nonlinear Processes Geophys. 2014, 21, 203–215. [Google Scholar] [CrossRef]
- Kang, M.; Kang, M.; Kim, S. Catch-up mix: Catch-up class for struggling filters in cnn. In Proceedings of the AAAI Conference on Artificial Intelligence, Vancouver, BC, Canada, 20–27 February 2024; Volume 38, pp. 2705–2713. [Google Scholar]
- Verhaeghe, L.; Verwaeren, J.; Kirim, G.; Daneshgar, S.; Vanrolleghem, P.A.; Torfs, E. Towards good modelling practice for parallel hybrid models for wastewater treatment processes. Water Sci. Technol. 2024, 89, 2971–2990. [Google Scholar] [CrossRef]
- Le Priol, C.; Monteiro, J.M.; Bouchet, F. Using rare event algorithms to understand the statistics and dynamics of extreme heatwave seasons in South Asia. Environ. Res. Clim. 2024, 3, 045016. [Google Scholar] [CrossRef]
- Xie, R.; Fang, X. The unusual 2014–2016 El Nino events: Dynamics, prediction and enlightenments. Sci. China Earth Sci. 2020, 63, 626–633. [Google Scholar] [CrossRef]
- Zhou, Z.; Tang, W.; Li, M.; Cao, W.; Yuan, Z. A novel hybrid intelligent SOPDEL model with comprehensive data preprocessing for long-time-series climate prediction. Remote Sens. 2023, 15, 1951. [Google Scholar] [CrossRef]
- Velickovic, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio, P.; Bengio, Y. Graph Attention Networks. In Proceedings of the International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar]
- Yan, S.; Xiong, Y.; Lin, D. Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition. In AAAI-18, Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; Association for the Advancement of Artificial Intelligence: Washington, DC, USA, 2018; Volume 1, pp. 1–9. [Google Scholar]
- Verma, S.; Zhang, Z.L. Graph Capsule Convolutional Neural Networks. In Proceedings of the Joint ICML and IJCAI Workshop on Computational Biology, Stockholm, Switzerland, 10–15 July 2018; Volume 1, pp. 1–12. [Google Scholar]
- Raissi, M.; Perdikaris, P.; Karniadakis, G. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [Google Scholar] [CrossRef]
- Sahin, T.; von Danwitz, M.; Popp, A. Solving forward and inverse problems of contact mechanics using physics-informed neural networks. Adv. Model. Simul. Eng. Sci. 2024, 11, 11. [Google Scholar] [CrossRef]
- Stewart, P.S.; Zhang, T.; Xu, R.; Pitts, B.; Walters, M.C.; Roe, F.; Kikhney, J.; Moter, A. Reaction–diffusion theory explains hypoxia and heterogeneous growth within microbial biofilms associated with chronic infections. npj Biofilms Microbiomes 2016, 2, 16012. [Google Scholar] [CrossRef]
- Sun, G.; Liu, G.; Li, M. An efficient explicit finite-difference scheme for simulating coupled biomass growth on nutritive substrates. Math. Probl. Eng. 2015, 2015, 708497. [Google Scholar] [CrossRef]
- Alhammali, A.; Peszynska, M. Numerical analysis of a parabolic variational inequality system modeling biofilm growth at the porescale. Numer. Methods Partial. Differ. Equ. 2020, 36, 941–971. [Google Scholar] [CrossRef]
- Sonner, S. A class of mathematical models describing processes in spatially heterogeneous biofilm communities. Biomath 2013, 2, 1312311. [Google Scholar] [CrossRef]
- Peyton, B.M.; Timothy, G.R.; Sani, R.K. Subsurface Uranium Fate and Transport: Integrated Experiments and Modeling of Coupled Biogeochemical Mechanisms of Nanocrystalline Uraninite Oxidation by Fe(III)-(hydr)oxides—Project Final Report; Montana State University: Bozeman, MT, USA, 2013. [Google Scholar]
- Carvalho, P.G.S.; Devloo, P.R.B.; Gomes, S.M. A semi-hybrid-mixed method for Stokes–Brinkman–Darcy flows with H(div)-velocity fields. Int. J. Numer. Methods Eng. 2023, 125, e7363. [Google Scholar] [CrossRef]
- Zhang, T.; Payne, K.; Zhang, J.; Purswani, P.; Karpyn, Z.; Wang, M. Hybrid ion exchange and biological processes for water and wastewater treatment: A comprehensive review of process applications and mathematical modeling. Rev. Environ. Sci. Bio/Technol. 2024, 23, 163–188. [Google Scholar] [CrossRef]
- Tamba, T. A Multi-Agent Reinforcement Learning Approach for Spatiotemporal Sensing Application in Precision Agriculture. In Industry 4.0 in Small and Medium-Sized Enterprises (SMEs); CRC Press: Boca Raton, FL, USA, 2022; pp. 71–84. [Google Scholar]
- Dvir, E.; Shifrin, M.; Gurewitz, O. Cooperative multi-agent reinforcement learning for data gathering in energy-harvesting wireless sensor networks. Mathematics 2024, 12, 2102. [Google Scholar] [CrossRef]
- Peralta, F.; Reina, D.G.; Toral, S. Water quality online modeling using multi-objective and multi-agent Bayesian optimization with region partitioning. Mechatronics 2023, 91, 102953. [Google Scholar] [CrossRef]
- Zhu, Z.; Dong, S.; Zhang, H.; Parker, W.; Yin, R.; Bai, X.; Yu, Z.; Wang, J.; Gao, Y.; Ren, H. Bayesian Optimization-Enhanced Reinforcement learning for Self-adaptive and multi-objective control of wastewater treatment. Bioresour. Technol. 2025, 421, 132210. [Google Scholar] [CrossRef]
- Park, K.V. AL-PINN: Active Learning-Driven Physics-Informed Neural Networks for Efficient Sample Selection in Solving Partial Differential Equations. arXiv 2025, arXiv:2502.03963. [Google Scholar]
Model | Parameter | Optimization Range/Value |
---|---|---|
GAT | Learning rate | 0.001–0.01 |
GAT | Selected value | 0.003 |
GAT | First-order sensitivity | 0.42 |
GAT | Total-order sensitivity | 0.63 |
GAT | DGSM | |
GAT | Elasticity | |
GAT | Evaluations N | 2048 |
ST-GCN | Epochs | 100–500 |
ST-GCN | Selected value | 240 |
ST-GCN | First-order sensitivity | 0.18 |
ST-GCN | Total-order sensitivity | 0.29 |
ST-GCN | DGSM | |
ST-GCN | Elasticity | |
ST-GCN | Evaluations N | 2048 |
CapsGN | Capsule dimension | 8–64 |
CapsGN | Selected value | 32 |
CapsGN | First-order sensitivity | 0.27 |
CapsGN | Total-order sensitivity | 0.48 |
CapsGN | DGSM | |
CapsGN | Elasticity | |
CapsGN | Evaluations N | 2048 |
PINNs | PDE weight | 0.1–10.0 |
PINNs | Selected value | 2.4 |
PINNs | First-order sensitivity | 0.36 |
PINNs | Total-order sensitivity | 0.58 |
PINNs | DGSM | |
PINNs | Elasticity | |
PINNs | Evaluations N | 2048 |
MARL | Exploration rate () | 0.9–0.99 |
MARL | Selected value | 0.96 |
MARL | First-order sensitivity | 0.21 |
MARL | Total-order sensitivity | 0.47 |
MARL | DGSM | |
MARL | Elasticity | |
MARL | Evaluations N | 4096 |
Model | RMSE (mg/L) | MAPE (%) | COD rem. (%) | Energy Save (%) | Flux Err (%) | (kWh/m3) | |
---|---|---|---|---|---|---|---|
GAT | 0.17 | 4.8 | 90.8 | 18.9 | 4.2 | 0.91 | 0.29 |
ST–GCN | 0.21 | 6.1 | 88.5 | 17.6 | 5.4 | 0.93 | 0.31 |
CapsGN | 0.19 | 5.4 | 89.3 | 19.2 | 4.7 | 0.92 | 0.30 |
PINN | 0.23 | 6.7 | 87.9 | 20.1 | 5.1 | 0.90 | 0.28 |
MARL–DT | 0.25 | 7.9 | 86.4 | 21.7 | 5.3 | 0.94 | 0.27 |
Metric | Tenth | Median | Ninetieth |
---|---|---|---|
RMSE (mg/L) | 0.13 | 0.17 | 0.21 |
MAPE (%) | 3.9 | 4.8 | 6.0 |
COD rem. (%) | 89.5 | 90.8 | 92.1 |
Energy save (%) | 17.2 | 18.9 | 20.5 |
Flux err (%) | 3.2 | 4.2 | 5.1 |
0.87 | 0.91 | 0.97 |
Metric | Tenth | Median | Ninetieth |
---|---|---|---|
RMSE (mg/L) | 0.16 | 0.21 | 0.27 |
MAPE (%) | 4.8 | 6.1 | 7.4 |
COD rem. (%) | 87.0 | 88.5 | 89.7 |
Energy save (%) | 16.4 | 17.6 | 18.5 |
Flux err (%) | 4.2 | 5.4 | 6.5 |
0.90 | 0.93 | 1.02 |
Metric | Tenth | Median | Ninetieth |
---|---|---|---|
RMSE (mg/L) | 0.14 | 0.19 | 0.25 |
MAPE (%) | 4.2 | 5.4 | 6.6 |
COD rem. (%) | 88.4 | 89.3 | 90.2 |
Energy save (%) | 17.8 | 19.2 | 21.0 |
Flux err (%) | 3.1 | 4.7 | 5.9 |
0.88 | 0.92 | 0.99 |
Metric | Tenth | Median | Ninetieth |
---|---|---|---|
RMSE (mg/L) | 0.18 | 0.23 | 0.29 |
MAPE (%) | 5.5 | 6.7 | 8.1 |
COD rem. (%) | 86.5 | 87.9 | 89.0 |
Energy save (%) | 18.6 | 20.1 | 22.8 |
Flux err (%) | 3.9 | 5.1 | 6.3 |
0.85 | 0.90 | 0.98 |
Metric | Tenth | Median | Ninetieth |
---|---|---|---|
RMSE (mg/L) | 0.20 | 0.25 | 0.33 |
MAPE (%) | 6.1 | 7.9 | 9.8 |
COD rem. (%) | 84.9 | 86.4 | 87.6 |
Energy save (%) | 19.4 | 21.7 | 24.9 |
Flux err (%) | 4.0 | 5.3 | 6.8 |
0.89 | 0.94 | 1.05 |
Regime | Temp (°C) | Slope (kWh m−3 °C−1) | Intercept at 25 °C (kWh m−3) | (kWh m−3) | n | |
---|---|---|---|---|---|---|
Night | ≤32 | 0.31 | 0.78 | 0.015 | 55 | |
Day | ≤32 | 0.33 | 0.82 | 0.018 | 55 | |
Day | >32 | 0.21 | 0.74 | 0.027 | 20 | |
Night | >32 | 0.22 | 0.71 | 0.022 | 20 |
Variant | RMSE (mg/L) | COD (%) | Energy Save (%) | Flux Err (%) | (kWh/m3) |
---|---|---|---|---|---|
No physics residuals | +0.03 | +0.8 | +0.020 | ||
No graph edges | +0.05 | +1.2 | +0.012 | ||
No meteorology | +0.04 | +0.9 | +0.011 | ||
Actuators frozen | +0.06 | +1.8 | +0.041 |
Parameter | Baseline | Low | High | (%) | SRC | |
---|---|---|---|---|---|---|
Throughput factor | 1.00 | 0.90 | 1.10 | 0.86 | 0.62 | |
Energy penalty | 0.15 | 0.10 | 0.25 | 0.41 | 0.28 | |
Failure rate (h−1) | 0.012 | 0.006 | 0.024 | 0.37 | −0.24 | |
Task mix ratio | 0.60 | 0.40 | 0.80 | 0.18 | 0.09 | |
Buffer capacity B | 40 | 20 | 80 | 0.05 | 0.04 |
Metric | Mean | SD | Q2.5 | Q50 | Q97.5 |
---|---|---|---|---|---|
Primary output Y | 100.8 | 6.9 | 88.7 | 100.6 | 114.9 |
CV (%) | 6.8 | – | – | – | – |
Failure share | 0.091 | – | – | – | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alevizos, V.; Gerolimos, N.; Yue, Z.; Edralin, S.; Xu, C.; Papakostas, G.A.; Vrochidou, E.; Marnellos, G.; Mustafa, M. Advanced Graph–Physics Hybrid Framework (AGPHF) for Holistic Integration of AI-Driven Graph- and Physics- Methodologies to Promote Resilient Wastewater Management in Dynamic Real-World Conditions. Appl. Sci. 2025, 15, 9905. https://doi.org/10.3390/app15189905
Alevizos V, Gerolimos N, Yue Z, Edralin S, Xu C, Papakostas GA, Vrochidou E, Marnellos G, Mustafa M. Advanced Graph–Physics Hybrid Framework (AGPHF) for Holistic Integration of AI-Driven Graph- and Physics- Methodologies to Promote Resilient Wastewater Management in Dynamic Real-World Conditions. Applied Sciences. 2025; 15(18):9905. https://doi.org/10.3390/app15189905
Chicago/Turabian StyleAlevizos, Vasileios, Nikitas Gerolimos, Zongliang Yue, Sabrina Edralin, Clark Xu, George A. Papakostas, Eleni Vrochidou, George Marnellos, and Mousa Mustafa. 2025. "Advanced Graph–Physics Hybrid Framework (AGPHF) for Holistic Integration of AI-Driven Graph- and Physics- Methodologies to Promote Resilient Wastewater Management in Dynamic Real-World Conditions" Applied Sciences 15, no. 18: 9905. https://doi.org/10.3390/app15189905
APA StyleAlevizos, V., Gerolimos, N., Yue, Z., Edralin, S., Xu, C., Papakostas, G. A., Vrochidou, E., Marnellos, G., & Mustafa, M. (2025). Advanced Graph–Physics Hybrid Framework (AGPHF) for Holistic Integration of AI-Driven Graph- and Physics- Methodologies to Promote Resilient Wastewater Management in Dynamic Real-World Conditions. Applied Sciences, 15(18), 9905. https://doi.org/10.3390/app15189905