Spatiotemporal Characteristics of Oxygen Content in the Vegetation Growing Season of Qinghai Province Based on Vertical Gradients
Abstract
1. Introduction
2. Data Analysis
2.1. Study Area Overview
2.2. Data Sources
- (1)
- Oxygen content data were obtained from real-time monitoring at meteorological stations, using both zirconia-based and electrochemical oxygen sensors. The instrument used by the meteorological station to measure oxygen concentration is the TD600S-O2-A oxygen content analyzer produced in China, installed at a height of 2 m above the ground, with oxygen concentration measured in%.
- (2)
- Spatial distribution data of oxygen content were derived from the Near-Surface Oxygen Content Dataset of the Qinghai–Tibet Plateau (2017–2022) provided by the National Tibetan Plateau Data Center [33].
- (3)
- Historical temperature data were obtained from the 1 km Monthly Mean Temperature Dataset for China (1901–2024), also from the National Tibetan Plateau Data Center [34].
- (4)
- Historical precipitation data were obtained from the 1 km Monthly Precipitation Dataset for China (1960–2020), sourced from the China Scientific Data journal (Chinese and English online editions) [35].
2.3. Research Methods and Ideas
3. Results
3.1. Distribution and Trend of Oxygen Content at Different Altitude Gradients
3.2. Variation in Fluctuation Intensity of Oxygen Content Across Different Altitudinal Gradients
3.3. Kernel Density Estimation and Difference Analysis of Oxygen Content Across Elevation Gradients
4. Discussion
5. Conclusions
- (1)
- Temporal trends of oxygen content. Across the entire growing season, near-surface oxygen content at all three elevation gradients exhibited significant upward trends. The increase was largest at low elevations (1500–2500 m), moderate at mid elevations (2500–3500 m), and relatively weak at high elevations (3500–4500 m). This indicates that elevation gradients strongly influence the temporal rate of oxygen change.
- (2)
- Spatial differentiation of fluctuation intensity. The three elevation gradients displayed clear differences in stability. Oxygen content at low elevations, though higher in absolute value, showed the greatest fluctuations; mid elevations exhibited the most intense fluctuations in June; while high elevations were generally stable, with some enhancement in midsummer. These differences reflect the differentiated influences of climatic conditions and ecological processes across altitudinal belts.
- (3)
- Distributional features and statistical significance. Kernel density estimation showed that low elevations had wider distributions with heavier tails, mid elevations displayed the most concentrated distributions with the lowest variability, and high elevations fell in between. Results of the Kruskal–Wallis test further confirmed highly significant differences among the three elevation gradients, verifying that elevation is a key factor driving the spatial differentiation of oxygen content.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dole, M.; Lane, G.; Rudd, D.; Zaukelies, D. Isotopic composition of atmospheric oxygen and nitrogen. Geochim. Cosmochim. Acta 1954, 6, 65–78. [Google Scholar] [CrossRef]
- Machta, L.; Hughes, E. Atmospheric oxygen in 1967 to 1970. Science 1970, 168, 1582–1584. [Google Scholar] [CrossRef]
- Beall, C.M. Two routes to functional adaptation: Tibetan and Andean high-altitude natives. Proc. Natl. Acad. Sci. USA 2007, 104 (Suppl. 1), 8655–8660. [Google Scholar] [CrossRef] [PubMed]
- Shi, P.; Chen, Y.; Zhang, G.; Tang, H.; Chen, Z.; Yu, D.; Yang, J.; Ye, T.; Wang, J.; Liang, S.; et al. Factors contributing to spatial-temporal variations of observed oxygen concentration over the Qinghai-Tibetan Plateau. Sci. Rep. 2021, 11, 17338. [Google Scholar] [CrossRef]
- Shi, P.; Chen, Y.; Zhang, A.; He, Y.; Gao, M.; Yang, J.; Mao, R.; Wu, J.; Ye, T.; Xiao, C.; et al. Factors contribution to oxygen concentration in Qinghai-Tibetan Plateau. Chin. Sci. Bull. 2019, 64, 715–724. (In Chinese) [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, G.; Chen, Z.; Yang, X.; Chen, B.; Ma, Y.; Xie, H.; Luo, Q.; Yang, J.; Ye, T.; et al. A warming climate may reduce health risks of hypoxia on the Qinghai-Tibet Plateau. Sci. Bull. 2022, 67, 341–344. [Google Scholar] [CrossRef]
- Rimoldi, S.F.; Sartori, C.; Seiler, C.; Delacrétaz, E.; Mattle, H.P.; Scherrer, U.; Allemann, Y. High-altitude exposure in patients with cardiovascular disease: Risk assessment and practical recommendations. Prog. Cardiovasc. Dis. 2010, 52, 512–524. [Google Scholar] [CrossRef] [PubMed]
- Cogo, A.; Fischer, R.; Schoene, R. Respiratory diseases and high altitude. High Alt. Med. Biol. 2004, 5, 435–444. [Google Scholar] [CrossRef]
- Riley, C.J.; Gavin, M. Physiological Changes to the Cardiovascular System at High Altitude and Its Effects on Cardiovascular Disease. High Alt. Med. Biol. 2017, 18, 102–113. [Google Scholar] [CrossRef]
- Richalet, J.P.; Hermand, E.; Lhuissier, F.J. Cardiovascular physiology and pathophysiology at high altitude. Nat. Rev. Cardiol. 2024, 21, 75–88. [Google Scholar] [CrossRef]
- Mallet, R.T.; Burtscher, J.; Richalet, J.P.; Millet, G.P.; Burtscher, M. Impact of High Altitude on Cardiovascular Health: Current Perspectives. Vasc. Health Risk Manag. 2021, 17, 317–335. [Google Scholar] [CrossRef]
- Zha, X.; Tian, Y.; Gao, X.; Wang, W.; Yu, C. Quantitatively evaluate the environmental impact factors of the life expectancy in Tibet, China. Environ. Geochem. Health 2019, 41, 1507–1520. [Google Scholar] [CrossRef]
- Li, J.; En, S.; Zhang, Q.; Wang, F. Exploration into the Era, Magnitude, and Form of the Uplift of the Qinghai Tibet Plateau. Sci. China 1979, 30, 608–616. Available online: http://ir.nigpas.ac.cn/handle/332004/7854 (accessed on 18 August 2025).
- Li, J.; Fang, X.; Ma, H.; Zhu, J. Geomorphic Evolution of the Upper Yellow River in the Late Cenozoic Era and the Uplift of the Qinghai Tibet Plateau. Sci. China Ser. D 1996, 26, 316–322. [Google Scholar]
- Pan, B.; Li, J.; Chen, F. Qinghai-Tibetan Plateau: A Driver and Amplifier of Global Climatic Changes-I Basic Characteristics of Climatic Changes in Cenozoic Era. J. Lanzhou Univ. (Nat. Sci.) 1995, 39, 120–128. [Google Scholar] [CrossRef]
- Pan, B.; Li, J.; Zhu, J.; Cao, J. Qinghai-Xizang(Tibetan)Plateau: A Driver and Amplifier of Global Climatic Changes-II. Uplift Processes of the Qinghai-Xizang (Tibetan) Plateau. J. Lanzhou Univ. (Nat. Sci.) 1995, 39, 160–167. [Google Scholar] [CrossRef]
- Pan, B.; Li, J. Qinghai-Tibetan Plateau: A Driver and Amplifier of the Global Climatic Change-III. The effects of the uplift of Qinghai-Tibetan Plateau on Climatic Changes. J. Lanzhou Univ. (Nat. Sci.) 1996, 40, 108–115. [Google Scholar] [CrossRef]
- Li, J. Studies on the Geomorphological Evolution of the Qinghai-Xizang(Tibetan) Plateau and Asian Monsoon. Mar. Geol. Quat. Geol. 1999, 19, 7–17. [Google Scholar] [CrossRef]
- Sun, C.; Xu, X.; Wang, P.; Yang, D.; Zhang, S.; Wang, C.; Cai, W. The Warming and Wetting Ecological Environment Changes over the Qinghai-Tibetan Plateau and the Driving Effect of the Asian Summer Monsoon. J. Trop. Meteorol. 2022, 28, 95–108. [Google Scholar] [CrossRef]
- Shi, P.; Chen, Y.; Ma, H.; Ye, T.; Tang, H.; Wang, J. Further research on the factors contributing to oxygen concentration over the Qinghai-Tibetan Plateau. Chin. Sci. Bull. 2021, 66, 4028–4035. (In Chinese) [Google Scholar] [CrossRef]
- Liu, R.; Shi, P.J.; Tang, H.P.; Wang, J.A.; Zhao, C.L.; Zhu, W.Q. Vegetation oxygen production and its contribution rate to near-surface atmospheric oxygen concentration on the Qinghai-Tibet Plateau. Acta Geogr. Sin. 2023, 78, 1136–1152. [Google Scholar]
- Liu, W.; Zhang, Q.; Fu, Z.; Chen, X.; Li, H. Analysis and Estimation of Geographical and Topographic Influencing Factors for Precipitation Distribution over Complex Terrains: A Case of the Northeast Slope of the Qinghai–Tibet Plateau. Atmosphere 2018, 9, 349. [Google Scholar] [CrossRef]
- Hu, H.; Gesang, Z.; Wang, C.; Zhang, Y. A Brief description of the natural grass zoning in qinghai province. Qinghai Prataculture 2022, 31, 50–54. [Google Scholar]
- Zhu, S.; Li, J.; He, Q.; Qiu, Q.; Su, Y.; Lei, T.; Cui, G. Temporal Dynamics and Influencing Mechanism of Air Oxygen Content in Different Vegetation Types. Forests 2024, 15, 432. [Google Scholar] [CrossRef]
- Krstic, B.; Borisev, M.; Kastori, R.; Orlovic, S. The importance of urban vegetation in the carbon cycle and oxygen release. Zb. Matice Srp. Za Prir. Nauk. 2023, 114, 21–28. [Google Scholar] [CrossRef]
- Meng, H. Research on the Dynamics of Grassland Vegetation Productivity on the Qinghai-Tibet Plateau in the Context of Climate Change. Ph.D. Thesis, Xizang University, Lasa, China, 2025. [Google Scholar]
- Maltepe, E.; Saugstad, O.D. Oxygen in health and disease: Regulation of oxygen homeostasis–clinical implications. Pediatr. Res. 2009, 65, 261–268. [Google Scholar] [CrossRef]
- Jacobsen, D.; Marín, R. Bolivian Altiplano streams with low richness of macroinvertebrates and large diel fluctuations in temperature and dissolved oxygen. Aquat. Ecol. 2007, 42, 643–656. [Google Scholar] [CrossRef]
- Fusi, M.; Rigaud, S.; Guadagnin, G.; Barausse, A.; Marasco, R.; Daffonchio, D.; Régis, J.; Huchet, L.; Camin, C.; Pettit, L.; et al. Ideas and perspectives: The fluctuating nature of oxygen shapes the ecology of aquatic habitats and their biogeochemical cycles—The aquatic oxyscape. Biogeosciences 2023, 20, 3509–3521. [Google Scholar] [CrossRef]
- Keeling, R.F.; Najjar, R.P.; Bender, M.L.; Tans, P.P. What atmospheric oxygen measurements can tell us about the global carbon cycle. Glob. Biogeochem. Cycles 1993, 7, 37–67. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, P.; Zhang, F.; Liu, X.; Chen, G. Spatiotemporal characteristics of dryness/wetness conditions across Qinghai Province, Northwest China. Agric. For. Meteorol. 2013, 182–183, 101–108. [Google Scholar] [CrossRef]
- Li, S.; Yu, D.; Li, X. Exploring the impacts of ecosystem services on human well-being in Qinghai Province under the framework of the sustainable development goals. J. Environ. Manag. 2023, 345, 118880. [Google Scholar] [CrossRef]
- Surface Oxygen Concentration on the Qinghai-Tibet Plateau (2017–2022). Available online: https://cstr.cn/18406.11.Atmos.tpdc.272423 (accessed on 18 August 2025).
- 1-km Monthly Mean Temperature Dataset for China (1901–2023). Available online: https://cstr.cn/18406.11.Meteoro.tpdc.270961 (accessed on 18 August 2025).
- Qu, L.; Zhu, Q.; Zhu, C.; Zhang, J. A dataset of monthly precipitation with resolution of 1 km in China from 1960 to 2020. China Sci. Data 2023, 8, 286–297. [Google Scholar] [CrossRef]
- Sang, Y.F.; Wang, Z.; Liu, C. Comparison of the MK test and EMD method for trend identification in hydrological time series. J. Hydrol. 2014, 510, 293–298. [Google Scholar] [CrossRef]
- Guo, M.; Li, J.; He, H.; Xu, J.; Jin, Y. Detecting Global Vegetation Changes Using Mann-Kendal (MK) Trend Test for 1982–2015 Time Period. Chin. Geogr. Sci. 2018, 28, 907–919. [Google Scholar] [CrossRef]
- Phuong, D.; Tram, V.; Nhat, T.T.; Ly, T.D.; Loi, N.K. Hydro-meteorological trend analysis using the Mann-Kendall and innovative-Şen methodologies: A case study. Int. J. Glob. Warm. 2020, 20, 145. [Google Scholar] [CrossRef]
- Greenacre, M. Data reporting and visualization in ecology. Polar Biol. 2016, 39, 2189–2205. [Google Scholar] [CrossRef]
- Day, R.W.; Quinn, G.P. Comparisons of Treatments After an Analysis of Variance in Ecology. Ecol. Monogr. 1989, 59, 433–463. [Google Scholar] [CrossRef]
- Sharma, C.; Ojha, C. Statistical Parameters of Hydrometeorological Variables: Standard Deviation, SNR, Skewness and Kurtosis. In Lecture Notes in Civil Engineering; Springer: Berlin/Heidelberg, Germany, 2019; pp. 59–70. [Google Scholar] [CrossRef]
- Pélabon, C.; Hilde, C.H.; Einum, S.; Gamelon, M. On the use of the coefficient of variation to quantify and compare trait variation. Evol. Lett. 2020, 4, 180–188. [Google Scholar] [CrossRef]
- Shechtman, O. The Coefficient of Variation as an Index of Measurement Reliability. In Methods of Clinical Epidemiology; Springer Series on Epidemiology and Public Health; Springer: Berlin/Heidelberg, Germany, 2013; pp. 39–49. [Google Scholar] [CrossRef]
- Brown, C.E. Coefficient of Variation. In Applied Multivariate Statistics in Geohydrology and Related Sciences; Springer: Berlin/Heidelberg, Germany, 1998; pp. 155–157. [Google Scholar] [CrossRef]
- Frery, A.C. Interquartile Range. In Encyclopedia of Earth Sciences Series; Springer: Berlin/Heidelberg, Germany, 2023; pp. 664–666. [Google Scholar] [CrossRef]
- Dong, J.; Peng, J.; Liu, Y.; Qiu, S.; Han, Y. Integrating spatial continuous wavelet transform and kernel density estimation to identify ecological corridors in megacities. Landsc. Urban Plan. 2020, 199, 103815. [Google Scholar] [CrossRef]
- Qiao, H.; Escobar, L.E.; Saupe, E.E.; Ji, L.; Soberón, J. A cautionary note on the use of hypervolume kernel density estimators in ecological niche modelling. Glob. Ecol. Biogeogr. 2016, 26, 1066–1070. [Google Scholar] [CrossRef]
- Bijloos, G.; Meyers, J. A Fast-Converging Kernel Density Estimator for Dispersion in Horizontally Homogeneous Meteorological Conditions. Atmosphere 2021, 12, 1343. [Google Scholar] [CrossRef]
- Węglarczyk, S. Kernel density estimation and its application. ITM Web Conf. 2018, 23, 00037. [Google Scholar] [CrossRef]
- Ostertagová, E.; Ostertag, O.; Kováč, J. Methodology and Application of the Kruskal-Wallis Test. Appl. Mech. Mater. 2014, 611, 115–120. [Google Scholar] [CrossRef]
- MacFarland, T.W.; Yates, J.M. Kruskal–Wallis H-Test for Oneway Analysis of Variance (ANOVA) by Ranks. In Introduction to Nonparametric Statistics for the Biological Sciences Using, R; Springer: Cham, Switzerland, 2016; pp. 177–211. [Google Scholar] [CrossRef]
- Dusenge, M.E.; Duarte, A.G.; Way, D.A. Plant carbon metabolism and climate change: Elevated CO2 and temperature impacts on photosynthesis, photorespiration and respiration. New Phytol. 2019, 221, 32–49. [Google Scholar] [CrossRef] [PubMed]
- Shi, P.; Zhang, Y.; Chen, Y.; Zhu, W.; Hu, X.; Yang, H.; Jiang, L.; Ma, Y.; Tang, H. Factors contributing to the oxygen concentration over the Qinghai-Tibetan Plateau and its contribution rate calculation. Sci. China Earth Sci. 2024, 54, 517–528. [Google Scholar] [CrossRef]
- Zhang, Z.; Chang, J.; Xu, C.Y.; Zhou, Y.; Wu, Y.; Chen, X.; Jiang, S.; Duan, Z. The response of lake area and vegetation cover variations to climate change over the Qinghai-Tibetan Plateau during the past 30 years. Sci. Total Environ. 2018, 635, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Ginzburg, A.S.; Vinogradova, A.A.; Lezina, E.A.; Pomelova, M.A. Changes in the Oxygen Content in Urban Air under the Influence of Natural and Anthropogenic Factors. Izv. Atmos. Ocean. Phys. 2023, 59, 378–389. [Google Scholar] [CrossRef]
- Li, R.; Zhang, M.; Andreeva, V.; Pei, W.; Zhou, Y.; Misailov, I.; Basharin, N. Impact of climate warming on permafrost changes in the Qinghai-Tibet Plateau. Cold Reg. Sci. Technol. 2023, 205, 103692. [Google Scholar] [CrossRef]
Comparison | Mean Rank Difference | Lower CI | Upper CI | p-Value | Conclusion (α = 0.05) |
---|---|---|---|---|---|
1500–2500 m vs. 2500–3500 m | 199.92 | 165.65 | 234.19 | 0 | Significant |
1500–2500 m vs. 3500–4500 m | 64.628 | 30.357 | 98.898 | 2.01 × 10 −5 | Significant |
2500–3500 m vs. 3500–4500 m | −135.29 | −169.56 | −101.02 | 0 | Significant |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Ma, W.; Liu, F.; Zhi, Z.; Xu, W. Spatiotemporal Characteristics of Oxygen Content in the Vegetation Growing Season of Qinghai Province Based on Vertical Gradients. Appl. Sci. 2025, 15, 10301. https://doi.org/10.3390/app151810301
Zhang Z, Ma W, Liu F, Zhi Z, Xu W. Spatiotemporal Characteristics of Oxygen Content in the Vegetation Growing Season of Qinghai Province Based on Vertical Gradients. Applied Sciences. 2025; 15(18):10301. https://doi.org/10.3390/app151810301
Chicago/Turabian StyleZhang, Ziqian, Weidong Ma, Fenggui Liu, Zemin Zhi, and Wenjing Xu. 2025. "Spatiotemporal Characteristics of Oxygen Content in the Vegetation Growing Season of Qinghai Province Based on Vertical Gradients" Applied Sciences 15, no. 18: 10301. https://doi.org/10.3390/app151810301
APA StyleZhang, Z., Ma, W., Liu, F., Zhi, Z., & Xu, W. (2025). Spatiotemporal Characteristics of Oxygen Content in the Vegetation Growing Season of Qinghai Province Based on Vertical Gradients. Applied Sciences, 15(18), 10301. https://doi.org/10.3390/app151810301